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ABSTRACT

The flight simulation industry desires less expensive and more realistic content for training pilots. Advances in
machine learning techniques have brought us closer to creating digital twins of the whole Earth by extracting 3D
features from carefully selected photographic imagery. Unfortunately, these databases are too big to distribute, are
limited to the texel resolution of the source imagery, and require lots of effort to process and update. Instead, using
whole Earth geo-specific metadata, Machine Learning techniques can be used to generate photo-realistic imagery
correlated with 3D typical content created at run-time for the whole Earth at any texel resolution. Database
modelers’ scope of work is greatly reduced whereby they only provide key landmark 3D models where required.
Updating Fraternal Twin metadata is much easier than retrieving and processing new satellite imagery.

This paper explains what a Fraternal Twin is and how it is better suited to serve the simulation industry compared to
identical Digital Twins for whole-Earth simulation. This paper examines the machine learning processes and
metadata needed to create a photo-realistic Fraternal Twin of the whole-Earth that pilots can use for training more
cost-effectively. The result is a super high-resolution photo-realistic geo-typical seasonally-accurate representation
of the whole-Earth that can be easily distributed and give pilots-in-training realistic visual content with which they
can train.
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INTRODUCTION

The flight simulation industry desires less expensive and more realistic content for training pilots. Advances in
machine learning techniques, specifically Generative Adversarial Networks (GANs) have given us new tools to
conceive new solutions to automate content creation. This paper explains how developing techniques for a Whole
Earth database can ultimately result in a product that is less expensive and higher quality than a photographic Digital
Twin of the Earth.

First, we will examine why a Whole Earth database is the goal. Then why photographic Digital Twin solutions look
attractive but don’t provide enough cost savings and practicality for simulation. Finally, and primarily, this paper
will describe a novel approach to provide a Whole-Earth database solution that promises to be less expensive and
have higher image quality. This paper describes research performed by the author to demonstrate how a
photo-realistic Fraternal Twin of the whole Earth would work and what whole Earth metadata is needed.

WHOLE-EARTH DATABASES

Building databases for flight simulation is labor-intensive. The databases consist of the terrain (ground imagery) and
the 3D content models (mainly buildings and trees). Source data is expensive. Because of this, customers attempt to
limit their costs by building or buying databases for only the minimum number of training areas they need. Training
areas are large. Commercial aircraft cruising at 35,000 feet (10 km) can see out over 200 miles (320 km). Databases
can use lower-resolution imagery away from airports and higher resolution near airports to reduce costs. Military
aircraft, however, fly high and low, making it a requirement to have higher resolution imagery over large areas.

Collecting useful imagery is a complex process involving satellites, orthorectification (processing imagery to correct
for various optical distortions), atmospheric correction (removing clouds), shadow selection, and color correction.
Creating useful images from the raw data is time-consuming.

Pilot Training

It benefits pilots to be able to train anywhere they may fly. The approach flight path to each airport is different.
Pilots need to train in unfamiliar areas to better stress the pilots during training. More location options allow pilots to
be trained in unfamiliar locations making training more effective. Training with limited simulation areas makes
pilots more familiar with the locations during training, which will result in less stress during the training making the
simulation less like a real-world experience. Pilots also benefit from training with new airports or routes, making
them more prepared when flying in the real world.

Avoid Piecemeal Database Integration

By not providing a whole-Earth solution, databases will inevitably be pieced together from different sources. This
creates the issue of integrating the different resolutions and boundaries between different datasets. Vector data from
one dataset needs to align properly with satellite photos from another dataset. When they do not, it is a manual effort
to reproject the data. Using a whole-Earth database means no effort is spent on integrating different datasets.
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Lower Customer Cost

Customers have invested in their databases and want to utilize them as much as possible. Providing a Whole-Earth
Database that performs better and costs less will allow customers to move away from their legacy data. Having a
database that covers the Earth means we don’t build customized databases for one customer.

Developing a whole-Earth database demands that automated processes and tools be developed to process
Whole-Earth datasets as opposed to putting a team of Database Modelers to work on a new database with various
input sources for every training area a customer requests. The costs of one-off databases are carried by one customer.
The cost of a whole-Earth database can be spread across multiple customers.

DIGITAL TWIN

A “Digital Twin” is the virtual representation of an object or system designed to reflect a physical object. A popular
approach for creating a Whole-Earth database is to create a virtual digital twin of the Earth by using satellite photo
imagery for all of the land masses and by using machine learning techniques to automate 3D feature extraction: road
networks, buildings, trees, etc. (see Figure 1) [4]. The source imagery can be in the order of petabytes of storage.
The photo imagery must be specifically selected, taking into account the time of day, cloud obscuration, and angle of
view. Training a general-purpose 3D model extraction solution requires a huge dataset appropriately sampled across
the globe. Multiple strategies are being implemented that involve data fusion with the satellite imagery that may
include LiDAR (which is limited in coverage), multispectral imagery, and GIS data (e.g., Open Street Maps, also
limited in coverage) to improve the quality of the building extraction [1] [5]. This allows for real-world content to be
virtually represented including 3D content. This process is still labor-intensive, and the end product is still
expensive. To support sensor simulation, a solution to identify (or classify) the materials in all the world imagery
still needs to be developed. As a manual process, sensor classifying a database is too labor intensive for the whole
world and Al automation methods have yet to be developed.

e L -

b = 3 - ..
Figure 1 - Microsoft Flight Simulator Digital Twin
Future updates to an area of interest are expensive and will require rerunning the entire pipeline: purchasing new
satellite imagery, extracting the 3D objects from the imagery, and storing the data for use by the Image Generators.
Using Machine Learning techniques offers promising new ways to build and enhance Digital Twin databases. Still,
the problem of the expense related to obtaining, creating, and maintaining the content has not been addressed.

FRATERNAL TWIN

The term “fraternal twin” means biological twins that do not look the same. This term is being used in this paper to
describe a technique for generating a specific type of digital twin of the Earth that contains typical content instead of
models of the actual content. A Fraternal Digital Twin of the Earth would use Machine Learning techniques to
generate photo-realistic terrain imagery at run-time that matches the terrain type, water boundaries, road networks,
and building footprints of the real world. Instead of extracting 3D models from the photo, the semantic data
(metadata used to distinguish important characteristics of the Earth) already identifies where buildings should be
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placed and oriented. A template library of buildings and trees would be used to populate the scene that would
correlate with the terrain imagery.

A Fraternal Twin database would be much smaller on disk compared to a Digital Twin. A Digital Twin starts with
the highest Level Of Detail (LOD) and uses an offline process to produce imagery for lower levels of detail which
down-samples the imagery. The Fraternal Twin flips this around by starting with the lowest LOD (~10,000 meters
per texture element) and builds the higher LOD (see Figure 2) as needed. There is no limit to how detailed the
generated texture image can be - conceivably showing individual blades of grass and grains of sand.

<::I Source
Imagery

Down Sampled Imagery Generated Imagery (Fraternal Twin)

Figure 2 - Down-sampled Imagery versus Generated Imagery

The lowest LOD of a whole world Fraternal Twin is the base map, at only 200Mb, which has a texture element
(texel) resolution of 1,800 meters per texel at an effective perspective of about 13 km (or 42,000 feet). This provides
a very organic base-level input into the first level of generated content. The first level of generated content uses a
portion of the base map and super-samples the texture going down in elevation by a factor of 2 (so level 1 would be
at 6.5 km). Level 2 uses level 1 texture as input to generate super-sampled textures at level 2 (at 3.25 km). The
number of networks trained depends upon how close to the ground the eyepoint will get. 16 levels of networks
would be needed to generate 0.4-meter texel imagery. Twenty altitude levels of training produce texture at 1
centimeter per texel that would be capable of generating super high-resolution texture for the whole-Earth from
cruise altitude to ground level. The imagery is generated on demand and is not stored on disk although the imagery
could be cached on disk since training scenarios use the same areas.

Semantic Image Synthesis

Generative Adversarial Networks (GANSs), like SPADE, Stable Diffusion, Semantic Diffusion Model (SDM), etc,
are a class of machine learning models for general-purpose image generation. GANs among other things offer the
ability to take semantic data and turn it into computer-generated photo-realistic imagery. With a model trained to
correlate semantic data with a photo, imagery for any part of the Earth can be generated by having the correct
representation of shorelines, road networks, buildings, and trees. We trained a SPADE model to generate shoreline
imagery from semantic data identifying the water and land. We found that the model was able to generate 512 x 512
terrain tile imagery for any shoreline shape or orientation in under 100 ms making it possible to generate imagery at
run-time.
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Semantic Labels SPADE Neural Network Synthesized Photo

Input s12x512 Output s12x512
Figure 3 - Using the SPADE Model to create a corresponding image from semantic data

Cost

The cost of generating Simulation Databases is driven by the cost to acquire the data and the effort to process the
data to make it ready to be used by the Image Generator. Depending upon the process, future updates to databases
can also be cost-prohibitive. There is also the cost of hand-modeling 3D content usually for airports and landmark
buildings. To lower the overall cost of content, less data needs to be purchased and less data processing should be
needed.

Realistic Content for Simulation

When providing simulation content for training pilots, there is geo-specific content (or landmarks) that pilots expect
to be accurately represented in order for pilots to be able to identify and properly orient themselves - airports,
specific buildings, major roads, bodies of water, mountains, etc.

Not all content has the same significance to the value of the training scene. Many buildings and roads are not
uniquely identifiable by a pilot in flight and as such do not need to be represented with exact models or exact
photography. This provides an opportunity to replace all the ground texture and most of the 3D features with
geo-typical representations.

More visible from the air than buildings are groups of buildings - shopping malls, industry parks, suburban housing
tracts, and downtown skyscrapers. The groups of building types can be represented with geo-typical representations
and still give pilots landmarks to navigate with. This also works for most roads and groups of trees.

For landmarks that need to be geo-specific like the Statue of Liberty or the Great Wall of China, there will still need
to be a library of carefully selected geo-specific 3D models that would be placed into the scene. The terrain imagery
and the 3D models need to be properly correlated. Roads should align with buildings. Images of trees in the terrain
should correlate with the location of 3D tree models.

Model Training

Generative Adversarial Networks (GANs) have been steadily improving the quality of imagery created. Starting
with Pix2Pix in 2016, Pix2PixHD in 2018 [14], SPADE in 2019 [15], and Stable Diffusion in 2022 [16], Al
generation of imagery is now photo-realistic.

Machine learning networks learn how to generate content based on a mapping from input data to output image.
Using relatively small training datasets, we were able to train for UK farmlands and CA suburbs using road network
semantic data from Open Street Maps (OSM). The accuracy of the road networks was preserved, and photo-realistic
imagery was generated to create believable terrain (see Figure 4).
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Imagery needs to be collected that represents the variation of imagery that we want to produce. This is not a lot of
imagery. A Machine Learning Network for generating terrain imagery is not a general-purpose image generator and
does not require the huge datasets that are collected for general-purpose Al image generators like DALL-E2 or
Midjourney. Instead, in our research, a dataset of 20 512 x 512 unique images was enough to train for a specific
biome and elevation using a SPADE network. The networks were given a road network (or water boundary) to
generate imagery as seen in Figure 4. Note that in these images the roads are defined with vector data and the image
generated maintains the position of the road network, creating a plausible image for the real-world location.

METADATA

Not all coastline, farmlands, and suburbs look the same across the Earth. To train a model to generate imagery over
the whole Earth without using training data for the entire Earth, the model must be provided with enough
information about the image we want to generate. We will need to use metadata that is available for the entire Earth.
The following are seven types of metadata that are readily available that we believe are needed to properly represent

the Earth.

Vector Data

Vector Data is used to describe road networks, waterways, building footprints, and trees. At about 100 Mb, Open
Street Maps is free to use and is a great source for road networks and water for the whole Earth, but it is not
complete for building footprints or trees (see Figure 5). To address this, we can use Machine Learning to train a
model to populate the likely locations and orientation of buildings related to the defined roads and water [3]. The
same can be done with tree locations. The building footprints help to define the uniqueness of the cities.

We trained a SPADE model to generate building footprints where none existed. A dataset of vector data that had
various orientations of roads with buildings was identified. The building footprints were removed leaving only roads
to be used as the other dataset. The model was trained to put the building footprints back in. The model was given
roads with no buildings, and it positioned building footprints along the road with the proper orientation and position.
As the OSM building footprints become more complete, the Fraternal Twin can just use the new data.

All Footpgints i Incomplete | ;/ . Sparse No Fod'tpr‘irnts-h
h |- ‘s w/ a7 P N
Ll ] -
onh" 8 i S0, 1 o
2 el | AN A
Tokyo "Mexico City ° Rio.de Janeiro, Cape Town

Figure 5 - OSM Building Footprint Completeness
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Elevation

Digital Elevation Model (DEM) information helps to determine where trees might exist and where snow may be
found. Trees do not grow above the treeline. High deserts are different from low-lying deserts. Terrain slope can be
derived from elevation grid posts leading to the location of creeks and washes that would not otherwise be identified
by OSM vector data. The Machine Learning Model could learn to position trees based on where the water naturally
collects leading to a more realistic and organic scene.

Biomes

A biome is a distinct geographical region with a specific
climate and vegetation. There are 4 major types of land
biomes: grassland, forest, desert, and tundra. This
indicates how much moisture an area gets which would
translate to how green or brown the terrain should look.
Of course, these biomes can be further divided into more
subcategories giving us 18 land biomes across the Earth. Figure 6 - Land Biomes across the globe

Image training data would be selected to represent each

of the biomes at each elevation we would train for [13]. There are whole Earth biome datasets that are freely

available.
Seasons

For the purposes of flight training, there are typically two seasons
that matter for training: summer and winter. For areas that get

snow, imagery would need to be collected so that the Fraternal = -
Twin could generate imagery containing snow. The model would Figure 7 - Snow Cover
learn from the imagery where snow accumulates and what types of roads get plowed and generate terrain imagery
accordingly. Much of the Earth’s land masses do not see snow and would likely only be trained for the summer
season. Figure 7 shows where snow can be found throughout the year. In the southern hemisphere, where the

seasons are reversed, snow falls in the months of June to August.
Land-Use

Land-use describes how the land has been developed by mankind - industry, urban, farm, untouched, etc. Land-use
metadata is available for the entire Earth. Land-use data is not free. Higher-quality land-use data will result in a
more accurate simulated world.

Culture/Region

Different cultures build things differently. This type of metadata relates to land-use. In order to render regions
properly, imagery from the developed land-use areas is needed from each cultural area that should be properly
rendered. The capability to better represent other cultural areas can be improved over time by adding new imagery
representing the new cultural areas and then retraining the model. This allows for a whole Earth solution that can
mature over time to address customer requirements in a cost-effective way.
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Base Imagery

Base Imagery is the lowest-resolution
image of the texture tile we are going
to generate. We would start selecting a
512 x 512 tile from the image in
Figure 8. Each image generated would Figure 8 - Earth Day and Night Base Maps
be used as the base image for the next

level. This allows the satellite image of the earth to influence the higher resolution generated imagery.

Figure 9 displays the amount of terrain
color detail in the Base Map. This helps to
provide specific colors around the large
desert areas that would otherwise have no
varied input to represent the natural color

variation of the ground and would not be
captured in other metadata.

Figure 9 - Color Variations on the Earth

Model Training

The model would use the seven metadata sets and correlate them with the target satellite imagery. Once trained, it
would be able to generate the photo-realistic image from the metadata sets only (Figure 10). Once the model learns
to generate lowa farmland it doesn’t need any more of that imagery and the Iowa farmland imagery would be
generated in other locations with similar metadata. So, we only need to collect enough data to cover all the
permutations that the metadata represents. If the metadata changes (new roads are built for example) the model does
not need to be retrained as it will already know how to create terrain imagery representing the new road. This makes
updating the geo-specific portion of the database cost-effective.

Figure 10 - Model training using Geo-Specific Metadata

Spatial Coherence

Generated content must be consistent (or coherent) across neighboring tile boundaries and between levels of detail
(LOD). The content of the generated image must not move around between elevations. The metadata drives the
generation of the image, especially the vector data. This will keep roads, buildings, and trees in the correct place, so
they line up on tile boundaries and levels of detail.

To demonstrate a solution for neighboring tile coherence we build a SPADE model to generate shoreline imagery. At
run-time, vector data was fed to the model to generate the terrain imagery. The Image Generator was flown along the
California coastline. Only one elevation level was trained and used to build the scene for all elevation levels. The
content was being generated fast enough to fly and the tile boundaries were undetectable for tiles at the same LOD.
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To address spatial coherence between levels of detail, using the geographical portion of the lower level of detail
imagery as input into the next higher level will keep the image consistent with whatever imagery was generated.
This model effectively becomes more like a super-sample image generator providing infinite zoom abilities [7].

Using a SPADE model, we demonstrated that a model could be trained to produce higher levels of detail and
maintain the content of the image as higher levels of detail were generated using only the lower LOD (Figure 11). A
Fraternal Twin solution would also use other metadata to improve the quality of the image as higher LOD imagery is
generated. There are also GANs that produce higher-quality imagery than the SPADE model that was used.

Low LOD Input Generated Higher LOD

Figure 11 - Spatial Coherence - Levels of Detail

Determinism

Content created for flight simulation must be repeatable. The nature of these networks is to generate the same output
given the same input. By controlling the input (base map and the metadata) the content generated at each elevation is
repeatable. So even though the images are unique for a given area they are the same image that will be generated by
different computers.

3D Model Correlation

Generated Imagery will use the vector metadata layer to generate buildings and trees. Since the imagery was
generated from the vector metadata layer, it is easy to correlate building and tree positions. Building footprints and
trees only get trained and generated at higher levels of detail. At lower levels of detail, the buildings and trees are
not represented by 3D models.

For the Fraternal Twin there will need to be a library of 3D models. This library will contain foliage models used
across the Earth. Culturally specific sets of buildings can be developed over time as only one set is needed to
populate the Earth and there is no end to how large and varied the 3D building library may become. Of course, the
more 3D models created increases the cost of the database.

Airports

There is now enough information available to generate realistic looking ground texture that would correlate with the
runways, taxiways, tarmacs, and surrounding ground of the airport. By using a Fraternal Twin approach, the airport
terrain will blend seamlessly into the scene. Airport vector data is available in Open Street Maps for practically all
the world’s airports (Figure 12). The Open Street Map airport vector information is likely not accurate enough to be
usable for landing airplanes but would suffice for identifying airports from the air. To land the runways, the
elevation and vector data would need to be validated or obtained from another certified source.

Geo-typical airports can be made available for the whole Earth and geo-specific airports would likely use the
generated terrain imagery with Database Modelers decorating the airport with geographically specific 3D models.
Airport content is a big part of flight simulation. Geo-specific airport content will always be a part of aviation
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simulation databases. However, using Fraternal Twin terrain imagery will decrease the complexity of integrating
custom imagery and ultimately lower airport creation costs.

Figure 12 - OSM Metadata on left, Satellite imagery on right
Night

With a Fraternal Twin approach, there is the potential to improve the accuracy of night scenes. Urban lighting is
influenced by the orange sodium vapor lamps and light green mercury vapor lamps giving the scene a characteristic
orange or green tint (Figure 13) from the pilot’s point of view[9] [12]. The same training process can be performed
for generating night imagery using the same metadata but instead with night satellite imagery. Training a model to
produce a snow night scene based on real imagery will likely produce a more realistic simulation than ever seen
before as nighttime illumination on wet/icy streets are hard to compose from photos of daytime satellite imagery.

Denver, CO Tokyo, Japan
Figure 13 - Night Satellite Imagery

Southern Italy

PERFORMANCE

Performing the inference step of generating terrain imagery with a SPADE-derived model on a standard desktop PC
with a consumer graphics card (RTX 2080Ti), 512 x 512 texel terrain tiles were generated in about 400 ms. From
our experience, any new ownship reposition will need about 60 terrain tiles to render a 360-degree scene with terrain
texture. A reposition near ground level will require another 20 tiles, for a total of 80 terrain tiles, as the texture is
generated from the base map that starts high in the sky. This translates to about 30 seconds to generate the imagery
for a reposition. This should be fast enough to generate content as the aircraft moves through the scene. The use of
higher quality GANs may take longer to generate imagery but the task of terrain tile image generation can also be
parallelized as tiles at the same altitude level are not dependent on each other.

After all the Machine Learning Models are trained, content can be generated at run-time for the whole Earth.
Metadata can be updated without retraining the Fraternal Twin models so that new roads can be added with minimal
effort making it easy to fix metadata issues. For performance reasons, the vector content can be dialed down during
run-time to generate less 3D content at run-time and the image generated will match.

SENSORS
Sensor classifying a database requires that the materials in the image be identified so that the Image Generator can

simulate how the sensor would ‘see’ the scene. In the worst case, this is an expensive labor-intensive manual
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process. To prepare a Whole-Earth Fraternal Twin database to support sensors, only the imagery used in the training
datasets (for all altitude levels) needs to be materially classified. The same Fraternal Twin Machine Learning
techniques can be used to correlate the metadata with a sensor-classified “image” to then be able to generate material
classified imagery that would be correlated with the out-the-window imagery. This greatly reduces the cost of
bringing a sensor classified database to market. The set of training data for the Fraternal Twin Whole-Earth is much
smaller than the petabytes of satellite imagery needed for a non-Fraternal Digital Twin of the entire Earth. The
Machine Learning models would be trained on the material classification and learn to generate high-resolution
material classification maps that would correlate with the generated Fraternal Twin imagery.

CONCLUSIONS

Using a Fraternal Twin approach to generate photo-realistic content for aviation simulations will result in purchasing
and processing less satellite imagery. Updating Fraternal Twin metadata is much easier than retrieving and
processing new satellite imagery, allowing for small area updates and lower costs. All this translates into lower
costs for a whole-Earth database. The technology to support this approach is ready to be utilized. The quality and
realism of the generated photography are now ready for use in our industry.

This paper has explored what is needed to make a Fraternal Twin work. This paper also shared the research
performed to test the technology behind a Fraternal Twin. This paper has shown how a Fraternal Twin can lower the
cost of the simulation database and still provide a realistic simulation environment in which pilots will want to fly.
The goal of generating a cost-effective, super high-resolution, photo-realistic, geo-typical, seasonally accurate
representation of the whole Earth that can be used with sensors and is easy to distribute is at hand.

Future Work

Most of the research referenced in this paper was performed using a SPADE model which has its challenges in
generating imagery that looks real. Changing to a Stable Diffusion model [2] [6] [8] should result in the generation
of higher-quality imagery.

Most of the research was performed with a SPADE model that only used 3 input channels. The model needs to be
adapted to utilize more input channels of the metadata defined in this paper.

This research was only performed on models that generated daytime out-the-window content. Training the model on
material-classified data to generate material-classified data from the metadata is needed for a proof of concept.
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APPENDIX

Semantic Image Synthesis with SPADE

Stable Diffusion

https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb

Stable Diffusion Infinite Zoom In [7]

Semantics Generated Semantics Generated  Semantics Generated  Semantics Generated

Semantics Diverse generated images from different noise
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