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ABSTRACT

The volume of geospatial imagery has increased significantly in recent years through the access of easy-to-use
collection devices such as cellphones and automated airborne platforms. Commercial drone technology allows users
to collect high-resolution geo-tagged images of outdoor objects from multiple perspectives quickly and at a relatively
low cost. A commonly desired goal within many industries is to rapidly convert these 2D images into 3D models that
accurately represent a large area of interest and can be used in existing visualization tools. Although semi-automated
processes and photogrammetry methods have helped to reduce the time required to produce useful results compared
to manual 3D modeling, they still often require significant processing time and do not scale well to large areas.

Generative Al, a modern branch of deep learning, produces synthetic output that conforms to the pattern of a training
dataset. Within the domain of generative Al, neural radiance fields (NeRFs) enable the synthesis of novel views based
on a collection of overlapping 2D images. In addition, the trained Al model can be utilized to produce extremely
detailed 3D meshes through the process of neural surface reconstruction. The resulting mesh can be converted into
traditional open standards, enabling use of this data in a wide range of applications.

This paper describes a process that utilizes GPU-acceleration of traditionally CPU-bound algorithms combined with
generative Al-based methods, enabling the rapid conversion of 2D images into geospatial 3D models which can then
be represented in the 3D Tiles format. We will also demonstrate visualization in a real-time ray tracing environment
capable of interactively rendering extremely complex scenes. Finally, we will discuss modifications to the workflow
that resulted in order-of-magnitude speedups, the challenges and limitations of processing geospatial imagery using
these methods and cover current developments likely to impact the future performance, fidelity, and scalability of this
process.
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INTRODUCTION

Many missions across the modeling, simulation, and
training (MS&T) community revolve around obtaining
an up-to-date 3D model of an area of interest. This
process typically involves transforming source data into
an accurate visual representation of the area to derive
actionable insights. From the complex landscape of
available geospatial tools, we consider two primary
techniques in this paper: novel view synthesis and
surface mesh extraction. With novel view synthesis, the
goal is to interactively render a scene in full 3D fidelity
from any viewpoint. This provides an operator with the
ability to quickly understand the layout of different
objects in a scene from viewpoints that may not have
been explicitly collected. Surface mesh extraction is a
useful technique for creating a polygonal digital asset of
a scene that can then be stored in industry-standard

formats like 3D Tiles, which is widely supported by ; . >
commonly used industry software applications that Figure 1. Example surface mesh extracted from a

enable  further  analysis, dissemination, and s_eries of overlapping.drone_i_mages of Safety Park, a
visualization. This work considers the task of creating first responder training facility in Atlanta, GA. This

workflows suitable for both novel view synthesis and is viewed within the popular open-source tool
surface mesh extraction from sets of overlapping Blender and is of suitable quality for creating a
photographs taken from the air, as shown in Figure 1. digital twin of the facility.

The community has created a proven set of techniques for accomplishing detailed surface mesh extraction through
traditional photogrammetric means. The heart of this approach relies on finding the same points across several
overlapping images and using these image correspondences to solve for these locations in world coordinates. Several
processing steps typically follow to create a final surface mesh. While this approach is a proven workhorse for the
community, we explore utilizing relatively recent techniques as viable replacements: Neural Radiance Field (NeRF),
3D Gaussian Splatting (3DGS), and accelerated mesh processing. Our primary motivation is to explore what results
can be achieved and to implement potential speed-ups of the overall processing pipeline.

Traditional Pipeline Overview

Photogrammetry is a technique that uses overlapping images, often collected from an airborne platform, to record the
positions of matching features and calculate these points in three-dimensional space. For a typical flight sortie, the
number of matching points across all images can be quite large and allows one to solve for camera pose, camera
model, and a set of sparse points in 3D space. This information is useful for initializing both NeRF and 3DGS
techniques as well. There is a robust ecosystem of tools to accomplish solving for camera location, pose, and model
that include commercial offerings and open-source projects. From these offerings that produce accurate camera and
sparse point cloud information, we leverage COLMAP (Schonberger and Frahm, 2016) as our structure from motion
solution. There are also many methods available to perform a dense reconstruction from the initial sparse set of points.
In general, these approaches interpolate between the initial sparse points to better approximate the surface geometry
present in a scene. This can then be transformed into a surface mesh and textured using source imagery to produce a
visually appealing 3D product suitable for visualization or additional processing.
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Accelerated Pipeline Overview

In recent years, work on radiance field rendering has expanded, producing many new techniques to derive highly
accurate and robust visualizations of real-world scenes. These techniques hold the promise of replacing portions of
the traditional photogrammetric pipeline with methods that can produce high quality results with fewer input images.
One seminal approach that sparked new interest in neural-based rendering is called the neural radiance field or NeRF
(Mildenhall et al., 2021).

NeRF utilizes a multilayer perceptron (MLP) as a tnput Images Optimize NeRF Render new views
fully connected neural network capable of treiiiaa

reconstructing a 3D scene from a set of 2D images AS P .

and camera poses (location and viewing direction). sieaeeniil “”

The MLP is optimized such that, when given a 3D B obepe dpite
point and viewing direction, it produces the view-
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NeRF must be created by training a new MLP. To
render a NeRF scene, the MLP must be prompted
repeatedly with sample 3D points along the viewing
direction. The resulting colors and densities are then
used to create the volume rendering. A visualization
of the full NeRF pipeline is shown in Figure 2.

) (a) " (b) (¢) (d)

Figure 2. Process outlined in the seminal NeRF
approach, turning input images into a rendered scene.
The process of optimizing the MLP is illustrated in the

bottom row of plots.

While the original NeRF implementation (Mildenhall et al., 2021) took at least 12 hours to train a scene, Muller et al.
decreased the space and time required to train a NeRF in their method, InstantNGP (Muller et al., 2022). InstantNGP
trains on the order of seconds to minutes due to multiresolution hash encoding and its implementation based on CUDA
(Compute Unified Device Architecture). CUDA (NVIDIA CUDA, 2024) is a C-like programming language that
enables software to leverage the massively parallel architecture of a modern GPU (graphics processing unit), which
can have over fifteen thousand processing cores per chip. This enables orders-of-magnitude speedups for algorithms
like NeRF. The memory required to train a NeRF with InstantNGP is log linearly related to the resolution, allowing
for larger scenes to be trained. In addition, several innovative approaches have been proposed that allow for larger-
scale NeRFs to be trained using multiple GPUs. One such method is NeRF-XL, which allows for arbitrarily large
scenes. The more GPUs available, the larger the scene that can be trained (Li et al., 2024).

The tradeoff between speed and quality in NeRF-based approaches led to a new class of methods: Gaussian Splatting.
Gaussian Splats use an explicit representation, not requiring the time-consuming ray tracing required for implicit
representations like NeRFs. Gaussian Splatting methods use a large quantity of 3D Gaussian functions, or splats, to
represent a 3D scene (Kerbl et al., 2023). These Gaussians have optimizable positions, sizes (anisotropic covariance),
opacities, and spherical harmonics (viewing direction dependencies). During training, Gaussians are added and
removed from the scene as necessary, allowing the density and number of Gaussians to be optimized as well. Gaussian
Splatting, like NeRF methods, requires 2D images and camera positions. Additionally, Gaussian Splatting requires an
initial point cloud from a structure from motion (SfM) method, such as COLMAP. This sparse point cloud is used to
initialize the centers of the splats. The Gaussian Splatting optimization flow is shown in Figure 3.
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Figure 3. The process for initializing and optimizing 3D Gaussians. (Kerbl et al., 2023)

Generating novel views with NeRFs or Gaussian Splats is very useful for many tasks, but it is also often desirable to
extract a surface mesh from a trained model. Once a NeRF or Gaussian Splat is converted into a mesh it can be
displayed and manipulated with pre-existing tools including traditional Image Generators (1Gs) and applications based
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on popular game-engines. Several methods have been created to take the output from Gaussian Splatting and convert
it to a mesh. One such method is 2D Gaussian Splatting (2DGS) (Huang et al., 2024). 2DGS utilizes Gaussian planar
discs rather than 3D Gaussians. These flat Gaussians better model the thin nature of surfaces, allowing for estimation
and optimization of the surface normals to get accurate depths. The depths are used to reconstruct the surface and
produce a mesh.

Neuralangelo is an adaption of Instant NGP (neural graphics

primitives) that additionally implements numerical gradients, Multi-resolution hash

encodin,
coarse to fine optimization, and uses a signed distance function ¢ Efggi’gf;’ mLP
(SDF) representation of 3D surfaces (Li et al., 2023). Rather than i — %
optimizing the density and color of points, the MLP in // '
Neuralangelo optimizes an SDF in one MLP and color in another. Images \
Neuralangelo recovers high quality, and accurate 3D R Volume rendering RGB (color)
representation of both indoor and outdoor scenes at extremely . ) SDF (geometry)
high fidelity using long training iterations. Since the scene is Figure 4. Neuralangelo architecture for

represented as an SDF, the surface of the scene has an implicit training neural radiance field. (Li et al., 2023).
representation from which an isosurface mesh can be extracted

via an accelerated marching cubes implementation, as shown in

Figure 4.

Extracting an isosurface boundary mesh from Neuralangelo via marching cubes that retains fine grain surface details
results in a mesh that is extremely dense and utilizes vertex-based color. For such meshes to be practical for use in
standard MS&T 3D workflows, we have defined a process to convert the output from Neuralangelo into 3D Tiles.
This requires first removing minor mesh artifacts, parameterizing the 3D coordinates into 2D image-space, transferring
vertex colors to a texture image corresponding to the parameterization, and finally performing mesh decimation. The
result can then be converted to 3D Tiles and streamed into a wide range of MS&T applications.

ACCELERATED PIPELINE DETAILS

For this work, we identify several key steps for transforming 2D source images into 3D content that is ready for use.
Figure 5 outlines the high-level pipeline steps which depend sequentially on each other. For practitioners that only
require viewing of the 3D scene, the pipeline can end at the QuickView stage. If further analysis is required, all stages
can be completed to produce results in the final 3D Tiles format.

Data Pr ick Vi Surface Mesh Mesh GeoSpatial 3D
atarrep - Quick Yiew - Extraction Processing Tiles View

Figure 5. End-to-End pipeline illustrating each stage required to transform 2D images to 3D geospatial tiles.

We will illustrate each step of our pipeline in more detail
in the following sections with results derived from a
dataset collected with an inexpensive consumer drone,
focusing on NeRF-based implementations for
QuickView and surface mesh extraction.

To collect the sample data that we used for this process,
we flew a commercial-off-the-shelf drone (a DJI Mini
Air 2) to collect 4K video in a ~two-minute orbit that
was 240m in diameter. The collection area was “Safety
Park” where first responders train - an ideal test since it
contains many different objects within a compact area. o | y 4 DL A

All results shown in the following sections are derived Figure 6. Example images extracted from done
from this dataset, shown in Figure 6. orbit video for Safety Park scene.

o]
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Data Preparation Stage

For this work, we assume that the process starts with source imagery that has minimal motion blur, limited atmospheric
effects (haze, etc.) and that has sufficient overlap. In addition, angular coverage spanning 360 degrees of a scene is
required to derive full 3D reconstruction. The guidelines for creating NeRF datasets, available in the Instant NGP
repository's documentation, offer valuable starting points for beginners. The NeRF dataset tips highlighted at
https://github.com/NV labs/instant-ngp/blob/master/docs/nerf _dataset tips.md are a good place to start. Our
exploration has shown that a single orbit of a scene from an aircraft or drone with ~50-200 images is sufficient for
good visual reconstruction. We also have early indications that traditional photogrammetric mapping flights also
produce high quality results (e.g., five camera bundles capturing in front, back, left, right, down configurations).

Figure 7 breaks our data preparation pipeline into stages ~ |BatFreparation e

that align well with the COLMAP workflow. We extract

SIFT (scale-invariant feature transform) features Imagery and m Extraction & pbunde mn‘iﬁﬁéﬁﬁfa
targeting ~16,000 features per 4K drone image with an crs e Matching Settings

example feature match shown in Figure 8. Bundle
adjustment solves for camera intrinsic, pose, and sparse
reconstruction points, which is visualized in Figure 9.
Finally, we generate the necessary inputs for either
NeRF or 3DGS. This process completes exceptionally
quickly for scenes of the scale of Safety Park since both
feature extraction and matching make use of GPU
acceleration within the COLMAP tool. Additionally,
bundle adjustment is rapid for smaller datasets of this
type with the entire data preparation process taking ~10
minutes on a single-GPU desktop workstation.

Figure 7. Data preparation pipeline detail stages used
to generate required information for subsequent tasks.

Frame B

QuickView Stage

Once the input imagery has been appropriately
processed, a “QuickView” product can be generated.
Instant NGP is an ideal tool for smaller datasets like our
Safety Park scene. Figure 10 shows the Instant NGP
GUI training and rendering at the same time to create a pa—
3D visualization of the scene. The training process Figure 8. Two frames used in our reconstruction with
creates an acceptable quality model within only a few  matching locations (yellow +) of the same building
seconds and provides a representation of the scene that corner taken from different view angles.

could be used for many missions within the MS&T
community.

While the main objective is to illustrate the ability to
generate 3D content, one can also render static 2D
views of the 3D scene. We use this insight to create a
“top down” view of the QuickView scene using an
orthographic camera type. This type of virtual camera
renders the scene with parallel rays pointing straight
down. Geospatial practitioners call this an
“orthomosaic.” This top-down image can then be
tagged with the geo-coordinates derived from the source
GPS locations and placed on a traditional 2D map.
Figure 11 shows this orthomosaic overlaid on top of an

'.»v.fr'
v

existing mapping product. Note that an advantage of  Figure 9. Visualization of bundle adjustment process
this approach is that no artifacts such as the tipping of  rynning in the COLMAP GUI. Each camera location
tall structures due to image parallax or seam lines (red triangles) is being refined and placed showing our
between images exist producing a very high quality 2D circular flight path around the scene with
mapping product. corresponding sparse reconstruction (colored dots).
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Figure 10. Generating a QuickView product using
InstantNGP to train and display a NeRF of the
Safety Park scene. Initial training (top left),
converging model (top right), and two new views of
the scene (bottom left / right) all occurring in a few
seconds.

Surface Mesh Extraction Stage

Once the data preparation stage is completed and a
satisfactory quick view is generated, we then proceed to
extracting a surface mesh. In this example, we utilize
the project Neuralangelo to train a model on the Safety
Park dataset and extract an isosurface via the marching
cubes algorithm provided by the tool. Figure 12 shows
extracted surface meshes at various checkpoints during
the training process. We see that the model begins to
converge rather rapidly with most large-scale structures
emerging within the first 25,000 iterations. Fine-grain
details and structures emerge last with a good visual
representation by 300,000 iterations.

We were able to achieve eleven iterations per second
running on a single NVIDIA H100 300W PCle GPU,
with substantial opportunity to further increase runtime
performance via CUDA kernel optimizations of the
existing  PyTorch  implementation.  Additional
performance tuning is possible via hyperparameter
optimization.

After the Neuralangelo model has been trained, an
isosurface can be extracted via a GPU-accelerated
marching cubes implementation. Marching cubes
utilizes a set of 256 pre-defined triangle configurations
representing the possible ways in which the boundary of
an isosurface might intersect a cube (Lorensen et. al.
1987). A virtual 3D grid of vertices is mapped over the
extent of the model, and the vertices are evaluated
against the isosurface to determine if they fall inside or
outside of the SDF. With the eight vertices of each cube
evaluated, a configuration is selected, resulting in a
triangle mesh that approximates the boundary of the
isosurface, shown in Figure 13.
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Figure 11. Safety Park scene with pre-existing
image basemap and drone locations overlaid with
red dots (top left), orthomosaic rendered from
QuickView NeRF (top right), zoom in of town
square (bottom left) and updated zoom in with
NeRF based render (bottom right). Notice the
absence of tilted buildings / structure in bottom
right NeRF based orthomosaic.

Figure 12. Visualization of surface mesh extracted
during training at various checkpoints (iteration noted
in top left corner of each image).

NSy =V o
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Figu.re 13. Some pre-defined polygon configurations

used by the marching cubes algorithm. Depending on
which combination of a cube’s vertices fall in or out of

an SDF, an appropriate configuration of triangles is
selected for inclusion in the mesh.
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An important benefit of marching cubes is that it can be
efficiently parallelized, making it very suitable for GPU
acceleration. This is valuable because the quality of the
mesh produced by marching cubes is a function of the
density of the 3D grid relative to the complexity of the
isosurface boundary. With a sufficiently dense grid,
small details can be represented more accurately.
Furthermore, the SDF generated from Neuralangelo
produces a high-quality surface which captures details
that may be missed by traditional photogrammetric

surface mesh extraction methods. Figure 14. Visualization of marching cubes surface
mesh extracted from trained Neuralangelo model.

Neuralangelo employs marching cubes by breaking the
scene into blocks and extracting a mesh for each block
at the desired density. Figure 14 shows the mesh
visualized within the tool Blender. This isosurface
exhibits good fine-grain detail considering the relatively
sparse single orbit collection geometry. It is also
possible to color the mesh by using the estimated surface
normals and NeRF model, as shown in Figure 15. While
this is a useful result, a very high vertex count is
generated to achieve good representation of fine grain
surface detail, ~30 million vertices in this example.

Figure 15. Visualization of the final mesh with per-
Mesh Processing Stage vertex coloring.

Apart from the high-quality output of Neuralangelo, there are several issues that arise when using marching cubes
which must be addressed with mesh processing to allow 3D Tiles to be created. This process is outlined in Figure 16.
First, the resulting mesh can contain a significant number of triangles, with a potentially large number being effectively
unnecessary due to being coplanar or nearly coplanar (e.g., on the side of a building or areas of flat terrain). Having a
large polygon count limits the usefulness of the mesh, as most existing 3D applications used for visualization struggle
to perform well as polygon counts increase. Additionally, the amount of memory required to store such dense meshes
increases the time required for loading from storage, the bandwidth for transmitting over networks, and space for
representing in GPU memory. Combined, these factors reduce the overall scale that can be practically represented.

Mesh Clean: uv Texture Mesh Conversion to
e - Generation ‘ Generation Decimation 3D Tiles

Figure 16. Mesh processing pipeline for converting marching cubes mesh to 3D Tiles.

Second, Neuralangelo embeds the color information
with each mesh vertex, as shown in Figure 17. Typical
3D mesh representations used in training and
simulation applications utilize texture mapping, such
that a 2D texture image that holds the color information
for a model is mapped onto the 3D surface. This is also
the method utilized by traditional photogrammetry. An
important advantage to texture mapping is that it
enables the resolution of the geometry to vary
independently from the surface color, which is
necessary when representing a mesh at varying levels
of detail (LODs). For example, the side of a building
can be represented using only two triangles if an image
of the facade is mapped onto the surface.

Figure 17. Original mesh produced by Neuralangelo
with (left) and color information (right).
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Third, because the marching cubes processing is performed in chunks, the output of Neuralangelo contains small
discontinuities along major axis boundaries due to floating point precision errors resulting in a mesh that is not
"watertight". As such, any attempt to simplify the mesh results in the exaggeration of these discontinuities, as shown
in Figure 18. Visualizing meshes with these discontinuities in graphics applications results in anomalies such as
scintillation and aliasing, generally considered unacceptable artifacts as they can be extremely distracting. As shown
in Figure 19, these discontinuities can be addressed by employing some relatively simple pre-processing to merge
vertices that are very close and remove T-vertices (that is, vertices that fall along the edge of an adjacent triangle).
Furthermore, one can also eliminate small, disconnected objects, which would include things like vegetation clumps
or other "orphaned" objects that would appear as floating geometry. This results in a well-structured mesh which can
then be simplified. Note that important geometric features are preserved, and in some cases the elimination of high-
frequency undulations improves the visual quality of nearly planar surfaces such as buildings and roads. Although
correcting discontinuities prior to simplification results in a higher-quality mesh, the issue remains that simplifying a
mesh that uses vertex-based color will result in a significant loss in visual fidelity, as shown in Figure 20.

Figure 18. Boundary Figure 19. Mesh simplification Figure 20. Neuralangelo mesh
discontinuities. after discontinuity removal. after clean-up and simplification.
Before simplification, we must first transfer the per-vertex mesh colors into a 2D texture image that we can then map
onto the surface. This requires that we first parameterize the 3D mesh’s (X,Y,Z) vertices into 2D coordinates, typically
designated as normalized (U,V) values. There are numerous approaches for mesh parameterization. For the purposes
of this workflow, an important desirable property is that the parameterization produces large contiguous patches. This
is because although each vertex color could simply be mapped into an isolated 2D coordinate, with this approach there
is no guarantee that neighboring vertices would map to nearby 2D coordinates, greatly limiting the possibility for
mesh simplification.

Another parameterization approach would be to use
projection. For example, assuming the Z axis represents
up/down, one could simply take the (X,Y) values of each
vertex and normalize them by subtracting the minimum
coordinate and dividing by the extent of the dataset. This
would effectively be a top-down orthographic projection
that produces a single contiguous mapping that can be
greatly simplified. Unfortunately, this approach does not
produce good results for wvertical surfaces because
vertices that are directly above and below one another
share the same (U,V) values, so color information is lost
in these regions, as shown in Figure 21

Figure 21. Top-down mesh parameterization causes
loss of color detail in vertical geometry.

Other projections (e.g., cylindrical, spherical, cubic, etc.)
all result in similar distortion artifacts for different 3D
mesh compositions. For this reason, there has been a
significant amount of research to develop mesh
parameterization algorithms that behave well with
complex 3D geometry by strategically placing seams and
flattening out arbitrary curved patches into the 2D plane,
as shown in Figure 22. In this example parameterizing a
3D elephant onto a 2D plane is non-trivial, but necessary o)
for producing a texture without significant distortion.
Note that even non-co-planar regions are packed into
contiguous areas of the texture.

Figure 22. A complex 3D mesh (left) and a
corresponding 2D parameterization (right).
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These algorithms must balance a tradeoff: some seams
are necessary to split the geometry into patches and
construct a UV map without too much stretching and
distortion, but placing too many seams would split the
map into many incoherent islands, limiting the ability to
simplify the mesh.

We make use of a custom AutoUV solution to
automatically construct high-quality UV maps, which is
based on Boundary First Flattening (Sawhney and
Crane, 2017) and includes additional heuristics to
decompose very large meshes into reasonably sized
patches, and place texture seams in unobtrusive regions
of the reconstructed geometry. Each separate island is
flattened independently in parallel for efficiency, and the
resulting UV patches are combined into a non-
overlapping atlas with a brute-force polygon packer, as
shown in Figure 23.

Figure 23. AutoUV Mesh parameterization of the
Safety Park dataset. The quilt-like patchwork
indicates large contiguous areas of the mesh. Note
that non-planar surfaces can be grouped, as indicated
by the school bus.

The 2D parameterization produced by the AutoUV
approach can be utilized to transfer vertex colors to the
areas of the image that correspond to the (U,V)
coordinates. As seen in Figure 24, numerous objects are
recognizable in the resulting texture image, including the
school bus.

With the mesh parameterized into 2D space, we can then
perform simplification using an algorithm that preserves
texture mapping values, such as quadric edge collapsing.
This process recursively removes triangles based on
removing vertices that are least important to preserving
the shape. This results in a mesh with a target number of
triangles, and so can be tuned for the desired level of
complexity for the highest level of detail required. With
the Safety Park dataset, we found that reasonable quality
results were still achievable even when reducing from
approximately 20,000,000 triangles down to 200,000.

N
Figure 24. On the left, the texture generated by
transferring vertex colors to a texture image based on
the mesh parameterization produced by AutoUV. On
the right, a subset of the texture focusing on the
school bus.

Given a textured and simplified 3D mesh, it is then possible to convert the mesh into 3D Tiles. Developed by Cesium,
3D Tiles is an Open Geospatial Consortium (OGC) standard that allows geospatial geometry, textures, and metadata
representing the terrain and other objects to be represented in a level-of-detail tile hierarchy based on gITF, a compact
3D format designed for efficient streaming and GPU rendering (Open Geospatial Consortium, 2024). Many industry-
standard visualization frameworks and applications provide support for 3D Tiles, including Epic's Unreal Engine,
Unity, and NVIDIA Omniverse. Cesium's lon platform was used for this effort, as it enables the creation of 3D Tiles
and provides a mechanism for hosting and streaming 3D Tiles both from the cloud or on-prem. The lon web interface
allows existing meshes to be uploaded to the platform and for the geospatial coordinates of the mesh to be specified.
Applications can then utilize the appropriate login credentials to enable remote access to the assets associated with a
specific account.

Visualizing the surface meshes in Omniverse via the Cesium 3D Tiles plugin shows that the data can be aligned to
other mapping products like Google Maps Photorealistic 3D Tiles, producing a much higher resolution update.
Omniverse renders the scene using real-time ray tracing, a computer graphics technique that enables interactive
visualization of extremely complex environments, on the order of billions of polygons (Woodard, 2019). Ray tracing
supports physically based rendering (PBR), which utilizes light and surface material properties to compute accurate
pixel colors. A future improvement to this process is to utilize Al to generate material mappings for each texel in the
mesh texture, enabling dynamic relighting as well as the simulation of non-visible spectrum sensor modalities.
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Temporal Use Case Results

A good use case for the workflow highlighted in the prior
section is to perform multiple scans of a site that is
undergoing change, as shown in Figure 25. This allows one
to rapidly create an updated digital twin of the scene and
compare changes that have occurred over time. To illustrate
this concept, we utilized the same drone and collection orbit
strategy that was used in the Safety Park scene to record data
of a construction site. After waiting for two weeks, we re-
scanned the same site and performed 3D reconstruction. The
two models were then rendered in the same environment,
which provided the ability to toggle between them and
observe the progress. It is important to keep in mind that the
total cost / time of the collection was very minimal, with each
scan only taking a total time of ~20 minutes.

3DGS QuickView Results

In this section we explore the QuickView stage implemented
by training a 3DGS model via gsplat training and rendering.
The construction scene from the prior section presents an
interesting challenge due to the highly complex nature of the
scene. The tower crane and 2x4 structures are quite difficult
to reconstruct due to many fine grain details, while the gray
concrete gives little contrast. In Figure 26 we show a
QuickView result that highlights the exciting potential of
3DGS for high fidelity rendering.

We also explore QuickView results for a larger scale scene
that presents a significant challenge in both scene complexity
and data volume. The data for this scene was collected by the
US Civil Air Patrol aircrews working in the Florida
Panhandle in the aftermath of Hurricane Michael. They
conducted imagery flights with specially equipped aircraft in
support of the Federal Emergency Management Agency. The
system used two Canon EOS 5DS R cameras with a 50mm
lens, collecting ~1700 nadir and oblique 50Mpix images.

Flgure 25. Temporal results, comparlng
Photorealistic 3D Tiles (top left) with mesh
derived from our process (top right). Rescan
differences such roof and siding (lower left vs
lower right).

Figure 26. 3DGS rendering higlighting fine-grain
detailed rendering (top), 2x4 structure (lower left),
and crane supports (lower right).

The source imagery was then passed through our data preparation stage to acquire the camera pose and sparse point
cloud used to initialize the gsplat model. Each image location pose can be optimized during gsplat training to account
for any residual pose errors after running the COLMAP SfM pipeline. Figure 27 shows an overview image rendered
from both Google Earth and our gsplat model. The extent of building and facility damage is clearly visible.

Figure 27. Render of TdaII AFB usmg gsplat (Ieft) and current day fromGoogIe Earth (rght).
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Finally, we compare the visual quality between the 3D model

provided by the civil air patrol, which was created via traditional T o M\
processing means with SkyLine Photomesh, to the model produced TEY Y o= P
via gsplat training. Figure 28 shows how traditional photogrammetry B, » s

can produce artifacts with missing information in areas of uniform
color. Holes appear in regions on the jets and roof of the white truck.
The 3DGS model does an excellent job of reconstructing these
regions. It should be noted that the image quality is visually superior
in the traditional case with some remaining softness in the 3DGS
result, indicating pros and cons of each approach.

4 R
Figure 28. Geometry artifacts present in
traditional pipelines (left) vs more
complete capture using 3DGS (right).

2DGS Mesh Extraction Results

While high quality mesh extraction can be achieved via NeRF-based
approaches, as highlighted in the surface mesh extraction section with
Neuralangelo, Gaussian Splatting approaches for surface mesh
extraction are rapidly progressing in quality and speed. Figure 29
shows the results from running 2D Gaussian Splatting for
Geometrically Accurate Radiance Fields on the Safety Park dataset
using the default hyperparameters. It should be noted that some
options like pose optimization and depth loss are not currently
available but will be available soon in the GSplat implementation.

2 -

Figure 29. Surface mesh visualization 0
Safety Park generated via 2DGS.

Metric Comparisons

Table 1. Safety Park results from 124 4K

It is also useful to compare several metrics between the techniques images with one NVIDIA 6000 Ada GPU.

that we have utilized in this work to get a sense for some of the Traini Checkooint
i i Method ining ECKPOINt | o quct

practical tradeoffs when running on real world datasets. These Runtime Size

resu_lts, shown in Tab!e 1, are_hlghly dependent on the total number InstantNGE | <1 min. 1268 Native
of pixels accessed during training, scene complexity, hyperparameter Render
settings, and computational hardware. Given current trends, these gsplat 25 min. 543 MB R\é\ﬁ’er
training runtimes will decrease as the approaches mature and
hyperparameter tuning for this type of data becomes more standard Neuralangelo | 125 hrs L5GB Mesh

YPETP 9 yp ' 2DGS 1.5 hrs. 310 MB Mesh

CONCLUSIONS AND FUTURE WORK

Our main contribution is a novel method for generating textured, geospatial 3D geometry from 2D aerial images
without 3D supervision or prior shape information. Our method demonstrates the strength of GPU-accelerated Neural
Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) for producing high-quality meshes that preserve fine
details and colors of the input images. We outlined mesh processing steps that enable the creation of 3D Tiles, suitable
for geospatial workflows. We demonstrated the effectiveness of our method on various real-world datasets and showed
that it can outperform existing methods in terms of visual quality, geometric accuracy, and mesh complexity.

Future work will focus on continued optimizations of each stage of the processing pipeline, as well as automating
stages that currently require manual input. There are many opportunities for applying GPU acceleration, including
camera pose estimation, mesh extraction, mesh parameterization, and mesh simplification. Applying multi-GPU and
multi-node acceleration will make the use of these methods on large datasets practical when combined with the overall
framework described in (Li, R. et al, 2024).

We also plan to investigate the use of non-visible-spectrum imagery, which has shown promise with initial
experiments. We will also explore the application of automated segmentation of the output, enabling material property
assignment, model substitution, and the application of different mesh processing algorithms appropriate for each type
of scene geometry. There is significant ongoing research in each of these areas, which are independent of the
approaches used for mesh creation, such that they could easily be applied as additional stages of the pipeline we have
outlined. Finally, object segmentation applied directly to a trained 3DGS model is an exciting and promising approach,
which in some cases can bypass the need for large-scale mesh extraction.
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