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ABSTRACT

Data-driven decision-making and big data have become ubiquitous in the Department of Defense (DoD) as there is
widespread acknowledgement of the potential for both to advance warfighter performance (DoD Data Strategy, 2020).
Advances in artificial intelligence (Al), machine learning (ML), and cloud-based data storage and processing have
created opportunities to conduct previously impossible analyses. Advances in wearable and non-invasive
physiological sensors, along with eye tracking technology, can be utilized with Al/ML to objectively capture important
human performance measurement (HPM) that currently require human observation. While these capabilities hold
significant promise for advancing DoD data analytic tools, substantial groundwork must be performed to ensure the
reliability and validity of the underlying data. Fortunately, the DoD has made significant strides in this space by
investing in data standards (e.g., Experience Application Programming Interface, Human Performance Modeling
Language) that delineate the types and format of system-based data required to better understand warfighter learning
and performance. This paper is intended to revisit the progress made on learning and HPM standards as an essential
capability for data strategy and reframe their function as part of the larger DoD wide data strategy guiding principles.
The ultimate goal is to ensure learning and HPM data standards include language to capture and utilize reliable, valid,
and transparent data from the beginning of training and throughout the performance of their duties. Now is also an
opportune time to accommodate emerging technologies and the unique potential they offer to close data gaps, and
meaningful visualizations for a variety of stakeholders. By applying standards and an architecture as a framework to
a beginning stage Naval Aviator training and advanced Naval Flight Officer use cases, the authors will conceptualize
extensions for advanced learners and provide initial recommendations for changes to the standards that account for
emerging technologies.
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INTRODUCTION

The 2020 Department of Defense (DoD) Data Strategy highlights a motivation to become a data centric organization
that leverages enterprise-level management to ensure valid and critical data is widely available to all relevant
stakeholders. Furthermore, that data should be usable, delivered in real-time, secure, and connected to other relevant
information sources (DoD, 2020). Lastly, the DoD recognizes that software and hardware systems must be designed,
procured, tested, upgraded, and sustained with data interoperability as a key requirement. To realize the noted goal of
improving proficiency, it is critical to emphasize the criticality of interoperability to facilitate use of data within and
across systems for understanding human performance. While the DoD Data Strategy identified four Essential
Capabilities necessary for achieving the above aim, a review of two of these—Standards and Architecture—will provide
a framework to successfully implement human performance measurement (HPM) throughout the lifetime of naval
learners. As such, the overall goal of this paper is to propose for expansion of standards that includes HPM data
derived from advancing technologies (e.g., physiological and eye-tracking sensors, natural language processing) and
leverage an architecture that supports defining the application of these solutions within modular systems enabled by
the emerging capabilities of artificial intelligence and machine learning.

Learning and Human Performance Standards

Standards are defined as “published documents that establish technical specifications and procedures designed to
maximize the reliability of the materials, products, methods and/or services people use everyday” (IEEE SA, 2021).
One of the most important features of standards is that they establish protocols that fuel compatibility and
interoperability (IEEE SA, 2021). There are two standards related to or associated with HPM in use by government
and industry: Experience Application Programming Interface (xAPI) and Human Performance Modeling Language
(HPML). For transparency, HPML remains a draft standard as it was never formalized by the Simulation
Interoperability Standards Organization (SISO). Broadly, these standards help facilitate the tracking of learning and
performance over time and across modes of education (Nouira, Cheniti-Belcadhi & Braham, 2018). The original
development of these standards resulted from specific challenges tracking learning and performance in various
environments (e.g., eLearning, classrooms, simulation, on-the-job). To start this review, we will provide examples of
available learning and HPM standards and their application to support sound systems engineering that facilitate
interoperability and data capture in military contexts that advance human performance and training systems.

Learning Standard: Experience Application Programming Interface (xAPI)

XAPI is an Institute of Electrical and Electronics Engineers (IEEE) approved standard (IEEE 9274.1.1-2023) that
expanded on SCORM’s eLearning focus by enabling stakeholders to collect and exchange information about learner’s
experiences in any environment (Torrance & Jackson, 2020). XAPI is the broadest and most widely adopted of the
standards that uses Learning Record Stores (LRSSs) to track experiences associated with learning (Torrance & Wiggins,
2016). The xAPI standard relies on statements that include information on who the learner is, what the learning did,
and what the event focus was (see Figure 1) to track learning experiences (Poeppelman, Long, Amburn, Hruska &
Bink, 2013). The learning experiences can range from completing an action, like reading material, to how the learner
performed on a multiple-choice test.
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Figure 1. The components that are part of an XAPI statement as outlined in IEEE 9274.1.1-2023

Currently, xAPI is primarily supported for learning technologies such as videos, eLearning, Learning Experience
Platforms, and LRSs (Torrance & Jackson, 2020). Learning experiences within such technologies provides a valuable
method in military training contexts for tracking the “crawl” phase when the goal is primarily the acquisition of
declarative knowledge. However, learning experiences may fall short of the data required for assessing detailed
proficiency with procedural knowledge during live or simulated operations. Specifically, while an XAPI statement
may document that a trainee completed a specific simulation event with the outcome score, the XxAPI statement may
lack important details about the underlying reasons for the training outcome. The risk of not capturing more granular
context and performance data by employing only the xAPI standard is the inability to share real-time data associated
with the multiple facets of trainee performance necessary to inform instruction related to process feedback or root
cause analyses.

HPM Standard: Human Performance Modeling Language (HPML)

HPML was a draft Simulation Interoperability Standards Organization (SISO) standard specifically focused on the
unigue challenge of defining what data (i.e., computations, measures, assessments, results, and instances/periods) are
required for automated HPM in a variety of DoD services and domains (Walker, Tolland & Stacy, 2015). This detailed
data during simulated operations is primarily focused on the “walk” and “run” phases of training when procedural
knowledge is acquired. HPML is also designed to ingest data that is relevant to or influences performance—Iike
environmental, systems, or adversarial data that would impact mission difficulty. The added context can provide an
instructor with contextual information to consider when providing feedback and assessments. While simulators
produce large volumes of data, not all data is relevant to performance nor needed for comprehensive performance
assessment. Lack of inclusion of the right data despite large available data may result in measurement challenges. For
example, early efforts to leverage HPML for automated measurement resulted in the validation of 27% of all measures
defined due to lack of critical data within the system (Wiese, Atkinson, Roberts, Ayers, Ramoutar, 2012).

Future research and development efforts will improve our ability to use simulator data to measure performance,
however, outcome data will only ever be able to account for a portion of HPM. If we are to continue to expand our
ability to accurately and comprehensively measure HPM, future efforts will have to extend beyond only simulator or
aircraft data. Continual advances in eye tracking and physiological sensing technology, offer component capabilities
that may assess unique variance in performance. While performance processes are difficult to assess without humans
in the loop, novel video and audio capture technologies combined with emerging AI/ML analytic capabilities may
offer advanced means to automatically capture both cognitive and behavioral processes that lead to performance
outcomes. Such detailed process information is imperative for expediting learning by providing trainees the specific
information they need to show improvement. If the DoD is to meet its aim as a data centric organization, standards
will need to be adopted, iterated on, and utilized to inform requirements.
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However, standards alone are insufficient for developing, transitioning, and maintaining enterprise level HPM systems
in inherently complex DoD communities. Even when standards exist and are adhered to, advancing HPM systems for
DoD communities and platforms is still complex. The average DoD community performs multiple mission sets, is
multi-crewed, and employs training in classrooms, desktop computers, part-task training simulators, whole-crew
training simulators, and during live flights (see Figure 2). Each crewmember is responsible for operating highly
sophisticated systems. Important information related to performance can occur before and after operations during the
planning, pre-brief, and debrief portions of their duties. Moreover, instructors, trainees, leadership, program managers,
and many others all have a stake in this data. Given this inherent complexity, the development and transition of
enterprise level HPM systems is a challenge. While monumental, this challenge is not unfamiliar to systems engineers
who are specialists in implementing methodical multi-disciplinary approaches for designing, managing, and operating
highly complex technical systems (NASA Systems Engineering Handbook, 2019). To facilitate successful integration
of HPM standards, one approach is to concurrently consider an architecture such as model based systems engineering
(MBSE) and consider the role it can play in defining and documenting requirements for HPM systems intended to

assess multi-level performance throughout the training pipeline.
Live

Performance Assessment

Test grades Instructor observations Instructor observations

Checklists Checklists
Data Storage

Secure cloud-low, secure cloud high, physical storage, intranet storage, local offline
computer storage

Figure 2. Navy aviation training typically follows a “crawl-walk-run" approach, where training begins in a classroom,
before complexity is gradually increased across exposures offered in various part or full task simulation environments,
and then ultimately offering live flight training. Each of these environments offer different opportunities for data types
and sources related to trainee performance. DVIDS Images for aviation classroom, simulation and T-45 training
(https://www.dvidshub.net/).

Architecture: Model Based Systems Engineering (MBSE)

One methodology used by systems engineers to support the lifecycle of complex systems is MBSE (Shevchenko,
2020). MBSE is not a new approach to systems engineering but one that has proven immensely beneficial as the
complexity of systems grows. Not only is MBSE useful when establishing the requirements of future and current
systems, it is equally useful for tracking system deficiencies and gaps that can be addressed with research and
development investment in emerging technologies. An MBSE model is an ideal starting point to establish where
connections need to be made within existing performance measurement systems to perform multi-level trend analyses
that are of interest to a variety of stakeholders. Once established, these models would support all future updates and
changes to paradigms to support resilient and adaptable systems design, combatting technology obsolescence. This
last point is important to emphasize as military contexts are inherently dynamic necessitating frequent changes to
individual performance measures and measurement systems as a whole. The sustainment and maintenance of
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performance measurement systems will require constant and consistent updating to ensure validity and relevancy of
measures.

CONSIDERATIONS FOR STANDARDS AND ARCHITECHURE

As we conceptualize the next generation of training and operational systems, we must consider the vital role both
learning and HPM data standards, as well as an architecture such as MBSE, will play in achieving expanded
capabilities that address the goals of the DoD data strategy and improve proficiency. Specifically, xAPI and HPML
provide the data points needed to deliver usable, real-time, and interoperable data, while an MBSE architecture
provides a strategy for connecting this data in a meaningful way to facilitate valid and data centric decisions related
to proficiency. However, emerging technologies considered as part of these standards and architecture will also play
a role in advancing our ability to accurately and comprehensively assess human performance. In the following
sections, we provide an overview focused on physiological monitoring, eye tracking sensors, and speech processing
as a starting point for enhancing performance measurement. As technologies continue to mature, a broader look at
alternative monitoring approaches should be considered.

Physiological Monitoring

The use of physiological sensors is not a novel concept. Sensors that monitor individual physiology such as heart rate,
breath rate, and blood pressure have provided a wealth of data for supporting monitoring of individuals in medical or
training situations to ensure safety. As such, a broad range of physiological sensors and derived measurements have
been leveraged in research to better understand human performance in various contexts. Some of the more frequently
used metrics include heart rate and heart rate variability, respiration rate, core or skin temperature, electrodermal
activity (EDA), galvanic skin response (GSR), skin conductance level (SCL), and Electroencephalography
(EEG)(Baig & Kavakli, 2019; Putz, Mertens, Chuang, & Nitsch, 2024). However, advances in technology to include
reliability of sensors and ability to embed sensors in deployable configurations that are easier to use without significant
training or calibration are creating an increased consideration for these technologies in training and/or operational
environments where tracking and understanding human performance are important.

Physiological sensors have been leveraged in past research to provide objective methods for understanding changes
to an individual’s physiological state. For example, cognitive load or the amount of mental effort being used in
working memory (Barrouillet, Bernanrdin, Portrat, Vergauwe, & Camos, 2007) has been correlated in previous
research to heart rate variability and EEG (van Weelden, Alimardini, Wiltshire, & Louwerse, 2022). Physiological
responses such as cortisol levels, GSR, and heart rate have also been correlated with changes in stress levels (Driskell
& Salas, 2013). In extreme operations, fatigue is often a concern and research has previously correlated
electrooculography and EEG to this construct. One challenge that remains for research in this area is how to best
validate constructs given the typical overlap in physiological responses with a number of psychological constructs that
may impact human performance. For example, while the relationship between heart rate variability and stress is
substantiated in the aviation domain (Sekiguchi, et al., 1978), fluctuations in heart rate during flight operations may
be as much the result of physical exertion as it is stress associated with operating in a threat environment. Parsing
these two potentialities to better understand the underlying relationship with human performance is a complex analytic
challenge that will likely require advanced analytic strategies such as machine learning.

Eye Tracking Sensors

Similar to physiological monitoring sensors, eye tracking capabilities have been on the market for some time. These
sensors provide a method to collect and understand ocular metrics such as blink rate, gaze patterns, fixation time,
fixations, saccades, and pupillometry. Similar to physiological sensors, technology advances in recent years have
decreased the size and increased the data outputs of these sensors. Available products include screen-mounted eye
tracking sensors or wearable glasses. Screen-mounted eye tracking sensors typically provide higher sample rate
capabilities that increase the metrics available. Additionally, these solutions are coupled with a hardware screen setup
that remains stationary, and if configured within the same operating system architecture, can support ease of analysis
through synchronization of display features and the individual’s ocular metrics. Alternatively, eye tracking glasses
provide a wearable solution that is minimally intrusive and allows the individual to move freely in an environment.
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This flexibility increases the use cases in which eye tracking can be employed but there remain challenges associated
with data processing and analysis in complex and/or dynamic environments.

The benefit of considering eye tracking sensors as part of future human performance monitoring systems lies in the
ability to leverage ocular metrics as a proxy to an individual’s cognitive process or state. For example, fixations or a
longer duration spent looking at a specific area of interest has been hypothesized to indicate deeper processing or
increased cognitive load (Just & Carpenter, 1976). Research into saccade length may allow for understanding how
shorter distances covered during rapid eye movements may indicate more efficient visual processing, similar to an
aviators scan pattern. The more nuanced and detailed metrics associated with pupillometry may offer similar insights
to other physiological sensors; for example, pupil dilation or changes in pupil size may indicate changes in cognitive
load, workload, or engagement (Fehringer, 2021).

Speech Processing

Automatic speech recognition solutions to support dictation or other monotonous tasking have been evolving for
decades. Early solutions required a significant amount of initial engineering investment for domain specific uses that
included fully documenting a corpus of language and creating grammar structures that increased the reliability of
recognition rates. These hard coded and rigid applications of speech recognition solutions typically required an
operator in the loop to address reliability issues or system failures and required significant maintenance support to
maintain systems to evolving vocabulary or grammars. Recent advances in deep learning and other techniques have
exponentially matured automated speech recognition solutions, and with the wealth of data at the disposal of
commercial systems for training and refinement (e.g., Apple’s Siri, Amazon’s Alexa, Google Gemini) have increased
user adoption and application of the technology. Military domains offer some unique challenges outside these general
use cases to include jargon or brevity terms that would not be recognized by commercial systems trained on
generalized speech corpus, lack of available data for training, noisy and/or encrypted audio files, and a mix of protocol-
based and natural language interactions. However, advances of artificial intelligence and data synthesis techniques to
help increase the availability of training data may increase the ability to successfully employ these technologies in
these environments.

In addition to applications of natural language processing for increasing the availability of contextual data related to
human performance, speech processing algorithms provide an ability to provide a more comprehensive understanding
of a training or operational environment. For example, variations in the cadence or pitch of speech may be indicative
of cognitive processing or workload (MacPherson, Abur, & Stepp, 2017). Alternatively, consideration of integration
of disfluency analysis or increased pauses in responses may indicate a lack of confidence in responses or altered
physiological state like fatigue and sleepiness (de Vasconcelos, Vieira, Kecklund, & Yehia, 2019; Gao et al., 2022).

Recommended Standard Changes

In practice, it is recommended that a section of the HPML manual should be added to describe the considerations
outlined above. The HPML manual is the appropriate venue for adding definitions of these terms and their
considerations for use. This would be applied with a more narrative approach. By defining additional terms in HPML,
they can be leveraged in the xAPI structure to track those concepts in a learning interaction. A few recommended
definitions to describe in the standard are time of measurement, the type of measurement to be recorded (i.e., heart
rate), the recording tool (i.e., wearable device name), and the unit of measurement (i.e., beats per minute). This logic
can be expanded to behavioral and eye tracking measures, not just physiology. By recording data in this structure and
level of depth with consistency across systems, there is a capability to collate and model data across events and
trainees. In addition, describing the sampling rate and introducing recommendations for documenting data
synchronization would also make this data more usable for MBSE applications.

The benefit of expanding the HPML manual and xAPI scripts to include physiological measurement-specific
information is that it can be used as a consistent reference for those acquiring new training systems. One of the major
goals of these standards is interoperability—with use cases to follow highlighting challenges with trying to model
language without consistent collection across the lifelong learning experience.
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NAVAL AVIATION USE CASES

As an example of how this standard update could be applied, we can use the example of a Student Naval Aviator in
the undergraduate training pipeline. The undergraduate or primary syllabus has well-defined training events in
simulation and flights and is quantified at the individual level. Recently, extended reality (XR) devices have been
adopted into the syllabus allowing for additional human performance quantification via embedded eye tracking
capabilities and interaction with natural language processing software for communications training (see Figure 3).
There are advantages to capturing performance both within a given training event and learning over weeks in
training. From an MBSE and HPM perspective this is equivalent to the “walk” stage of the “crawl, walk, run”
analogy often used in training.

Figure 3. Example of a Student Naval Aviator completing a primary simulator event using an XR device. Naval
Aviation  Training Next -  Project  Avenger ground school, by LCDR  Michelle  Tucker,
https://www.dvidshub.net/image/6461467/naval-aviation-training-next-project-avenger-ground-school

The updates to the HPML language can be incorporated by defining the eye tracking structure to follow—with an
example of a measurement being eye tracking/gaze behavior, recorded via embedded XR device eye tracker, with
the measure of interest being fixation duration in milliseconds, and the goal is to quantify development of a sight
picture for the pilot. The same information can be stored for voice data—with an embedded microphone, measuring
speech rate, with words per minute rate for speed produced, capturing communications completion rate and potential
confidence or fatigue during practice of a given skill. This would then be used in XAPI statements to be included as
an LRS for this given training event. By doing so, we could ensure consistent storage and labeling of the eye
tracking measurement to see how behavior changes as the Student Aviator advances in their training and compare
that to other students completing the same event. In order to do this, an architecture is needed to retain the context of
the event in a consistent measurement framework for all the trainee and event-level details.

After pilot proficiency is established, there is a challenge to capture and model how this performance can feed into
and be leveraged for complex mission scenarios. One example we can use for this is understanding the role of the
Naval Flight Officer and other aircrew members as they start to work together as a team (see Figure 4). When we add
this layer of complexity, the environment gets more challenging as people are often operating as a group and in a more
adaptable environment over a longer period of time. The syllabus for assessing learning and performance changes
from one that is very repeatable and geared toward assessing one student at the undergraduate pilot training level.
That does not necessarily mean that the same data architecture and data standard should not apply to the more complex
scenario, but recommended changes to human performance modeling should also account for what data is needed
beyond the individual and early trainee. Once we expand to multiple crew stations and more variable mission
scenarios, the fidelity of our human performance modeling extends into the “run” phase of “crawl, walk, run”.
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Figure 4. Example of P-8A Poseidon crew working collaboratively on a mission with a team-based environment.
Navy P-8 Poseidon crews enhance maritime partnerships during rotational detachments to Singapore, by PO2 Joshua
Fulton,  https://www.dvidshub.net/news/204022/navy-p-8-poseidon-crews-enhance-maritime-partnerships-during-
rotational-detachments-singapore

There has been a growing interest in modeling team coordination and team situational awareness with
psychophysiological measures, which has also advanced significantly with data analytic methods and improvements
to wearable physiological monitoring tools. In order to gather team information, the data architecture and core
measurement principles from measuring individuals must be first met. The concept of “the whole is greater than the
sum of its parts” applies to the world of mission-oriented data standardization for teams as well. In order to optimize
team performance and training, it is necessary to first understand the individual in that context and then the team at
large’s “interpersonal autonomic physiology”—the relationship between their physiology with interacting together
(Palumbo et al., 2017). Gathering autonomic measures during a team activity and examining team state during a shared
exercise has been utilized as an indicator of cognitive readiness and situational awareness (Walker, Muth, Switzer, &
Rosopa, 2013). While gathering this data, it is important to leverage subject matter experts (SMEs) to identify the
variables in the mission that may influence both team proficiency and psychophysiological response. One of these
examples is identifying and retaining information about the interdependent dyads that exist in the system—a tactical
coordinator and acoustics operator in a P-8 (shown in Figure 4). They rely on each other to complete the overall
mission tasking with shared data, heavy communication, and repeated tasking together. Psychophysiological measures
such as heart rate variability/inter-beat interval, skin conductance, and respiration rate have been examined to capture
dyad synchronization (Palumbo et al., 2017).

In order to scale HPM standardization to a more complex level, lessons from software can be leveraged to support
basic system architecture and establish an MBSE approach to human performance. One example of this is creating
HPM tools that follow a modular open systems approach (MOSA) or containerization model, such that they are
resilient to additional sensors or algorithms being added (Department of Defense, 2019). There is also the capability
to retain meta-data and time synchronize the outputs of each sensor to tie the complex system of sensors and
performance data to a usable format for future analysis. The advantage of using a MOSA or containerization approach
is that the individual person and individual sensor output can be preserved for better understanding of the contributions
of each. One way this could be integrated into HPML and xXAPI standards would be to include ties to the existing
acquisition language on how to ensure MBSE and MOSA language is included in novel system design- particularly
at the Analysis of Alternatives review for acquisition, specified:
Requirement to address modular open system approach in program capabilities development and acquisition
weapon system design. (¢) ACQUISITION STRATEGY.—In the case of a major defense acquisition program
that uses a modular open system approach, the acquisition strategy required under section 2431a of this title
shall— ““(1) clearly describe the modular open system approach to be used for the program; ‘‘(2)
differentiate between the major system platform and major system components being developed under the
program, as well as major system components developed outside the program that will be integrated into the
major defense acquisition program, ‘‘(3) clearly describe the evolution of major system components that are
anticipated to be added, removed, or replaced in subsequent increments; ‘‘(4) identify additional major
system components that may be added later in the life cycle of the major system platform; ‘“(5) clearly
describe how intellectual property and related issues, such as technical data deliverables, that are necessary
to support a modular open system approach, will be addressed; and ‘‘(6) clearly describe the approach to
systems integration and systems-level configuration management to ensure mission and information
assurance. (Department of Defense Acquisition Agility, 2020)
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While this section was written toward major weapon systems acquisition, the capability can and should be considered
in training systems design as well. The concepts of MOSA link to the overall goal toward MBSE approaches and the
general structure of the LRS framework from xAPI. The Office of the Under Secretary of Defense for Research and
Engineering also published MOSA assessment criteria—one of which is to reference open standards published by
recognized organizations to encourage system developers to reference for supporting more robust systems
development (Geier, 2022). The work conducted on MBSE and MOSA development in other acquisition systems can
be expanded upon in the human performance domain to take advantage of other software engineering approaches to
network development to address gaps for scenario complexity in the advanced training domain.

A major challenge to adding psychophysiological measurement and more emphasis on advanced learning to HPM
standards is the potential of new approaches or tools leading to the obsolescence of a given approach. MOSA and
containerization are examples of MBSE software approaches that allow for resilience of the system to changing of the
subsystem components (Morgan, Holzer, & Everleigh, 2021). While this has traditionally been a best practice for
using products from multiple vendors and allowing programs to adapt to add new software features over time
(Zzimmerman, Ofori, Barrett, Soler, & Harriman, 2019), the same logic applies to an advanced training scenario. The
challenge applied in the multi-crew advanced training is both the number of people who may be working in different
team compositions and the tie of data on performance from multiple different means of collection (traditional LRS-
types of data collection, physiological measurement, simulator context and performance). As these systems improve
over time, a modular architecture will allow stakeholders to add or remove the unnecessary pieces without interruption
to the trainee or data loss. With future analytic methods and real-time simulation adaptability tailored to the learner,
methods like MBSE and MOSA get at the requirements for interoperability needed to advance this technological
capability.

RECOMMENDATIONS

In order to support the increase in training and human performance data being gathered, standardization updates are
required to meet the demand of the new data environment. The benefit of modifying these standards allows for clear
consensus and traceable language to use in the acquisition of new HPM tools and training systems. Additionally, by
standardizing the collection of this information there is potential to create more robust models of human performance
using AI/ML approaches and MBSE. There have been considerable advances to psychophysiological recording tools
as well as overall systems design that warrant an update to our standards to enable robust acquisition of tools for
capturing human performance in operational settings.
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Figure 5. Combining data via standards supports capture of reliable and interoperable data across a variety of sources
at multiple points in the training progression. Through the addition of an MBSE architecture that maps data sources
to measures of performance, comparison of related building blocks in performance can be achieved, which ultimately
provides greater insight via trend analysis that is built on an enterprise level data management solution.

In summary, the xAPI and HPML standards would benefit from language specific to psychophysiological recording,
specifying up-front the minimums for certain sensors and the addition of these measures from a data architecture
perspective. Modern approaches to MBSE, with methods like MOSA, have enabled more resilient software
infrastructure to enable data-driven solutions. In further pursuit of building in these software concepts and enabling
MBSE in the future, there has been tri-service agreement on pursuing MOSA to enable resilience in our systems
acquisition. This memo presents the call to action, “MOSA supporting standards should be included in all
requirements, programming, and development activities... to the maximum extent possible” (Department of Defense,
2019). To accelerate development of scalable human performance solutions, MOSA-specific MBSE language should
also be included in the HPML and xAPI standards as we scale these concepts into larger, more complex training
environments. We have provided the basis for the language to be updated and expanded upon in the future. The overall
goal is to align the goals of HPM across the training and operational environment to capturing life-long learning as
well as enable more data-driven decisions to be made with robust systems design.
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