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ABSTRACT

In the current global threat environment, homeland security depends on domain and situational awareness. The
evolving threat of illegal smuggling and entry along the U.S. borders requires efficient threat classification and
resource allocation. The Department of Homeland Security (DHS) Science and Technology (S&T) and DHS
Customs and Border Protection (CBP) Air and Marine Operations Center (AMOC) for National Air Domain
Security are tasked with monitoring and interdicting threats in the air and maritime domains. Such a complex task
requires sorting through large volumes of data to make timely and accurate decisions. This paper describes how
leveraging advanced machine learning techniques can support this task.

The proposed approach involves developing predictive threat models (PTM), where multiple machine learning
algorithms such as multilayer perceptron (MLP) classification, adaptive boosting, and artificial neural networks
(ANN) are tested and evaluated. The top performing models are selected and compared to a hybrid ensemble
approach, where the data is split into distinct groups before being used to train each of the models on the same
classification and deep learning methods used before. By tailoring models using the hybrid approach and selecting
the most applicable for each unique record, the new predictions outperform those of the single-model
methodologies. By deploying the hybrid ensemble models using modern machine learning operations (MLOps) best
practices such as automated pipelines, continuous integration/continuous deployment (C1/CD), and model
performance evaluation, the delivery of these models is streamlined. This ensures our DHS operators can leverage
the highest performing real-time predictive analytics to make informed decisions quickly and effectively in the face
of evolving threats. Additionally, standalone time-series autoregressive models are continuously trained on live data
and instantaneously produce accurate forecasted predictions, equipping our DHS operators with the ability to
accurately monitor the future positionings of specific targets of interest on demand.
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INTRODUCTION

Background

Each year, the U.S. spends billions of dollars managing the illegal smuggling of drugs, weapons, and people across
our nation's borders. In 2024 alone, the U.S. spent $4.5B for drug-related national security issues associated with
border security, immigration enforcement, and countering illicit fentanyl (The White House, 2024). Illegal drugs can
enter the U.S by land, maritime, and aviation, making it difficult to allocate the resources comprehensively to
prevent drugs from entering the country.

The CBP AMOC Detection Enforcement Officers (DEO) are tasked with diminishing drugs, weapons, and people
trafficking through maritime and aviation methods. DEOs continuously monitor air and marine vessels to identify
those that pose a risk to the country, and they coordinate the appropriate law enforcement response. This threat
classification helps prioritize and allocate resources to each threat effectively while providing law enforcement
officials with critical information to intercept those vessels.

This is an incredibly challenging task for DEOs as thousands of vessels enter the U.S each day. DEOs must classify
these vessels, identify the high-risks threats, and then determine where the vessel will land as quickly as possible to
ensure local law enforcement has enough time to coordinate the interdiction. The accuracy of these often rapid
decisions rely on the expertise and experience of the DEOs. However, given the high stress environment, there is a
high turnover rate, resulting in a loss of critical subject matter expertise. To help provide DEOs with as much
information as possible and assist with this difficult task, the AMOC has begun integrating machine learning models
into their decision making for the threat and mission classification of air vessels and their final landing location.

Previous Methods

CBP AMOC DEOs combine domain and technical knowledge to classify aircraft based on the level of risk they pose
to the nation and determine where high risk flights will be landing. These machine learning models and their ability
to assist DEOs are discussed in detail in the paper by Neskovic et al. (2023). This previous paper describes the
“Predictive Threat Models”, detailing the methods used in their development, including data collection, Extract,
Transform, Load (ETL), feature engineering and selection, model training, validation, and operational deployment.
The current paper is a follow-up effort to the research done by Neskovic et al. (2023). This current paper
investigates how to improve the previous methods to further assist DEOs by providing better performing models. To
do so requires an understanding of the methods and models previously used which are described in the following
sub-sections.

Preparing Data for the Model

Hundreds of flight features were captured to be used in the training dataset, but due to some being irrelevant, feature
selection was used. Feature selection identifies the most relevant features or variables from a dataset that contributes
significantly to the variability of the target variable. The target variable is the variable trying to be predicted. In this
case the target variables are:
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1. High-risk vs. Low-risk flight.

2. The mission the flight was on (crossing the U.S. border, landing just short and traveling by foot to cross
the border, etc.).

3. The final landing location of the flight.

Both Analysis of Variance (ANOVA) and Spearman correlation were used to find the features that related most with
the target variable. ANOVA can be used when both the target variable and the features are numeric, to assess the
relationship between the target variable and each individual feature. It examines whether the variation in the target
variable can be explained by the variability in the numeric features. While ANOVA performs well for linear
relationships, Spearman performs well for nonlinear and non-normally distributed data and is therefore a good
comparison for our models. To perform this analysis, Spearman uses statistical measures to assess the strength and
direction of the monotonic relationship between two variables. It is therefore able to compare the target variable to
each feature and determine those most strongly associated with each other. Multiple feature lists were selected for
each of the three target variables based on the ANOVA and Spearman correlation tests. Each combination was then
tested during the model creation phase and the best performer was used.

To create the machine learning models, the standard technique of splitting training data into a train dataset and a test
dataset was used (Kohavi, R., 1995). A unique caveat is that instead of splitting the training data at the observation
level, it was split at the group or track level, where each track is a unique flight. This data splitting technique is
known as hierarchical data structuring (Farber et al, 2024). By ensuring that all data points from the same track are
either in the training set or the test set, data leakage is prevented, and it ensures independence of the training and
testing datasets (Farber et al, 2024). This means the model should function the same in the test dataset as it would
with new live data. Additionally, the goal is to create a holistic model by providing it with as much data about
individual flights’ behaviors and characteristics as opposed to only providing it with fragmented flight data.

The following steps are used to process the feature engineered data:

1. All tracks within the training data are grouped together.

2. The tracks are then shuffled at random; randomization is key to improving generalization, reducing
overfitting, and avoiding model bias (Abadi, M., 2016).

3. Based on a pre-determined test-size percentage, all observations pertaining to a percentage of the tracks get
assigned to a training dataset and a test dataset respectively. For the deep learning model (discussed later),
unique tracks were also included in a validation dataset, which is used to monitor the model’s accuracy and
to prevent overfitting throughout training (Oymak et al., 2021).

Additional enrichment methodology of the training data is devised to further improve performance of the single and
course-based landing location models with additional track data from similar aircraft types that fly with comparable
kinematic characteristics and origin — destination area parameters. Enriching the training data doubled the number of
tracks for classification and deep landing location models and further improve their accuracy.

An important note here is that one classification or deep learning model is used to explain the variance of the entire
dataset. Multiple models are created and compared to each other with the best performer being selected and used to
provide a solution for a given problem. The top performing model is then used by itself to satisfy the problem,
which receives zero influence from any other trained model.

Figure 1 shows a visual of this process by outlining the pipeline used to develop the model along with how the
model is then deployed and used to predict on live flights.
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Figure 1: Model Architecture and Data Pipeline

The local pipeline collects the historical data which is then cleaned and transformed before being used in the feature
engineering process. The data is then used to train multiple models with the best one for each target variable (risk,
mission, landing location) being sent to the deployed pipeline. In the deployed pipeline the selected model for each
target variable is used to predict on the live data with predictions being sent to the client within seconds. As
feedback is received from enforcement officers, it is used to continue to refine and improve the models to ensure the
best ones are being used.

Classification

The classification models leverage a suite of common modern machine learning algorithms: Naive Bayes, Random
Forest, Adaptive Boosting, Logistic Regression, Support Vector Machine, and a Multi-Layer Perceptron neural
network (Chilyabanyama, et al. 2022). These models are used to predict the (a) level of risk a flight poses to the
nation, (b) type of mission the flight is on, and (c) possible landing area for a particular flight within one degree.
Several algorithms were fit to each of these classification target variables. For each problem, the selected algorithm
was the one that produced the best model which was then deployed to an operational environment for live on-
demand predictions. This is done iteratively each time new historical data is collected. The methodology used
prevents reliance on any one algorithm and ensures flexibility and continued learning for the models.

Deep Model

Since predicting an actual coordinate is significantly more difficult than predicting a landing area, a neural network
is used, referenced as the “deep model”. The deep model, which leverages a subset of artificial intelligence called
deep learning (Montezapour et Al, 2023), is designed to predict the actual landing coordinates of a particular flight
more decisively. This model is comprised of layers of interconnected neurons (a structure similar to an animal’s
brain) where data is iteratively processed throughout a series of computations (Montezapour et al, 2023). There are a
host of hyperparameter model properties that must work together to produce a generalized, highly explanatory, and
qualifiable model.

Findings

The predictive threat models act as force multipliers and have given DEOs an additional decision support capability,
making their jobs easier and more effective. These models can confidently classify flights that pose a high risk to the
country and provide information on where those high-risk flight will be landing. However, there is room for
improvement with the latter. Due to the complexity of the models and the time-consuming nature of neural
networks, finding a tailored combination of hyperparameters that can produce accurate results proves challenging
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(see Neskovic et al. (2023) for a side-by-side results comparison between the modern classification models and deep
learning models). The current paper looks at an updated approach by implementing a layered multi-stage ensembled
methodology to provide the most accurate models.

METHODS
Multilevel Models

At their base level, the PTMs are trained on radar-captured track observations representing the kinematic
characteristics of an aircraft. These characteristics describe the positioning of the aircraft, including
latitudinal/longitudinal coordinates, speed, altitude, heading, and much more. A model built at this level would be
known as a single-level model and would assume that all observations are independent and identically distributed.
This ignores any hierarchical or nested structure in the data such as records from the same flight (Tranmer & Marsh,
2014). Instead, records are grouped by flights resulting in a type of modeling known as a simple multilevel model
with one hierarchy (Peugh, 2010).

Multilevel models acknowledge the nested structure of the data, where observations are grouped at multiple levels
(Tranmer & Marsh, 2014). To expand upon this, another layer is added to the deep model where flights are grouped
by their dominant heading, the direction they predominantly travel across their path from origin to destination. This
additional layering removes much of the random effects, a term which refers to the components of a model that
capture the variability specific to different levels of the hierarchy within the data (Tranmer & Marsh, 2014). In other
words, by splitting one model into several smaller models based on their dominant heading, there is an added
potential to explain a higher percentage of variance within each group, collectively, as opposed to explaining data
variance with one single model. The hypothesis is that flights heading northwest, for example, are likely going to
share certain characteristics that may differ from flights heading south or east. Previously, one model was used to
predict the landing location for flights headed in all directions, but this new methodology looks to enhance the
performance through a hybrid approach with up to eight models, each predicting flights for a given heading (North,
Northwest, Northeast, West, East, South, Southwest, and Southeast).

Another benefit of multilevel modeling is derived from the random effects. By accounting for the heading group-
level variations through random effects, the model is less likely to overfit to the noise within each group. This means
the model is not just learning the idiosyncrasies of the training data but is also learning the underlying patterns that
can apply to new data (Lendave, 2024).

Hybrid-Ensemble Selection Process

Rather than just taking the heading-specific modeling approach, a combined method is used: the “Single-Deep”
learning model trained on all data is compared to the heading-specific modeling approach, with the best performer
for each heading selected. This method will be referred to as “Hybrid-Ensemble”. This Hybrid-Ensemble includes
one to eight different models, depending on model performance. Each heading will compare the performance of the
heading specific modeling approach to the performance of the Single-Deep model on that heading.

For example, the process would look like the following:

1. Train a model on all historical flight data (Single-Deep model).

2. Train a model on data for each heading that flights travel. This means taking the same data from step one,
splitting it into eight different headings and training on each of the split datasets.

3. De-aggregate the Single-Deep model’s performance by the eight headings that it includes. This involves
looking at how well the Single-Deep model performs for each of the given headings.

4. Compare performance of all 16 groups (eight heading models and eight heading groups from the Single-
Deep model).

5. Select/package/send for deployment the models that performed the best for each heading. Here anywhere
from one to eight models can be sent for deployment, depending on the performance for the eight headings.
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This methodology should not only give significant flexibility, but also enable the deep model to recognize and adapt
to the hierarchical structure within the data, which reduces the chances of overfitting leading to a more robust solution
for the landing location regression problem (Watanabe & Yamana, 2022).

RESULTS

Note: Due to our results being law enforcement sensitive, the results shown in this section are multiplied by a
randomized coefficient, therefore keeping the results comparable to each other while maintaining security of the
classified performance.

Metric Used

As mentioned in the Methods section, the Single-Deep learning model is trained on all historical data available to
determine the coordinates (latitude, longitude) of the landing location of a flight. The “Course-Binned” models are
trained on data for flights with the respective heading of the eight buckets (North, Northeast, East, Southeast, South,
Southwest, West, and Northwest) to determine the landing location coordinates of a flight. For all nine of these
models, multiple parameters are tested in order to find the best performance. This includes the train test split
percentages which determine the percent of data to train, validate, and test on. 80/15/5 (80% of the data is trained
on, 15% is used to validate, and 5% of the data to test on), 90/5/5, and 95/3/2 were all tested. Additionally, the batch
sizes of 128 and 256 were compared.

To determine the best model for each of these nine categories, a custom “Within-1” metric is used. The Within-1
metric will determine the percent of flights landing within one degree of the actual landing location of a flight. One
degree is about 69 miles. As shown in Figure 2 below, the X marks the actual landing location of the flight. The
circle around it represents one degree, or 69 miles away from the actual landing location. If a prediction is inside this
circle it is considered “Within-1" and if it falls outside of this circle, then is considered “not Within-1". If there are
10 predictions and five fall within the circle, then Within-1 is 50% for the model. Each model uses this same metric,
allowing the models to be compared to each other to determine the best performer.

'&degree

X

Figure 2: Within-1 Metric

Model Performance

To compare the Single-Deep model to the Course-Binned models, the Single-Deep model performance is broken
down based on the performance for each heading category. This means, all predictions for the Single-Deep model
are broken out into separate buckets for each heading. For each of these flight headings, the Within-1 metric is
calculated and then compared to the performance of the respective Course-Binned model. These model comparisons
are shown in Table 1 below.
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Course-Binned Model Performance

Table 1: Single-Deep vs Course-Binned Model Performance

Heading Single-Deep Course-Binned
East 28.0% 59.5%
North 73.5% 73.5%
Northeast 30.3% 35.0%
Northwest 43.2% 86.3%
South 65.3% 25.7%
Southeast 29.2% 71.2%
Southwest 59.5% 67.7%
West 51.3% 39.7%

As shown in Table 1, the Course-Binned models generally outperform the Single-Deep model, but this is not always
the case. As a result, it is not always advisable to choose either the Single-Deep model or the Course-Binned
models. Instead, a combination of these models should be used to see if this allows for an increase in performance.
For this, the Hybrid-Ensemble model methods are used to see how well the model can perform.

Hybrid-Ensemble Model Performance

Because the Single Deep model and the Course-Binned models perform better for different headings, it makes sense
to select the top performing model for each heading. This way when a live flight is being tracked, the heading of it
can be selected, and the best model will be selected to predict the landing location. Table 2 shows the Within-1
performance of the Single-Deep model for all flights based on the performance for the headings above. The
percentage in Table 2 is calculated by multiplying the performance of the Single-Deep model for each heading by
the number of flights moving in that direction. The same is done for the Course-Binned models being combined in
row two of Table 2. This is then compared to the combination of them, the Hybrid-Ensemble method using the best
performing model for each heading by using the following:

- East: Course-Binned

- North: Course-Binned

- Northeast: Course-Binned
- Northwest: Course-Binned
- South: Single-Deep

- Southeast: Course-Binned
- Southwest: Course-Binned
- West: Single-Deep

Table 2: Hybrid-Ensemble Deep Model Performance

Model Within-1 of Actual
Single-Deep 45.5%
Course-Binned 60.7%
Hybrid-Ensemble 66.5%

Table 2 shows that the Course-Binned model outperforms the Single-Deep model by 15.2%, representing a large
increase in the performance for the multilevel model as opposed to the previous model. This result confirms that by
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splitting the training datasets based on the course heading, the models are better able to predict their particular use
case. The best performer though, is the Hybrid-Ensemble model, which is 5.8% more accurate in predicting the
landing location for a flight Within-1. This shows the value of the Hybrid-Ensemble method in combining all
models to find the best performer for each particular heading. Rather than selecting just the Course-Binned models,
a combination of them with the Single-Deep model, for each particular heading, results in the best performer overall.

IMPACT, BENEFITS, AND OTHER APPLICATIONS

The original models were a significant step forward, allowing enforcement offers to condense
operational/organizational knowledge/experience. This enabled them to make faster and better data-driven

decisions. As shown in the previous section, the new models result in more accurate and precise landing location
predictions. As a result, enforcement offers can now coordinate with the proper local law enforcement on where to
interdict a flight with a higher rate of success and with more lead time. This results in more efficient use of resources
and a greater likelihood of ascertaining criminals by being at the right place at the right time.

The adoption of multilevel data structuring in machine learning marks a significant advancement over traditional
single-level models. By organizing data into hierarchical levels, this approach effectively captures the inherent
complexities and relationships within the data that simpler models often overlook. This structured approach allows
for more nuanced feature extraction and representation, leading to models that can learn and generalize better from
the data. The enhanced data representation translates into improved accuracy and robustness in predictions,
particularly in complex regression problems where capturing intricate patterns is crucial. The impact of multilevel
data structuring is evident not only in aerospace, but also in finance, healthcare, and marketing — areas where
predictive performance is a critical factor in decision-making.

Combining multilevel data structuring with ensemble modeling further elevates the performance of machine
learning systems. Ensemble models, which integrate predictions from a suite of diverse models, capitalize on the
strengths and mitigate the weaknesses of individual models. When these models are built upon a multilevel data
foundation, the ensemble benefits from a richer, more comprehensive understanding of the data. This synergy
enhances the model’s ability to handle noise, outliers, and complex nonlinear relationships, leading to superior
performance in regression tasks. For instance, in financial forecasting, combining the best models in an ensemble
can lead to more accurate predictions of market trends, thereby aiding in better investment strategies. In the
healthcare sector, such enhanced predictive capabilities can improve patient outcomes by enabling more precise
diagnostic and treatment plans. Overall, the integration of multilevel data structuring and ensemble modeling not
only pushes the boundaries of what machine learning can achieve but also broadens its applicability across various
domains.

DISCUSSION/FUTURE DEVELOPMENTS
Deep Model Improvements
With the success of the current Hybrid-Ensemble modeling approach, we are beginning to look at other ways to layer
our multilevel approach. Currently, we are grouping observations by track and tracks by heading. Next, we will group
headings by region and run through a series of modeling tests to see if this level yields improved results. Here’s what
we envision.
Multilevel groupings:

e Flight-specific: Simple multi-stage model considering only flights.

e Heading-specific: Adds an additional grouping by headings.
e Region-specific: Further groups by regions, capturing even more variability.
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By using region-specific modeling, which includes random effects for flights, headings, and regions, the models
should generalize better because:

e Flight Level: Captures variability specific to each flight, helping to model individual flight characteristics.

e Heading Level: Accounts for variability in the direction of flights, which might affect factors like flight
duration due to prevailing winds.

e Region Level: Considers regional differences, such as airport congestion or regional weather patterns, which
could significantly impact flight timings.

Future Development

While we continue to optimize and improve our deep model, we recognize the importance of exploring other
alternative solutions that may yield better results. For this reason, we are developing an online learning methodology,
where instead of training regression models on a fixed dataset, we train models tailored to live incoming data, adjusting
and updating the model as new data comes in. The approach is an ensemble architecture, which is comprised of the
following components:

e Based on kinematic characteristics of a given flight, utilize a conditional rule-based logic that determines that
flight’s aircraft type: Single Prop, Twin Prop, High Performance Prop, Jet.
e Train and utilize a flight time remaining model to aid landing location airport forecasting.
e Based on kinematic characteristics of the aircraft, determine when it has begun its landing phase.
e Once the flight has begun its initial descent, utilize its aircraft type, current altitude, rate of descent and
potentially other data points to predict the flight time remaining.
o Once the flight time remaining has been determined, train an autoregressive forecasting model to
determine the coordinates for where the flight will land.
o Additionally, determine which airports are near the predicted coordinates where the flight is
forecasted to land.
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