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ABSTRACT

Research indicates commercial-off-the-shelf biosensor data can be used to identify warfighter physical performance
and casualty or injury status. Currently, the algorithms and frameworks required to process and house this data are in
the research stage of development. There is an urgent need for a platform to aggregate this wealth of information into
asingle stream of actionable information that can be interpreted at a glance during high-stress situations. The objective
of this work was to develop an open, extensible software architecture for fusing diverse biosensor data into a
comprehensive warfighter health status assessment that runs on a mobile device using the Android Tactical Assault
Kit (ATAK) enabling easy adoption by military end-users. The purpose of this software framework was to augment
the existing warfighter location and movement data provided by ATAK with actionable insights on physiological
stress level and casualty risk. A secondary objective was for the software to be sensor agnostic with the prototype set
to automatically scan for generic skin temperature, pulse oximeter, heart rate, and inertial measurement sensors. In
order to provide the actionable insights on physiological stress and injury risk, established biomechanics algorithms
were incorporated which have been shown to correlate with increased risk of musculoskeletal injury, acute
musculoskeletal injury, and potential traumatic brain injury. Physiological predictive capability was integrated using
the open-source BioGears engine. BioGears runs faster than real-time on mobile devices, enabling prediction of future
physiological status that could require medical care from exertion, temperature stress or altitude. Simulation outcomes
were verified with military relevant situational data from literature, as well as an experimental data collection during
a challenging ruck march in a laboratory heat chamber. All objectives were met. Comparison with literature and
experimental data demonstrated that physiological state during a ruck march could be simulated and highlighted areas
for improvement.
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BACKGROUND

There is an extensive suite of physiological sensors available to warfighters that can monitor their physiological status
(Friedl, 2018; Sawka & Friedl, 2018). These sensors provide a wealth of information on their health status, including
heart rate, breathing rate and skin temperature. Other measures such as core temperature, estimated energy
expenditure, and risk of musculoskeletal injury (MSKI) cannot be directly measured and require analyses of sensor-
data to be estimated. The recent proliferation of wearable sensors presents challenges in integration of different sensor
technologies, combining various biometric measurements into a holistic view of overall health status, and presentation
of data in a meaningful way that facilitates informed decision making (Friedl, 2018).

Extrapolating data from wearable sensors to provide insight into current health status or to predict future health status
is challenging. A number of regression-based approaches have been developed to estimate metrics such as risk of
hypo- or hyperthermia (Moran et al., 1998a, 1999a) or metabolic energy expenditure (Looney et al., 2019, 2022) using
easily measurable signals such as heart rate and skin temperature. However, these equations are only valid for the
input parameters (e.g., load carried, biological sex) and conditions (e.g., ambient temperature, terrain grade) under
which the equations were developed and may not generalize to other conditions or individuals. An alternative to
regression-based approaches is to leverage artificial intelligence (Al) techniques, such as machine learning (ML) to
train an artificial neural network using vast amounts of data (James Jin Kang, 2021; Nikolaos Papadakis et al., 2023).
Like regression-based approaches, Al methods are computationally fast once the neural network has been trained. In
addition, Al approaches can incorporate diverse data streams for which empirical or first principles relationships are
unknown. However, this strength is also a weakness, as the neural network is often a “black box”. The vast amount of
training data required is also a limitation.

Physics-based computational simulation is a promising approach for integrating various streams of sensor data and
addressing the limitations of regression- or Al-based approaches. Physiological simulation engines, such as the open-
source softwares BioGears (Applied Research Associates, Inc.) and Pulse (Kitware, Inc.), represent the body as an
interconnected system of modules (Bray et al., 2019). Sensor data can be used to validate and correct simulated values
when available, and when sensor data are not available those metrics can be estimated using the simulation. Each
individual physiological module (e.g., cardiovascular, respiratory) utilizes a physics-based lumped parameter model
that is not tied to specific scenarios, such as amount of load carried. BioGears has been thoroughly validated with data
from literature and experimental data for several different medical and exercise applications. Thus, a simulation-based
approach has the potential to effectively generalize to novel real-world scenarios.

The objective of this project was to develop an open, extensible software architecture capable of fusing diverse
biosensor data to generate a comprehensive biomechanical and physiological assessment of user health status (e.g.,
temperature stress, risk of musculoskeletal injury and mild traumatic brain injury). The goal of the open design of the
software was to facilitate integration with various visualization tools as well as integration as a subsystem of other
health monitoring platforms. Another goal was to use data visualization techniques to display health status so users
can glance at a mobile device and quickly understand the location and movement of each member of a team, the level
of physiological stress they are experiencing, and indicators of musculoskeletal injury risk. This study also aimed to
develop a software platform for health status assessment that was sensor agnostic and extensible and also to perform
initial verification of the physiological assessments using experimental data as well as data from literature. The goal
was for the physiological simulations to predict increases in heart rate, breathing rate and core temperature that occur
during exercise to be within 20% of experimental and published data. The comparison to experimental data was to
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evaluate the capability of the simulations of the physiological response to estimate personalized physiological
responses. The experimental data were collected in a laboratory setting specifically for this study. The comparison to
published data was to evaluate the capability of the simulations to estimate more generic physiological responses in
real-world military relevant scenarios.

METHODS
Design of the system software platform

The software platform was developed as a plugin for the Android Tactical Assault Kit (ATAK). A custom ATAK
widget was developed for displaying health status data to users. Separate standalone Android applications control
sensor communications and BioGears. These applications run in separate processes from ATAK, and pass data to the
ATAK widget for display. To the extent possible, the software was designed to be sensor and algorithm agnostic. A
publisher/subscriber software architecture was implemented such that sensors were registered to supply certain data
streams (e.g., heart rate or skin temperature) and algorithms can subscribe to the data streams they require as input.
The prototype system was tested with a CoreTemp skin temperature sensor (CORE, Ziirich, Switzerland), a Nonin
pulse oximeter (Nonin 3230, Plymouth, MN), a Polar heart rate monitor (Polar Verity Sense; Polar, Kempele, Finland),
and five inertial measurement units (IMU; Xsens DOT; Xsens, Enschede, The Netherlands). In order to make the
software capable of operating on the edge (without network access), sensors were selected that provide connections
directly via Bluetooth protocols and did not require access to sensor-specific user accounts or server-based
applications.

Besides real-time monitoring, the system was capable of providing prognostics, because the simulations of
physiological responses to exercise and environment could run faster than real-time on the software platform
(McDaniel et al., 2019). Such insights enable advanced warnings that can give users the opportunity to take
preventative measures. These preventative measures were left to the user’s discretion but could include cooling or rest
breaks for imminent heat stress, additional rest breaks or redistribution of load with increased risk or acute MSKI, or
direct medical assessment with a potential mTBI. Physiological simulation engine requirements included the ability
to be compiled for Android, run faster than real-time, and provide realistic physiological responses to exercise in
military relevant scenarios. Two open-source engines exist; BioGears (by ARA) and Pulse (by Kitware) (Bray et al.,
2019). These were compared to define which one performed best for simulating physiological responses in military
relevant scenarios. Both originate from the same software; however differences exist. We initially performed a small
comparison study simulating military relevant scenarios from literature with both software packages and compared
their results. BioGears produced results more consistent with literature data.

The BioGears computational physiology engine was compiled for the Android operating system. The BioGears
software is able to simulate a human model’s (a soldier in this case) physiological response to exercise as well as
environmental conditions (temperature, humidity, altitude, and clothing). Soldier characteristics (sex, height, weight,
age, and type of clothing worn (clo value)), environmental conditions (temperature, humidity, and oxygen content
(representative to altitude)), and exercise intensity were provided as inputs to the simulation. Subject characteristics
were chosen as necessary for each of the sub-studies; they were either matched to data from literature, to experimental
subjects, or to the user of the system. Exercise intensity was estimated using the Load Carriage Decision Aid (Grenier
etal., 2012) and estimated VO2 max:

0.4*xLCDA in Watts/kg

Estimated EI =
15(220—Age)/60) x 0.35

)

The Load Carriage Decision Aid used as input walking speed and incline that were calculated from position data
tracked through ATAK, as well as the load carried, and sex provided as input data. Real-time weather and altitude
data were obtained from ATAK. BioGears generated a detailed physiological state of the soldier, including heart rate,
breathing rate, core temperature, and sweat rate. These were fed into algorithms to predict risk of heat and cold injury
(Moran et al., 1998a, 1999a).
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Biomechanics algorithms were integrated to identify increased risk of MSKI (Roos et al., 2014; Sheerin et al., 2019)
and to identify acute musculoskeletal injury (Roos et al., 2014) or potential gait-indicated traumatic brain injury
(Balasubramanian et al., 2015). These algorithms used lower limb angular velocities and body torso velocities
calculated using the IMU data.

The system was designed to make decisions in the field, and health status determination logic and visual indicators
were added to the system. Decision tree algorithms were developed to assess whether a sudden change in for example
gait asymmetry was likely caused by the environment (e.g. terrain) or was indicative of potential injury. ATAK
positional data and data from surrounding system users were used to inform these decision trees. The actionable
insights used green (no critical alerts), amber (imminent (in the next 5 minutes) mission critical level), red indicators
(current mission critical level). Alerts for heat stress and medical triage were based on existing methods used by the
military. These were the physiological stress index (PSI) (Moran et al., 1998b), cold stress index (CSI) (Moran et al.,
1999b), and the Simple Triage And Rapid Treatment (START) (Wendelken et al., 2003). The musculoskeletal and
TBI injury risks were currently treated as not being critical alerts and exceeding the thresholds defined in the decision
tree algorithms would result in a notification, not a green, amber, or red alert.

Hierarchical roles were used to determine the amount of data available to a user. The “Soldier” role viewed their own
data, the ”’Squad Leader” role viewed the status of all squad members, and data were aggregated at the squad level for
the “Platoon Sergeant” role. For each of these views, the main view was a dashboard that shows the green, amber, and
red status together with a map view and details on the type of critical alerts. For the squad and platoon view these are
aggregated. The user can click through and view live sensor data and outcome parameters if desired. Communication
between devices was performed using existing protocols so that the software is compatible with standard TAKServer
instances. The ATAK cross-soldier communication was tested via visual positioning updates (seeing all soldiers in
the same group on each other’s ATAK client). The synching of health status information between devices was
demonstrated via emulating soldier yellow/red conditions and verifying that squad leaders and platoon sergeants
would see those squad and platoon health changes within the customized system panel displayed on the right within
the ATAK interface.

Experimental Evaluation of BioGears Simulations for Military Relevant Scenario

An experimental study was performed with one of its goals to evaluate the performance of the BioGears software to
estimate heart rate, breathing rate, core temperature, and skin temperature during a military relevant task. Since our
initial comparison of simulation data using the Pulse and BioGears engines already showed that BioGears performed
better for military relevant scenarios, only BioGears was used here for comparison. The experimental study was a
randomized cross-over trial and part of a larger study that was part of the overall funded project that this study falls
under. A goal of this study was to verify whether the physiological response in military relevant exercise scenarios
could be predicted with BioGears simulations. All participants provided informed consent and visited the laboratory
at three separate occasions. The data included below is part of a larger study (in review).

Participants were nine healthy college aged, physically active individuals (5 males and 4 females), aged 19-35. The
subject demographics were as follows, the mean age was 22.4 + 4.5 years, the mean height 173.7 £ 7.5 cm, the mean
weight 80.9 + 13.9 kg, and the mean VO2 max 43.8 £ 10.6 mL/kg/min. The inclusion criteria were to be: 1) free of
musculoskeletal injury; 2) comfortable carrying out exercise tasks at elevated temperatures; 3) agree to adhere to study
requirements; and 4) able to pass a health screening. The exclusion criteria were: 1) to have a known medical physical
or psychological condition preventing participation in exercise; 2) being in rehabilitation from recent musculoskeletal
injury; 3) having been diagnosed with asthma, a history of heart condition, or high blood pressure; 4) experiencing
pain in the chest at rest, during activities of daily living, or when performing physical activity or exercise; 5) having
been prescribed medically supervised physical activity only by a primary care physician, or 6) being pregnant. Study
protocols were approved by the local Institutional Review Board.

Baseline Testing

The height and weight of each participant was measured using a SECA scale and stadiometer (SECA, Hamburg,
Germany). Age and sex were recorded. Resting physiology was measured using the Equivital EQ02+ LifeMonitor
with the BlackGhost package (Equivital, Cambridge, United Kingdom) for heart rate, respiratory rate, skin
temperature, and core temperature.
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A standard Bruce protocol (Bruce, 1971) for treadmill graded exercise testing was performed to define maximal
oxygen consumption (VO2 max). This was used to understand baseline aerobic fitness and to quantify relative
intensity during the exercise protocols. The Bruce protocol involved incremental increases in speed and incline every
three minutes after one warm-up stage. The warm-up stage began at 2.74 mph and 0% incline. For the first stage after
the warm-up speed remained the same and incline was increased to 10%. Each subsequent stage involved a sequential
increase in both speed and incline. Participants were asked to give their best effort and continue until they could not
continue any longer. The test was terminated once participants reached volitional fatigue. VO2 max was determined
as the maximal oxygen consumption achieved during the test.

Load Carriage Protocol

The load carriage protocol provided the data that were used to verify the BioGears simulations. Participants walked
on a treadmill (ESPEC North America, Inc., Hudsonville, MI, USA) until exhaustion or for 40 minutes maximum.
Speed of the treadmill was set at three miles per hour and incline of the treadmill was varied according to a set schedule
and elevations in an environmental chamber set to 26.7°C (80°F) at 50% relative humidity. The testing protocol began
with a warm-up at 2.5% incline for three minutes. Stage 1 involved walking for three minutes at a 2.5% incline,
followed by seven minutes at a 7% incline. Stage 2 included three minutes at a 2.5% incline, followed by seven
minutes at a 10 % incline. Stage 3 involved three minutes at a 2.5% incline, followed by seven minutes at a 12 %
incline. Finally Stage 4 included three minutes at a 2.5% incline, followed by seven minutes at a 14 % incline. The
protocol was terminated when participants reached a core temperature of 38.9°C, reached exhaustion, or indicated that
they wanted to stop. Participants wore an Army Combat Uniform (blouse and pants), military boots adapted, and a
rucksack weighted with a load equal to 30 percent of the participants body weight.

During both the VO2 max testing and the load carriage protocol ventilation and expired gases were measured using
the ParvoMedics True One 2400 metabolic cart (ParvoMedics Inc. Salt Lake City, UT, USA). The metabolic cart
measurements include oxygen consumption (VO2), kilocalories (kcals), and Metabolic Equivalents (METS). The gas
analyzer was calibrated for volume (Hans Rudolph Series 5530 3L syringe; Shawnee, KS, USA) and gas composition
(16% 02 and 4% CO2) prior to each participant testing session. Participants were fitted with a head gear, mouthpiece,
and nose clip (Hans Rudolph, Inc.; Shawnee, KS, USA) for oxygen measurements. During performance heart rate and
skin temperature were monitored continuously via the Equivital EQ02+ LifeMonitor and Black Ghost Software
(Hidalgo, Cambridge, UK). The Equivital software provides regression equation-based estimates of core temperature.

Simulations

The protocol exercise stage parameters were used to calculate a BioGears exercise intensity (EI) with the Load
Carriage Decision Aid methodology developed for BioGears (Equation (1)). The El was used to simulate the level of
exertion over the prescribed duration. Physiological simulations were run using BioGears (version 7.5.0) using the
command line interface with individual parameters specified in an XML file as required by BioGears. The predicted
data for heart rate (HR), respiratory rate (RR), skin temperature, and core temperature were extracted and compared
to the Equivital subject data collected during the load carriage protocol.

Demonstration of software — long duration march simulation

After verification of the BioGears simulations with the experimental data for a military relevant protocol, a test case
was conducted to examine response during a long duration march. This was purely a virtual exercise, since no
experimental data were available for verification. The Pikes Peak Highway was chosen for demonstration purposes.
It is a well-documented route, is easily identifiable on maps, and provides challenging environmental changes
(temperature and altitude) for testing the physiology simulations. Male and female soldier ruck marching responses
while wearing 0, 30, and 40% of body weight loads were modeled in BioGears.

The elevation and distance of the Pikes Peak Highway was derived from the Strava website data
(https://www.strava.com) for the cycling route. The distance-elevation plot from this dataset was digitized using
Digtizelt (Version 1.5.7) to obtain discrete points. Since BioGears can run exercise simulations using duration, these
discreet points were used, as digitized, to calculate the duration and exercise intensity for the soldier using the
previously described method for determined El using VO2 max from LCDA MEE calculations. The grade for the
LCDA calculation was determined from the distance and elevation data.
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Two different subjects were simulated. A 19-year-old male subject of 77.1 kg body mass, 1.80 m height, and a 19-
year-old female with a body mass of 59.0 kg and height of 1.63 m. Both models had a baseline heart rate of 72 beats
per minute and a baseline respiratory rate of 16 breathes per minute.

Marching speed was specified by consulting the US Army Infantry Small-Unit Mountain Operations Tactics,
Techniques and Procedures (ATTP 3-21.50, Table 5-3 Dismounted Movement Rates, 28 February 2011), which
indicates the marching speed for elevated terrain is between 0.55 and 0.8 m/s. The upper bound of 0.8 m/s was selected
for use in the simulations. After every 50 minutes of marching a 10-minute rest period was inserted into the simulation,
where rest was defined as an EI of zero.

The march started at an altitude of 2,143 m and ascended to 4,300 m for this march, thus the atmospheric pressure
was changed with elevation using the atmospheric pressure-elevation relationship
(https://www.engineeringtoolbox.com/air-altitude-pressure-d_462.html):

p=75x%x10"3[1.01 x 105(1.0 — 2.26 x 10~5h)>25] 2)
where h is the elevation in meters and p is the atmospheric pressure in mmHg.

Environmental temperature also changes during ascent. A temperature drop of 22.9°C is the average change from the
base to the peak altitude. An initial temperature of 22°C at the starting point was arbitrarily used and was decreased
in an arbitrary linear fashion with elevation to 5.4°C at the peak. A delimited file was created containing El,
atmospheric pressure, duration, and environmental temperature which varied based on the distance-elevation data.
The clothing value for the event was setto 1 CLO.

RESULTS

The system software platform
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Figure 1. The different views in the system’s ATAK app.
A proof-of-concept system was developed with information displays shown in Figure 1. The figure shows an

individual user view with their sensor data and their squad members in a map view, a squad leader specific view to
see data on all squad members with warnings when squad members had amber or red alert messages, and a platoon
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leader view, to see an overview of the different squads in the platoons. Which were color coded for alerts where a
number indicated the number of squad members displaying an amber or red alert. Leaders could drill down to the
individual users and could also see positional data on a map view. Since critical alerts could not be tested in real-world
scenarios, the algorithms that were used to generate the critical alerts were tested with emulated scenarios. In these
emulated scenarios, sensor data were generated that should result in critical or imminent critical conditions. All alerts
were displayed as would be expected from the sensor data.

Experimental Evaluation of BioGears Simulations for Military Relevant Scenario

A comparison of the predicted versus subject data of the experimental study in the heat chamber are shown in Figure
2 for one subject (P003) as indicative of the typical response.
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Figure 2. Example Comparison of BioGears simulation (in blue) results to Subject PO03 response (in orange).

Table 1. The level of agreement between the BioGears simulation results and the experimental data, with in
the left column different ranges for the percentage differences. The table shows the percentage of simulations
for which the difference was within each range, for heart rate, respiratory rate, skin temperature, and
estimated core temperature.

Heart Rate | Respiration Rate | Skin Temperature | Est Core
(BPM) (RPM) (°C) Temperature (°C)
<10% 47% 19% 96% 100%
10-20% | 11% 23% 4% 0%
20-30% | 23% 11% 0% 0%
>30% 19% 47% 0% 0%

To assess the level of agreement between the BioGears and experimental results, a process was developed to compare
the average value for each physiological measure to the predicted physiological measurement during the specific
exercise stage (excluding any resting and warm up phases). The level of agreement was determined by modifying the
method used by BioGears. BioGears uses a color-coding system to describe the level of agreement of their simulation
results with the published experimental results. The color-coding system is made up of green indicating a less than
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10% error, yellow indicating a less than 30% error, and red indicating a greater than 30% error. For this work these
levels were expanded to be in increment of 10% such that 0-10%, >10 and <= 20%, >20 and <=30%, and > 30%
comprised the ranges of percent difference with the experimental data. Table 1 shows the level of agreement between
the BioGears simulation results and the experimental data. Approximately half of the average exercise stage heart rate
predictions were within 10%. The converse was observed for the respiratory rate predictions of which about half were
over 30% different.

Demonstration of software — long duration march simulation
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Figure 3. Male (left) and female (right) heart rate (a), respiratory rate (b), oxygen saturation (c), core
temperature (d), and sweat rate (e) predicted response for the different loading conditions (blue: zero pack
load, orange: 30% body weight pack load, and green: 40% body weight pack load). Data points show the
average of the work (ruck marching) period of each hour to improve clarity of the plots.
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The simulation results are shown for the male and female simulation subjects over the Pikes Peak Road course and
the changing altitude and temperature conditions with ascent. Since there are no measured data for comparison, the
relative effects of increase loading and terrain with environmental conditions are observed for anticipated
physiological response.

For the male results, as expected, heart rate and respiratory rate increase with increased pack load and terrain-altitude
difficulty with the relative difference between 30% and 40% body weight pack loads being appropriately different but
small (Figure 3 a and b). The HR reaches a maximum for the loaded cases at 8.3-9.7 hours with a decrease around 11
hours and return to maximum to the end. The large transient transitions in both predicted measures comes from the
rest periods and the physiological model control system.

Blood oxygen saturation decreased with increasing pack load and terrain-altitude difficulty (Figure 3 c). For altitude
alone exposures the reported oxygen saturation is 0.83 at 4,300m with the loaded Pikes Peak march between 0.85-
0.88 at that altitude.

With increased loading and march difficulty the core temperature increases in response to the work produced and
sweat rate increases to help control body temperature (Figure 3 d and e). At the higher altitudes core temperature
declines again.

For the female results, heart rate and respiratory rate increase with increased pack load and terrain-altitude difficulty
with the relative difference between 30% and 40% body weight pack loads being appropriately different but small
(Figure 3 a and b). Heart rate reaches a maximum for the loaded cases by 8.3 hrs. through to the end.

Blood oxygen saturation decreases with increasing pack load and terrain-altitude difficulty (Figure 3 c). The relative
differences in pack load conditions appear appropriately expected.

For the female results, increased loading and march difficulty results in increased core temperature and sweat rate
(Figure 3d and e).

Figure 4 shows an arbitrary notional 3-state scheme using a Go-Warning-Attention, green-yellow-red,
paradigm. A “Go” state was determine for heart rate < 190 BPM and SpO2 > 85%. A “Warning” state was
determined for heart rate > 190 BPM and SpO2 > 85%. An “Attention” state was determined for SpO2 <
85%. The state level was incremented one level, not exceeding level 3, for Core Temperature > 39°C. Areas
of apparent overlap are indications of dithering about two states. While the male simulation subject starts
in the “green”, the core temperature crosses the threshold in one hour increasing the state to “yellow”
whereupon HR and/or SpO2 thresholds are exceeded to the “Attention” state. While the female simulation
subject’s cardio-respiratory responses were similar to the male responses, the female core temperature in
the no-load simulation transiently rose above the threshold and then retreated to just below that threshold
until 6.8 hours where, exceeding the threshold, the state shifted to “Warning”. In the loaded female
simulations, the same interplays of heart rate, SpO2 and core temperature caused state changes.
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Figure 4. Male (left) and female (right) state (green: good, yellow: warning, and red: attention) for a
simulated Pikes Peak march with no, 30% body weight, and 40% body weight pack load.

DISCUSSION

A software platform has been developed that uses prognostic simulation and algorithms to provide clear actionable
insights and advanced warnings on mission critical conditions. The software platform was capable of triaging
actionable insights with customizable triage levels which allows warfighters to clearly communicate mission critical
information to those that need to take preventative action providing them with a comprehensive biomechanical and
physiological assessment of user health status of the warfighter in need of medical care. This software has an open,
extensible software architecture and is sensor agnostic.

Verification of the BioGears simulations for a military relevant marching scenario indicated heart rate was predicted
within 10% for approximately half of the exercise stage. Heart rate tended to visually agree well with experimental
data, with some minor synchronization issues. The predicted heart rate responses were more abrupt than the observed
physiological response. The respiratory rate comparison revealed a definite lack of agreement between the predicted
and measured data with errors that were mostly over 30% (see Table 1). While the predicted respiratory rate did
increase in response exercise, the high levels of experimental respiratory rate were not exhibited. The BioGears
respiratory rate’s initial response was similar to experimental data but deviated after. Further research is needed to
better understand the control mechanisms behind this.

The skin temperature response differed between experimental and simulation data (Figure 2). This difference could
be due to the difference in measurement site for the experimental data and the BioGears computational summation of
temperature nodes. Therefore, these results may not be directly comparable. The experimental core temperature was
estimated by regression equations in the Equivital software and compared to the predicted core temperature. The
predicted core temperature rose faster and higher than the experimental data. An interesting effect was seen observing
the skin and core temperature responses. The experimental response showed a rising skin temperature with a core
temperature within limits exhibiting a degree of temperature control. The BioGears skin temperature did not rise to a
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comparable level to experimental skin temperature while the core temperature did rise to a high level perhaps
indicating a lack of temperature control to dissipate heat to the environment. However, at 26.7°C and 80% relative
humidity, heat transfer may be limited.

The overall percent differences were however mostly small (<10%; Table 1). Interestingly, the skin temperatures were
generally less than 10% different than the experimental data and the core temperatures less than 5% different. This
meant that our hypothesis that the simulations could predict physiological responses during exercise within 20% of
experimental data was accepted. However, small differences in core temperature have great consequences. For
example, the percentage difference between a normal core temperature of 37°C and a danger core temperature of 39°C
is 5.4%.

After verification of the BioGears simulations for military relevant scenarios with experimental data, simulations were
performed of a long duration march (Pikes Peak) with male and female models. For both the male and female models
heart rate and respiratory rate increased with peak load and terrain-altitude difficulty. Respiration may not be as
responsive as human response data would indicate. As expected, blood oxygen saturation decreases with altitude.
Present in the female predictions were spikes corresponding to some rest periods during the early part of the march
for the 40% BW load and in the later part of the march for the 30% BW loads. A definitive explanation for these
responses is not apparent since this response does not appear in the male results.

As expected with increased loading and march difficulty the core temperature increased in response to the work
produced and sweat rate increases to help control body temperature. Interestingly these increases were seen in the
presence of decreasing environmental temperatures. For the male model, the core temperature exceeded the 39°C
danger threshold by the first hour for all simulation cases but the female model lagged crossing for several hours in
the unloaded case but crossed similarly to the male for the loaded cases. Sex differences in core temperature response
during repeated exercise in the heat have been reported (Anderson et al., 2022).

A notional 3-state system applied to the Pikes Peak results highlighted the potential of turning complex physiological
data into actionable insights in the field. While the state approach used simple thresholding, more work is needed to
optimize the state approach using more advanced means of classification in addition to machine learning based on
individual and population data.

Verification focused on physiological simulations and software platform performance. Future work is needed to
demonstrate the efficacy of the algorithms for injury in military settings. The algorithms that were used have been
shown to indicate injury in lab settings only to date.

In conclusion, this study developed a modular, extensible software tool to aggregate sensor data. A computational
physiology engine (BioGears) was compiled to run on Android. It ran faster than real-time (over 3 times faster)
allowing prognostic insights. Analysis and decision-making algorithms were implemented and developed to convert
measured sensor data into meaningful health status diagnostic assessments that could directly inform decision making.
Algorithms that had been demonstrated in a laboratory environment were leveraged. A visual display was developed
that displays the health status to a user. This was designed so that health status could be understood at-a-glance. In
future, additional tuning of the models with military relevant data is required to better predict respiratory rate and core
temperature responses. Because of the open and modular software architecture and its sensor agnostic nature, the
system can be expanded with novel sensors and algorithms as they become available and stay up to date with the state-
of-the-art. Ultimately, the system will provide commanders with the ability to monitor the status of their team using a
mobile device to track the location and movement of each team member, as well as physiological stress, and risk of
musculoskeletal injury, and TBI. The ability to make real-time decisions with this level of information will increase
effectiveness, reduce injury, and save lives.
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