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ABSTRACT 
 
The rising use of generative Artificial Intelligence (AI) via Large Language Models (LLMs) can pose significant 
security risks. Both industry and Government are considering or already using this technology; however, integrating 
LLMs into these environments can cause security violations by aggregating data into its model or reference archive. 
Besides the traditional problems of data aggregation, LLMs present novel problems that amplify the risk of keeping a 
model at its intended classification level. As LLMs ingest data, they gradually contextualize information not explicitly 
linked within a dataset. With inhuman attention and speed, the AI can find relationships between obfuscated data 
while it learns. Thus, when prompted, it can reveal content that it should not know based upon its deductions. Over 
time, a model may be rendered useless for its intended purpose as its knowledge level leads to its classification 
designation being elevated. Additional risk exists related to reverse engineering efforts; for example, by feeding it 
prompts, an analyst could glean information by using the LLM’s responses to find word associations similar to the 
auto-complete feature of a search engine. Another area of concern stems from Controlled Unclassified Information 
(CUI), information that is important and sensitive, but not classified and also carries an inherent requirement of “lawful 
government purpose” to access the data. A user may become an unintended insider threat by querying an LLM that 
has processed CUI data with gaps in its safeguards. In preparation for mass adoption of LLMs, the authors highlight 
the data spillage and insider threat scenarios resulting from the capabilities of LLMs. This paper includes a survey on 
the current state-of-the-art by detailing concerns and possible mitigations related to the aggregation of information by 
LLMs. This effort is intended to provide clarity on LLM usage, and aid readers with developing initial security policies 
and strategies. 
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INTRODUCTION 
 
Large Language Models (LLMs) technology has matured to the point where it’s being adopted across various 
industries; however, as a novel technology, it also poses fresh threats to data security. Some of these threats are unique 
to the defense industry and may only be noticeable at scale; thus, these vulnerabilities may not be well known to the 
community at this early stage. Planning and policy can mitigate these problems, but awareness of the problem space 
is needed first. 
 
As a primer, LLMs are first trained on a language, and then are fine-
tuned to a specific domain. For example, when asking about a 
prescription, a model trained on English and then fine-tuned on 
medical publications will provide a different response in both jargon 
and content than a model that is fine-tuned with law-based 
publications. Figure 1 depicts sample responses from two fine-tuned 
LLMs to the same prompt. Since training an LLM model from scratch 
is very resource intensive, using an LLM service or fine-tuning an 
open-source, or open-weights, model are the two routes that are 
available to consumers for now. In some training scenarios, the LLM 
is given sentences with a redacted word, and the model tries to guess 
it; if the guess is incorrect, then the model measures the difference 
between its guess and the right answer before it changes its weights to 
guess the right answer next time. The model is able to measure the 
difference in words because they are transformed into numerical 
vectors, and words that are similar in some meanings will be closer 
together in the latent space of the model. 
 

This concept is important for understanding how LLMs convert and 
store data when considering future data security policies; an LLM’s 
data can be thought of as a massive spreadsheet of weights, 10s to 
100s of GB in size, that only makes sense to the model. For example, 
if one wanted to remove a document from an LLM’s brain, it’s not 
as simple as removing a document from a folder; when an LLM 
ingests a document, the data will have touched millions or even 
billions of weights in a complex manner that, as of the writing of this 
paper, would be incredibly difficult or impossible to track and undo. 
However, instead of learning and internalizing documents, LLMs 
can also function like a librarian by looking up the needed 
information in a library database when generating a response; this 
setup is known as Retrieval Augmented Generation (RAG) and 
would make security concerns like user access control much easier 
to manage in the commercial domain to more completely build the 
reader’s awareness. This concept is depicted in Figure 2.  
 

Figure 1. Example of Two Fine-tuned 
LLM Responses to the Same Prompt 

Figure 2. RAG Methodology 
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This paper explores the security logistics behind preventing and recovering from various LLM-based threats. In 
addition, the authors performed an experiment demonstrating an LLM’s ability to defeat intentional obfuscation. These 
efforts are meant to further empower the audience and help craft policies that meet security needs while minimizing 
impact to LLM capabilities. When considering LLM solutions, it is important to highlight that most of the security 
risks are tied to the scale of integration; thus, one can control the amount of risk taken by avoiding monolithic solutions 
and going with compartmentalized environments with fewer users to safely gain experience with this technology. 
 
 
PRIOR RESEARCH 
 
Security in LLMs is a topic of increasing interest over the last years; because of this, an increasing number of related 
work and published papers are being produced with new offensive and defensive tactics.  
 
Cloud-Based Vulnerabilities 
 
Viewing LLMs through the lens of a security professional, the elephant in the room should be addressed first. The 
elephant of course being ChatGPT and the cadre of similar “cloud-based” LLMs that are accessible through either a 
web interface or API. When submitting prompts to these models, the user is voluntarily uploading their information 
to a third-party. Many times, this information can be sensitive or proprietary in nature. Uploading this type of material 
can be problematic from a security standpoint. Doing so provides the entity hosting the LLM with unfettered access 
to the material, but there are some additional considerations that arise. Many companies record interactions between 
LLMs and users for enhancing future LLM models. Simply uploading the material grants access to the data, it can 
also inadvertently grant access to other users of the LLM in the future. Due to models memorizing training data, this 
memorization leads to the possibility of a model divulging sensitive information when interacting with other users 
(Nasr et al., 2023). 
 
Uploading data to a third party is only one of the many problems with relying upon Large Language Models as a 
Service (LLMAAS). As stated previously, LLMs will typically memorize some of their training data. And while it is 
possible for other users to inadvertently stumble upon sensitive information that a model has been trained on, it is far 
more likely for a malicious actor to actively probe a model. If they are interested in the surrounding infrastructure of 
the model itself, they might use a combination of different adversarial prompting techniques to reveal information like 
the initial prompt (Esmradi, 2023). An experienced threat actor might also attempt an extraction attack which can 
allow them to approximately clone the parameters and hyperparameters of a model similarly exposing training data in 
a form without time limits as they now have a copy of the model to work from. 
 
It is recommended to avoid use of LLMs that are hosted by a third party, especially if they are also accessible to the 
general public. There are companies that offer a secure local cloud based LLMAAS, but it is up to the customer to 
confirm compliance for security requirements. The alternative to service providers is locally hosted and open-source 
LLMs. Running models locally is a preferable option to sending data to a third-party; however, these models also 
come with their own set of problems and dangers.  
 
Prompt Injections 
 
An inherent risk for LLMs, regardless of hosting solution, is exposure to arbitrary and unbounded user inputs. These 
are known as Adversarial Prompting Attacks (APAs) or Prompt Injections. For example, embedding a set of 
instructions as the target of a language translation task. The LLM will evaluate the embedded instructions bypassing 
guardrails put in place by the LLM administrators. Additionally, research by Geiping et al. (2024) demonstrated that 
prompt injections can coerce LLMs into generating arbitrary outputs. For instance, the researchers successfully 
manipulated an LLM into responding with a uniform resource locator (URL) to Rick Astley's "Never Gonna Give 
You Up" by asking it to translate nonsensical Hanzi text into English, and they were able to coerce the LLM to reveal 
its instructions by prompting it with only non-alphabetic characters. Although the consequences of these attacks were 
harmless, the implications of such attacks must be thoroughly considered. 
 
As LLMs are increasingly granted autonomy and greater access to other systems in their environments, the potential 
risks associated with their manipulation become a higher severity. While seemingly innocuous examples of LLM 
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manipulation, such as "Rick-Rolling" a user or generating a humorous response agreeing to sell a vehicle to a customer 
for $1 followed by, “And that’s a legally binding offer - no takesies backsies,” (Notonpoulos, 2023), may appear 
comedic on the surface, they underscore a more serious concern. For example, an LLM employed as a customer 
support chatbot, fine-tuned using sensitive information or provided access to customer data, carries a risk of revealing 
sensitive information. Then there is an emerging trend to turn LLMs into “agents,” entities with the “agency” to act. 
An LLM with greater access to organizational emails to assist with composing new emails or filter spam might be 
manipulated into forwarding all an executive’s emails or authoring emails on their behalf.  
 
Indirect prompt injections, on the other hand, work by embedding a malicious payload within a document or webpage 
which is then given to or retrieved by an LLM, similar to Trojan horse attacks. Notably, the 2023 study that introduced 
this technique, demonstrated successful attacks against multiple LLMs, including Bing GPT-4 (later renamed 
"Copilot") (Greshake et al., 2023). The study highlighted over a dozen threats, including scenarios where the attacker 
was able to gain full remote control of the LLM. Other examples included using compromised LLMs to coax 
information from users, using the LLM to direct users to specific URLs, availability impacts, spreading malware, 
infecting another LLM they were connected to, and modifying responses to spread misinformation.  
 
Model and Data Poisoning 
 
In contrast to previously identified vulnerabilities, model poisoning presents a distinct threat as an LLM vulnerability. 
Specifically, the risks associated with utilizing an open-weights, locally hosted LLM outweigh those of a closed-
source alternative. This vulnerability involves the corruption of a model's training or fine-tuning dataset which results 
in undesirable changes to the model’s behavior. It should be noted that a poisoned model is not always the result of 
adversarial action. For instance, Google’s AI Overviews, released in May 2024, suggested using glue to improve 
cheese adhesion on a pizza, which was speculated to have originated from a social media comment (Kelly, 2024).  
 
Detecting a poisoned model can be challenging. In some cases, a model may only display subtle indicators such as 
performance degradation or minor behavioral changes. In contrast, it may be readily apparent that a model has been 
compromised if it produces a high volume of toxic or vulgar responses or consistently answers questions incorrectly. 
A third possibility, and the most concerning, is that there are no visible indicators, and the poisoned behavior only 
manifests when a backdoor is triggered. A final detail that must be considered is the minimum number of data points 
necessary to poison a model; research has shown a model can be poisoned using less than 100 poisoned data points, 
complicating any investigations into if and how a model was poisoned (Panda et al. 2024, Wan et al. 2023). 
 
There are three possible avenues for poisoned models to make their way into a deployment: Insider Threats, freely 
available or open-source datasets, and open-source base models. Insider threats seem to be the most likely culprit 
behind model poisoning as they only require limited access to the dataset used for fine-tuning. The effect can be very 
subtle to undetectable outside of the presence of a pre-selected keyword. The LLM can then be taught to output subtle 
misinformation to harm operational effectiveness. Left unchecked this could have catastrophic effects to a program. 
Additionally, there is the possibility of incorporating open-source datasets into the fine-tuning step that have been pre-
poisoned by adversaries using much the same method. Finally, the selection of open-source models that may have 
incorporated the poisoned open-source datasets in their initial training or subsequent fine-tuning. 
 
Finally, central to the thesis of this paper, there is the threat of data exfiltration using a poisoned model that has been 
fine-tuned with sensitive information. Previous studies have demonstrated the feasibility of extracting memorized 
knowledge from LLMs using prompt extraction techniques (Carlini et al., 2021). These leaks are unintentional and 
typically the result of overfitting, an undesirable outcome where a model essentially memorizes its training dataset 
answers. More recently, researchers demonstrated a method that can induce this behavior for targeted data exfiltration 
purposes using less than 50 poisoned samples (Panda et al., 2024). The researchers further expanded their experiment 
to investigate whether this behavior could be induced during initial training, achieving success rates as high as 30%. 
A crucial detail to highlight is the relatively small models used in the study, with the largest being a 6.9 billion 
parameter model. This detail is significant in light of previous research (Wan et al., 2023), which has shown that larger 
models are more susceptible to poisoning attacks, suggesting that the vulnerability may be even more pronounced in 
the larger models. 
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Model Leeching/Extraction/Theft 
 
Extraction of data from models is becoming a hot topic in the world of LLMs. From some more benign motivations 
such as enforcing copyright to less than savory actors attempting to steal models and their training data to both get a 
leg up on industry via model leeching or getting access to sensitive training data. Unfortunately, extraction is here to 
stay and is becoming more sophisticated. Some attacks are as simple as asking a model to repeat the word “poem” 
repeatedly. Surprisingly, this causes the model to eventually return real names and emails that were contained within 
the training dataset (Nasr et al., 2023). This attack works because models typically have memorized some small 
amount of their training material even in the best of cases. The researchers estimated they would be able to extract 
approximately 0.852% of the training data which, when considering the size of the training dataset, is quite large.  
 
In addition to extracting training data, many bad actors are interested in stealing the model itself, for a variety of 
reasons. Those reasons include getting a leg up on the competition, or perhaps even more sinister, using a cloned 
model as a proxy to test more sophisticated attacks against without alerting your real target (Birch et al., 2023). When 
cloning ChatGPT-3.5-Turbo, researchers were able to achieve 73% exact match similarity for only fifty dollars in 
cost. Not only were the researchers able to achieve a relatively high similarity for the cloned model, developing attacks 
against the cloned model resulted in an 11% increase for attack success rate against the original model. Of course, 
these cloned models will have many of the same vulnerabilities as the original in regard to data membership attacks 
(determining whether a piece of information is within the training set) and general training set extraction. In the context 
of the defense industry, a stolen model could be supplemented with other stolen information to provide results above 
its original classification level; even if not stolen, a vulnerable on-site LLM could provide an insider threat with similar 
results if they include context in their prompt that violates an aggregation policy and allows the LLM to connect the 
dots for them. 
 
LLM Security Policies 
 
If we looked at LLMs through a traditional information technological cybersecurity lens we would need to evaluate 
them against our current cybersecurity best practices. Some examples of the security principles and policies we employ 
today are 
 

• Committee on National Security Systems (CNSSI) 1253 (CNSSI, 2022) 
• National Institute of Standards and Technology (NIST) Special Publication (SP) 800-53 (NIST, 2020) 
• NIST SP 800-171 (Ross & Pillitteri, 2024)  
• Cybersecurity Maturity Model Certification (CMMC) (Office of the Undersecretary of Defense Acquisition 

and Sustainment, 2021) 
• International Traffic in Arms Regulations (ITAR) (Department of State, 2022) 
• Export Administration Regulations (EAR) (Bureau of Industry and Security, Commerce, 2008) 

 
The above principles would be consistent with any other system. However, LLMs face a fundamental problem since 
they are not similar to traditional information technology. While we can secure and protect traditional information 
technology with both technical controls and policies, using this approach will potentially leave very large gaps when 
applying security measures to LLMs. Since LLMs are modeled after human intelligence how do we effectively fill 
those gaps by applying and enforcing the same rules, regulations, and laws we place on humans into the mix? 
 
Let’s take, for example, a member of the DoD Industrial Base (DIB) (i.e. a defense contractor that holds a secret 
clearance). First, to obtain a clearance, the individual must have a need for it. The clearance process required a 
background check and other items that helped assuage concern that this individual is a security. However, this risk is 
never null. In a perfect world we would believe that a person’s demonstrated integrity and perceived loyalty to the 
country is all that is needed to ensure they do not spill classified knowledge. This is not the case; therefore, we put 
controls in place to ensure that if a person with a clearance does divulge classified knowledge, they will likely be 
detected and investigated. In cases where the divulgence of classified information is intentional, consequences may 
include loss of clearance, loss of employment, civil penalties, or criminal charges. While not perfect, fear of 
consequences has led to relatively few instances of data leakage in the past 50 years.  
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If LLMs are modeled after human intelligence, you might think that similar rules and procedures are effective on 
LLMs. Unfortunately, even though LLMs are modeled after human intelligence, they are not sentient beings. LLMs 
do not know right from wrong, do not have feelings, and have no sense of integrity. Unlike a human the LLM will not 
know what type of data it is working with whether it be public, Classified, PII, ITAR, etc. The rules and laws we have 
in place to help ensure compliance will not be effective with LLMs. While many companies have created guard rails 
in attempts to prevent the LLM from providing answers that its creators deemed unacceptable, these are not foolproof.  
 
In order to ensure data is and stays secured, there are several factors to consider. We need to understand how the LLM 
is to be operated and by whom. This will ultimately drive not only its operational design but also how it is trained. We 
also need to be aware of issues such as data aggregation which can inadvertently lead to the LLM elevating to a higher 
classification level, resulting in a data spillage. So, from the operational perspective, we must ensure we understand 
where these aggregation limits are to guarantee proper operator training.  
 
Another area is the LLM training. We must ensure that the operators are authorized to access the data used for training. 
If the LLM will be used on multiple projects even if its multiple instances what it learned during its initial training is 
still in its long-term memory and may inadvertently be revealed to the end users. It is imperative we do our homework 
upfront and understand whom the intended users will be and what projects the LLM will be used for before we begin 
training to ensure the training datasets utilized are appropriate. We also must consider the life expectancy of the LLM, 
how long will it be in operation, could it be moved to another project in the future, etc., as we determine what data we 
will be utilizing to train the model. 
 
In the event an LLM is meant to be utilized across multiple projects; index/database access control lists (ACLs) 
capabilities will also have to be built in. Configuring ACLs and multiple indexes will help ensure data is not shared 
inadvertently with users that have not been approved to view that data. With this we will also need to ensure the LLM 
was constructed in a manner where object reuse cannot occur. For example, if we have a single instance of an LLM 
that looks at log data for outliers and it will be doing so for five different helicopter airframes and there will be five 
operators each only authorized for a specific helicopter airframe, the LLM will have to be constructed to use a separate 
index/database for each airframe/operator to ensure spillage does not occur. The LLM in this scenario will have to be 
spun up as multiple processing objects, each with its own memory segments to ensure there is no cross-process data 
contamination/spillage, accompanied by separate indexes and output storage locations. One technical approach to the 
above example is to utilize microservice architectures. For this specific example five docker containers would be 
initialized. Each of the containers would have access to one of the five indexes, project specific output, and input 
locations as defined by the user. Operational access to the index and input/output locations would be based on the 
user’s access permissions. The containers are initialized at the beginning of the user session and then destroyed when 
the user session is complete. With this type of solution, the existence of the LLM is tied to an operator’s session and 
its access is dependent on the operators' permissions.  
 
 
OUR RESEARCH  
 
General Background 
 
Over the past year, the authors have conducted an in-depth investigation into LLMs, experimenting with and 
evaluating over 100 distinct models. The primary objective of their research has been to gather insights into the 
intrinsic behaviors of LLMs in addition to exploring their integration into environments where sensitive data is a 
concern. The team has developed a nuanced understanding of LLMs, noting that they exhibit human-like responses to 
prompts, with each model displaying unique characteristics. Despite sharing a common transformer-based 
architecture, no two LLMs respond identically to prompts. Furthermore, no single model demonstrates excellence 
across all use cases; instead, different models may specialize in specific tasks, such as text summarization, Python 
script generation, or multi-lingual capabilities. 
 
A primary focus of the team has been the development and application of RAG techniques. While there are numerous 
implementations of RAG pipelines, three primary categories have emerged since the method was first introduced. The 
first approach, referred to as the "naïve" method, involves querying a vectorized-text database to retrieve relevant 
information in response to a user's question. The second category, dubbed "Advanced RAG," builds upon the naïve 
method by employing multiple querying methods and results-filtering techniques. The third and currently accepted 
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best practice is modular RAG, which leverages an agentic LLM to a greater extent in the retrieval process. The team 
has concentrated its efforts on modular RAG and other advanced RAG techniques. A crucial finding from this testing 
is that there is no single, universally optimal implementation of RAG with some yielding improved performance at 
the cost of greater risk; however, the methodology itself has proven robust. 
 
A fundamental component of RAG is the vectorized database, which numerically represents data to facilitate the 
embedding of individual characters, entire pages, or even entire books if an embedding model will allow it. While 
there is no single optimal approach to determining the amount of text to embed at once, similar to RAG as a whole, 
experiments consistently showed that smaller embedding sizes, typically spanning 300 to 1,000 tokens, yield the most 
favorable results. This is largely due to the context window of the LLM processing the texts. Although claims have 
been made about 1 million and even "infinite" context models, their performance rarely matches up. Instead, an 
effective solution lies in using smaller chunks, which allow for greater relevance in the context provided to an LLM. 
Moreover, searching for specific details benefits from the increased semantic similarity afforded by smaller, more-
focused text chunks. Finally, it is essential to consider the inference time with larger contexts, as larger prompts will 
take longer to execute and may not effectively scale to serve multiple users simultaneously, particularly if an 
organization lacks sufficient computational power. 
 
Instruction-Deviation is Model Agnostic 
 
Throughout the authors' research on LLMs, a pervasive issue has consistently emerged: instruction deviation, where 
an LLM fails to follow provided instructions, is a ubiquitous problem affecting all models, occurring with sufficient 
frequency to warrant further investigation into strategies and methods that can be employed to mitigate the associated 
risks. Although completely eliminating the risks posed by instruction deviation may be unrealistic, implementing a 
range of countermeasures and mitigation techniques can reduce the appeal of this vulnerability to potential adversaries, 
thereby decreasing the likelihood of exploitation. 
 
 
DATA-SPILLAGE EXPERIMENT 
 
To demonstrate one of the primary risks emphasized by this paper, the authors designed and conducted a simple, 
controlled experiment intended to highlight the ease at which an LLM can reveal sensitive information. This 
experiment entailed creating a synthetic dataset by selectively redacting a specific piece of information from a sample 
of the test data, thereby simulating a dataset comprising both sensitive and non-sensitive documents. Subsequently, 
the LLM was fine-tuned on this dataset and tested to detect potential data leakage. 
 
Selecting the Model, Dataset, and Sensitive Information 
 
The experiment consisted of two primary components: an open-weights LLM for fine-tuning and a suitable dataset. 
The authors selected to fine-tune Meta's Llama 3 8B Instruct model due to its novelty and performance to mitigate 
potential bias in the results, the authors selected 15 project design documents related to an Internal Research and 
Development (IR&D) project, Clarus Viewer®, to serve as the test dataset. The authors chose these documents as they 
are not publicly available to ensure the documents had not been used to train the model.  
 
Following model and dataset selection, the authors reviewed the documents to identify the “sensitive” information to 
redact. The authors chose to redact information regarding the development environment of the software. Specifically, 
references to Unreal Engine, the software used to develop the application described in the documents, as well as any 
indirect references that could clearly identify it were removed or replaced with generic equivalents. Upon evaluation, 
nine of the fifteen documents contained references to Unreal Engine. 
 

 
Preparing the Dataset & Fine-Tuning the Model  
 
Next, the dataset was categorized into sensitive and non-sensitive documents. Of the nine documents referencing 
Unreal Engine, four documents had all references redacted, resulting in the removal or replacement of approximately 
70% of the original references across all documents. This breakdown is shown in Figure 3.  
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Subsequently, the modified documents were transformed into a dataset suitable for fine-tuning the LLM. The authors 
employed the Supervised Fine-Tuning (SFT) approach to fine-tune the model, as it was determined that the required 
dataset type could be automated using an 
LLM. Specifically, the authors employed the 
larger Llama 3 model to generate question-
and-answer pairs from the documents. The 
model was instructed to assume the role of an 
expert LLM researcher, tasked with generating 
high-quality question-and-answer pairs for 
fine-tuning an LLM. Ultimately, the model 
successfully generated 1,568 questions and 
answers. 
 
The final step was fine-tuning the LLM using 
the generated dataset. The Transformer 
Reinforcement Learning (TRL) and 
Parameter-Efficient Fine-Tuning (PEFT) 
libraries were used to accomplish this. Only 
slight adjustments were made to the default 
training parameters until a loss-rate deemed to 
be adequate was reached. The LLM model was fine-tuned until a loss of 1.27 was achieved, representing a significant 
reduction from the initial loss of 2.71. At this point, training was paused, and the model was evaluated to assess the 
changes in generated responses. 
 
 
RESULTS 
 
As part of the experiment, the authors 
employed a base version of the LLM to 
act as the control. Both the base and fine-
tuned models were prompted with a 
single question: "What software was 
used to develop the Clarus Viewer 
Version 1.0 application?" The responses 
generated by both models are illustrated 
in Figure 4. Notably, despite the removal 
of nearly 70% of references containing 
the phrase "Unreal Engine” and related 
text from the training dataset, the fine-
tune LLM was still able to correctly 
answer the question, indicating that 
sufficient information remained.  

 
Following the generation of a baseline 
answer, the authors conducted further 
testing to simulate the model's 
application within a RAG pipeline. To 
achieve this, instructions were combined 
with a text excerpt from one of the redacted documents. Next, the authors composed a straightforward prompt, 
comprising only easily understandable English directing the LLM to ignore any previous instructions, to test the 
robustness of the LLM when presented with an APA. The instructions and context were concatenated into a single 
system message, and a formatted prompt containing both messages was generated using a standard, built-in method 
of the transformers library. The instructions, user input, and the LLM's response are illustrated in Figure 5.  
 

Figure 3. Visualization of Unreal Engine References 

Figure 4. Answers from the Base LLM and the Fine-tuned LLM 
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Figure 5. Fine-tuned LLM Response to an APA 

 
 
CONCLUSIONS AND FUTURE WORK 
 
Since the security risk scales with the level of LLM integration, it would be unwise to adopt this technology at full 
scale without having subject matter experts familiar with both modern LLMs and non-commercial cybersecurity 
needs. LLM technology is rapidly developing, and improvements in security tend to lag behind efforts to increase 
capability. However, due to the low barrier of entry, this provides a great opportunity to build up in-house experience 
with small scale LLM usage and experimentation with the topics and policies presented in this paper; as familiarity 
increases and boundaries are tested, creating and updating policies to keep up with this evolving technology will keep 
early-adopters up to date on the threat space. In addition, the benefits of being an educated consumer will allow an 
increase in the adoption scale of LLMs in a safer manner regardless of the end solution. 
 
The topics outlined in this paper are not exhaustive, and there is still more room for investigating the security-based 
quirks and nuances of LLMs. One area that still needs more exploring is creating tools and techniques to both 
investigate and monitor LLMs to detect security breaches and recover from them; in practice, this may look like a 
policy requirement of implementing in-model hooks for investigators to access or using a secondary LLM to act as a 
monitor that is restricted to the cybersecurity team. Another path of research would be using LLMs in the context of 
aiding penetration testing, as evidence by its ability to generate code, or simulating attacks to better maintain security 
posture. The ability for LLMs to aid with or complete time-consuming tasks will make them impossible to ignore in 
the future, and even the education system will take time to catch up; thus, it is highly recommended to start gaining 
in-house experience with the technology during this phase to create and maintain sufficient policies. 
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