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ABSTRACT 

 

The volume of geospatial imagery has increased significantly in recent years through the access of easy-to-use 

collection devices such as cellphones and automated airborne platforms. Commercial drone technology allows users 

to collect high-resolution geo-tagged images of outdoor objects from multiple perspectives quickly and at a relatively 

low cost. A commonly desired goal within many industries is to rapidly convert these 2D images into 3D models that 

accurately represent a large area of interest and can be used in existing visualization tools. Although semi-automated 

processes and photogrammetry methods have helped to reduce the time required to produce useful results compared 

to manual 3D modeling, they still often require significant processing time and do not scale well to large areas. 
 
Generative AI, a modern branch of deep learning, produces synthetic output that conforms to the pattern of a training 

dataset. Within the domain of generative AI, neural radiance fields (NeRFs) enable the synthesis of novel views based 

on a collection of overlapping 2D images. In addition, the trained AI model can be utilized to produce extremely 

detailed 3D meshes through the process of neural surface reconstruction. The resulting mesh can be converted into 

traditional open standards, enabling use of this data in a wide range of applications. 
 

This paper describes a process that utilizes GPU-acceleration of traditionally CPU-bound algorithms combined with 

generative AI-based methods, enabling the rapid conversion of 2D images into geospatial 3D models which can then 

be represented in the 3D Tiles format. We will also demonstrate visualization in a real-time ray tracing environment 

capable of interactively rendering extremely complex scenes. Finally, we will discuss modifications to the workflow 

that resulted in order-of-magnitude speedups, the challenges and limitations of processing geospatial imagery using 
these methods and cover current developments likely to impact the future performance, fidelity, and scalability of this 

process. 
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INTRODUCTION 

 

Many missions across the modeling, simulation, and 

training (MS&T) community revolve around obtaining 

an up-to-date 3D model of an area of interest. This 

process typically involves transforming source data into 

an accurate visual representation of the area to derive 

actionable insights. From the complex landscape of 

available geospatial tools, we consider two primary 

techniques in this paper: novel view synthesis and 
surface mesh extraction. With novel view synthesis, the 

goal is to interactively render a scene in full 3D fidelity 

from any viewpoint. This provides an operator with the 

ability to quickly understand the layout of different 

objects in a scene from viewpoints that may not have 

been explicitly collected. Surface mesh extraction is a 

useful technique for creating a polygonal digital asset of 

a scene that can then be stored in industry-standard 

formats like 3D Tiles, which is widely supported by 

commonly used industry software applications that 

enable further analysis, dissemination, and 
visualization. This work considers the task of creating 

workflows suitable for both novel view synthesis and 

surface mesh extraction from sets of overlapping 

photographs taken from the air, as shown in Figure 1. 

 
Figure 1. Example surface mesh extracted from a 

series of overlapping drone images of Safety Park, a 

first responder training facility in Atlanta, GA. This 

is viewed within the popular open-source tool 

Blender and is of suitable quality for creating a 

digital twin of the facility. 

 

The community has created a proven set of techniques for accomplishing detailed surface mesh extraction through 

traditional photogrammetric means. The heart of this approach relies on finding the same points across several 

overlapping images and using these image correspondences to solve for these locations in world coordinates. Several 

processing steps typically follow to create a final surface mesh. While this approach is a proven workhorse for the 

community, we explore utilizing relatively recent techniques as viable replacements: Neural Radiance Field (NeRF), 

3D Gaussian Splatting (3DGS), and accelerated mesh processing. Our primary motivation is to explore what results 

can be achieved and to implement potential speed-ups of the overall processing pipeline. 
 

Traditional Pipeline Overview 

 

Photogrammetry is a technique that uses overlapping images, often collected from an airborne platform, to record the 

positions of matching features and calculate these points in three-dimensional space. For a typical flight sortie, the 

number of matching points across all images can be quite large and allows one to solve for camera pose, camera 

model, and a set of sparse points in 3D space. This information is useful for initializing both NeRF and 3DGS 

techniques as well. There is a robust ecosystem of tools to accomplish solving for camera location, pose, and model 

that include commercial offerings and open-source projects. From these offerings that produce accurate camera and 

sparse point cloud information, we leverage COLMAP (Schonberger and Frahm, 2016) as our structure from motion 

solution. There are also many methods available to perform a dense reconstruction from the initial sparse set of points. 
In general, these approaches interpolate between the initial sparse points to better approximate the surface geometry 

present in a scene. This can then be transformed into a surface mesh and textured using source imagery to produce a 

visually appealing 3D product suitable for visualization or additional processing. 
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Accelerated Pipeline Overview 

 

In recent years, work on radiance field rendering has expanded, producing many new techniques to derive highly 

accurate and robust visualizations of real-world scenes. These techniques hold the promise of replacing portions of 

the traditional photogrammetric pipeline with methods that can produce high quality results with fewer input images. 
One seminal approach that sparked new interest in neural-based rendering is called the neural radiance field or NeRF 

(Mildenhall et al., 2021).  

 

NeRF utilizes a multilayer perceptron (MLP) as a 

fully connected neural network capable of 

reconstructing a 3D scene from a set of 2D images 

and camera poses (location and viewing direction). 

The MLP is optimized such that, when given a 3D 

point and viewing direction, it produces the view-

dependent radiance (color) and volume density at that 

point, trained to match the input images when 

rendered. These MLPs are scene-specific, such that 
for a new set of images and camera poses, a new 

NeRF must be created by training a new MLP. To 

render a NeRF scene, the MLP must be prompted 

repeatedly with sample 3D points along the viewing 

direction. The resulting colors and densities are then 

used to create the volume rendering. A visualization 

of the full NeRF pipeline is shown in Figure 2. 

 

While the original NeRF implementation (Mildenhall et al., 2021) took at least 12 hours to train a scene, Muller et al. 

decreased the space and time required to train a NeRF in their method, InstantNGP (Müller et al., 2022). InstantNGP 

trains on the order of seconds to minutes due to multiresolution hash encoding and its implementation based on CUDA 
(Compute Unified Device Architecture). CUDA (NVIDIA CUDA, 2024) is a C-like programming language that 

enables software to leverage the massively parallel architecture of a modern GPU (graphics processing unit), which 

can have over fifteen thousand processing cores per chip. This enables orders-of-magnitude speedups for algorithms 

like NeRF. The memory required to train a NeRF with InstantNGP is log linearly related to the resolution, allowing 

for larger scenes to be trained. In addition, several innovative approaches have been proposed that allow for larger-

scale NeRFs to be trained using multiple GPUs. One such method is NeRF-XL, which allows for arbitrarily large 

scenes. The more GPUs available, the larger the scene that can be trained (Li et al., 2024). 

 

The tradeoff between speed and quality in NeRF-based approaches led to a new class of methods: Gaussian Splatting. 

Gaussian Splats use an explicit representation, not requiring the time-consuming ray tracing required for implicit 

representations like NeRFs. Gaussian Splatting methods use a large quantity of 3D Gaussian functions, or splats, to 

represent a 3D scene (Kerbl et al., 2023). These Gaussians have optimizable positions, sizes (anisotropic covariance), 
opacities, and spherical harmonics (viewing direction dependencies). During training, Gaussians are added and 

removed from the scene as necessary, allowing the density and number of Gaussians to be optimized as well. Gaussian 

Splatting, like NeRF methods, requires 2D images and camera positions. Additionally, Gaussian Splatting requires an 

initial point cloud from a structure from motion (SfM) method, such as COLMAP. This sparse point cloud is used to 

initialize the centers of the splats. The Gaussian Splatting optimization flow is shown in Figure 3. 

 

 
Figure 3. The process for initializing and optimizing 3D Gaussians. (Kerbl et al., 2023) 

 

Generating novel views with NeRFs or Gaussian Splats is very useful for many tasks, but it is also often desirable to 

extract a surface mesh from a trained model. Once a NeRF or Gaussian Splat is converted into a mesh it can be 

displayed and manipulated with pre-existing tools including traditional Image Generators (IGs) and applications based 

 
Figure 2. Process outlined in the seminal NeRF 

approach, turning input images into a rendered scene. 

The process of optimizing the MLP is illustrated in the 

bottom row of plots. 
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on popular game-engines. Several methods have been created to take the output from Gaussian Splatting and convert 

it to a mesh. One such method is 2D Gaussian Splatting (2DGS) (Huang et al., 2024). 2DGS utilizes Gaussian planar 

discs rather than 3D Gaussians. These flat Gaussians better model the thin nature of surfaces, allowing for estimation 

and optimization of the surface normals to get accurate depths. The depths are used to reconstruct the surface and 

produce a mesh. 
 

Neuralangelo is an adaption of Instant NGP (neural graphics 

primitives) that additionally implements numerical gradients, 

coarse to fine optimization, and uses a signed distance function 

(SDF) representation of 3D surfaces (Li et al., 2023). Rather than 

optimizing the density and color of points, the MLP in 

Neuralangelo optimizes an SDF in one MLP and color in another. 

Neuralangelo recovers high quality, and accurate 3D 

representation of both indoor and outdoor scenes at extremely 

high fidelity using long training iterations. Since the scene is 

represented as an SDF, the surface of the scene has an implicit 

representation from which an isosurface mesh can be extracted 
via an accelerated marching cubes implementation, as shown in 

Figure 4. 

 

Extracting an isosurface boundary mesh from Neuralangelo via marching cubes that retains fine grain surface details 

results in a mesh that is extremely dense and utilizes vertex-based color. For such meshes to be practical for use in 

standard MS&T 3D workflows, we have defined a process to convert the output from Neuralangelo into 3D Tiles. 

This requires first removing minor mesh artifacts, parameterizing the 3D coordinates into 2D image-space, transferring 

vertex colors to a texture image corresponding to the parameterization, and finally performing mesh decimation. The 

result can then be converted to 3D Tiles and streamed into a wide range of MS&T applications. 

 

ACCELERATED PIPELINE DETAILS 
 

For this work, we identify several key steps for transforming 2D source images into 3D content that is ready for use. 

Figure 5 outlines the high-level pipeline steps which depend sequentially on each other. For practitioners that only 

require viewing of the 3D scene, the pipeline can end at the QuickView stage. If further analysis is required, all stages 

can be completed to produce results in the final 3D Tiles format. 

 

 
Figure 5. End-to-End pipeline illustrating each stage required to transform 2D images to 3D geospatial tiles. 

 

We will illustrate each step of our pipeline in more detail 

in the following sections with results derived from a 

dataset collected with an inexpensive consumer drone, 

focusing on NeRF-based implementations for 

QuickView and surface mesh extraction. 
 

To collect the sample data that we used for this process, 

we flew a commercial-off-the-shelf drone (a DJI Mini 

Air 2) to collect 4K video in a ~two-minute orbit that 

was 240m in diameter. The collection area was “Safety 

Park” where first responders train - an ideal test since it 

contains many different objects within a compact area. 

All results shown in the following sections are derived 

from this dataset, shown in Figure 6. 

 
Figure 6. Example images extracted from done 

orbit video for Safety Park scene. 

 
Figure 4. Neuralangelo architecture for 

training neural radiance field. (Li et al., 2023). 
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Data Preparation Stage 

 

For this work, we assume that the process starts with source imagery that has minimal motion blur, limited atmospheric 

effects (haze, etc.) and that has sufficient overlap. In addition, angular coverage spanning 360 degrees of a scene is 

required to derive full 3D reconstruction. The guidelines for creating NeRF datasets, available in the Instant NGP 
repository's documentation, offer valuable starting points for beginners. The NeRF dataset tips highlighted at 

https://github.com/NVlabs/instant-ngp/blob/master/docs/nerf_dataset_tips.md are a good place to start. Our 

exploration has shown that a single orbit of a scene from an aircraft or drone with ~50-200 images is sufficient for 

good visual reconstruction. We also have early indications that traditional photogrammetric mapping flights also 

produce high quality results (e.g., five camera bundles capturing in front, back, left, right, down configurations). 

 

Figure 7 breaks our data preparation pipeline into stages 

that align well with the COLMAP workflow. We extract 

SIFT (scale-invariant feature transform) features 

targeting ~16,000 features per 4K drone image with an 

example feature match shown in Figure 8. Bundle 

adjustment solves for camera intrinsic, pose, and sparse 
reconstruction points, which is visualized in Figure 9. 

Finally, we generate the necessary inputs for either 

NeRF or 3DGS. This process completes exceptionally 

quickly for scenes of the scale of Safety Park since both 

feature extraction and matching make use of GPU 

acceleration within the COLMAP tool. Additionally, 

bundle adjustment is rapid for smaller datasets of this 

type with the entire data preparation process taking ~10 

minutes on a single-GPU desktop workstation. 

 

QuickView Stage 

 

Once the input imagery has been appropriately 

processed, a “QuickView” product can be generated. 

Instant NGP is an ideal tool for smaller datasets like our 

Safety Park scene. Figure 10 shows the Instant NGP 

GUI training and rendering at the same time to create a 

3D visualization of the scene. The training process 

creates an acceptable quality model within only a few 

seconds and provides a representation of the scene that 

could be used for many missions within the MS&T 

community. 

 
While the main objective is to illustrate the ability to 

generate 3D content, one can also render static 2D 

views of the 3D scene. We use this insight to create a 

“top down” view of the QuickView scene using an 

orthographic camera type. This type of virtual camera 

renders the scene with parallel rays pointing straight 

down. Geospatial practitioners call this an 

“orthomosaic.” This top-down image can then be 

tagged with the geo-coordinates derived from the source 

GPS locations and placed on a traditional 2D map. 

Figure 11 shows this orthomosaic overlaid on top of an 
existing mapping product. Note that an advantage of 

this approach is that no artifacts such as the tipping of 

tall structures due to image parallax or seam lines 

between images exist producing a very high quality 2D 

mapping product. 

 
Figure 7. Data preparation pipeline detail stages used 

to generate required information for subsequent tasks. 

 

 
Figure 8. Two frames used in our reconstruction with 

matching locations (yellow +) of the same building 

corner taken from different view angles. 

 

 
Figure 9. Visualization of bundle adjustment process 

running in the COLMAP GUI. Each camera location 

(red triangles) is being refined and placed showing our 

circular flight path around the scene with 

corresponding sparse reconstruction (colored dots). 

https://github.com/NVlabs/instant-ngp/blob/master/docs/nerf_dataset_tips.md
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Figure 10. Generating a QuickView product using 

InstantNGP to train and display a NeRF of the 

Safety Park scene. Initial training (top left), 

converging model (top right), and two new views of 

the scene (bottom left / right) all occurring in a few 

seconds. 

 
Figure 11. Safety Park scene with pre-existing 

image basemap and drone locations overlaid with 

red dots (top left), orthomosaic rendered from 

QuickView NeRF (top right), zoom in of town 

square (bottom left) and updated zoom in with 

NeRF based render (bottom right). Notice the 

absence of tilted buildings / structure in bottom 

right NeRF based orthomosaic. 

Surface Mesh Extraction Stage 

 
Once the data preparation stage is completed and a 

satisfactory quick view is generated, we then proceed to 

extracting a surface mesh. In this example, we utilize 

the project Neuralangelo to train a model on the Safety 

Park dataset and extract an isosurface via the marching 

cubes algorithm provided by the tool. Figure 12 shows 

extracted surface meshes at various checkpoints during 

the training process. We see that the model begins to 

converge rather rapidly with most large-scale structures 

emerging within the first 25,000 iterations. Fine-grain 

details and structures emerge last with a good visual 
representation by 300,000 iterations.  

 

We were able to achieve eleven iterations per second 

running on a single NVIDIA H100 300W PCIe GPU, 

with substantial opportunity to further increase runtime 

performance via CUDA kernel optimizations of the 

existing PyTorch implementation. Additional 

performance tuning is possible via hyperparameter 

optimization. 

 

After the Neuralangelo model has been trained, an 

isosurface can be extracted via a GPU-accelerated 
marching cubes implementation. Marching cubes 

utilizes a set of 256 pre-defined triangle configurations 

representing the possible ways in which the boundary of 

an isosurface might intersect a cube (Lorensen et. al., 

1987). A virtual 3D grid of vertices is mapped over the 

extent of the model, and the vertices are evaluated 

against the isosurface to determine if they fall inside or 

outside of the SDF. With the eight vertices of each cube 

evaluated, a configuration is selected, resulting in a 

triangle mesh that approximates the boundary of the 

isosurface, shown in Figure 13. 

 
Figure 12. Visualization of surface mesh extracted 

during training at various checkpoints (iteration noted 

in top left corner of each image). 

 

 

 

 
Figure 13. Some pre-defined polygon configurations 

used by the marching cubes algorithm. Depending on 

which combination of a cube’s vertices fall in or out of 

an SDF, an appropriate configuration of triangles is 

selected for inclusion in the mesh. 
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An important benefit of marching cubes is that it can be 

efficiently parallelized, making it very suitable for GPU 

acceleration. This is valuable because the quality of the 

mesh produced by marching cubes is a function of the 

density of the 3D grid relative to the complexity of the 
isosurface boundary. With a sufficiently dense grid, 

small details can be represented more accurately. 

Furthermore, the SDF generated from Neuralangelo 

produces a high-quality surface which captures details 

that may be missed by traditional photogrammetric 

surface mesh extraction methods. 

 

Neuralangelo employs marching cubes by breaking the 

scene into blocks and extracting a mesh for each block 

at the desired density. Figure 14 shows the mesh 

visualized within the tool Blender. This isosurface 

exhibits good fine-grain detail considering the relatively 
sparse single orbit collection geometry. It is also 

possible to color the mesh by using the estimated surface 

normals and NeRF model, as shown in Figure 15. While 

this is a useful result, a very high vertex count is 

generated to achieve good representation of fine grain 

surface detail, ~30 million vertices in this example. 

 

Mesh Processing Stage 

 

Apart from the high-quality output of Neuralangelo, there are several issues that arise when using marching cubes 

which must be addressed with mesh processing to allow 3D Tiles to be created. This process is outlined in Figure 16. 
First, the resulting mesh can contain a significant number of triangles, with a potentially large number being effectively 

unnecessary due to being coplanar or nearly coplanar (e.g., on the side of a building or areas of flat terrain). Having a 

large polygon count limits the usefulness of the mesh, as most existing 3D applications used for visualization struggle 

to perform well as polygon counts increase. Additionally, the amount of memory required to store such dense meshes 

increases the time required for loading from storage, the bandwidth for transmitting over networks, and space for 

representing in GPU memory. Combined, these factors reduce the overall scale that can be practically represented. 

 

 
Figure 16. Mesh processing pipeline for converting marching cubes mesh to 3D Tiles. 

 

Second, Neuralangelo embeds the color information 

with each mesh vertex, as shown in Figure 17. Typical 
3D mesh representations used in training and 

simulation applications utilize texture mapping, such 

that a 2D texture image that holds the color information 

for a model is mapped onto the 3D surface. This is also 

the method utilized by traditional photogrammetry. An 

important advantage to texture mapping is that it 

enables the resolution of the geometry to vary 

independently from the surface color, which is 

necessary when representing a mesh at varying levels 

of detail (LODs). For example, the side of a building 

can be represented using only two triangles if an image 

of the facade is mapped onto the surface. 

 
Figure 14. Visualization of marching cubes surface 

mesh extracted from trained Neuralangelo model. 

 

 
Figure 15. Visualization of the final mesh with per-

vertex coloring. 

 
Figure 17. Original mesh produced by Neuralangelo 

with (left) and color information (right). 
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Third, because the marching cubes processing is performed in chunks, the output of Neuralangelo contains small 

discontinuities along major axis boundaries due to floating point precision errors resulting in a mesh that is not 

"watertight". As such, any attempt to simplify the mesh results in the exaggeration of these discontinuities, as shown 

in Figure 18. Visualizing meshes with these discontinuities in graphics applications results in anomalies such as 

scintillation and aliasing, generally considered unacceptable artifacts as they can be extremely distracting. As shown 
in Figure 19, these discontinuities can be addressed by employing some relatively simple pre-processing to merge 

vertices that are very close and remove T-vertices (that is, vertices that fall along the edge of an adjacent triangle). 

Furthermore, one can also eliminate small, disconnected objects, which would include things like vegetation clumps 

or other "orphaned" objects that would appear as floating geometry. This results in a well-structured mesh which can 

then be simplified. Note that important geometric features are preserved, and in some cases the elimination of high-

frequency undulations improves the visual quality of nearly planar surfaces such as buildings and roads. Although 

correcting discontinuities prior to simplification results in a higher-quality mesh, the issue remains that simplifying a 

mesh that uses vertex-based color will result in a significant loss in visual fidelity, as shown in Figure 20. 

 

 
Figure 18. Boundary 

discontinuities. 

 
Figure 19. Mesh simplification 

after discontinuity removal. 

 
Figure 20. Neuralangelo mesh 

after clean-up and simplification. 

Before simplification, we must first transfer the per-vertex mesh colors into a 2D texture image that we can then map 

onto the surface. This requires that we first parameterize the 3D mesh’s (X,Y,Z) vertices into 2D coordinates, typically 

designated as normalized (U,V) values. There are numerous approaches for mesh parameterization. For the purposes 

of this workflow, an important desirable property is that the parameterization produces large contiguous patches. This 

is because although each vertex color could simply be mapped into an isolated 2D coordinate, with this approach there 

is no guarantee that neighboring vertices would map to nearby 2D coordinates, greatly limiting the possibility for 

mesh simplification. 
 

Another parameterization approach would be to use 

projection. For example, assuming the Z axis represents 

up/down, one could simply take the (X,Y) values of each 

vertex and normalize them by subtracting the minimum 

coordinate and dividing by the extent of the dataset. This 

would effectively be a top-down orthographic projection 

that produces a single contiguous mapping that can be 

greatly simplified. Unfortunately, this approach does not 

produce good results for vertical surfaces because 

vertices that are directly above and below one another 

share the same (U,V) values, so color information is lost 
in these regions, as shown in Figure 21 

 

Other projections (e.g., cylindrical, spherical, cubic, etc.) 

all result in similar distortion artifacts for different 3D 

mesh compositions. For this reason, there has been a 

significant amount of research to develop mesh 

parameterization algorithms that behave well with 

complex 3D geometry by strategically placing seams and 

flattening out arbitrary curved patches into the 2D plane, 

as shown in Figure 22. In this example parameterizing a 

3D elephant onto a 2D plane is non-trivial, but necessary 
for producing a texture without significant distortion. 

Note that even non-co-planar regions are packed into 

contiguous areas of the texture. 

 
Figure 21. Top-down mesh parameterization causes 

loss of color detail in vertical geometry. 

 

 
Figure 22. A complex 3D mesh (left) and a 

corresponding 2D parameterization (right). 
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These algorithms must balance a tradeoff: some seams 

are necessary to split the geometry into patches and 

construct a UV map without too much stretching and 

distortion, but placing too many seams would split the 

map into many incoherent islands, limiting the ability to 
simplify the mesh.  

 

We make use of a custom AutoUV solution to 

automatically construct high-quality UV maps, which is 

based on Boundary First Flattening (Sawhney and 

Crane, 2017) and includes additional heuristics to 

decompose very large meshes into reasonably sized 

patches, and place texture seams in unobtrusive regions 

of the reconstructed geometry. Each separate island is 

flattened independently in parallel for efficiency, and the 

resulting UV patches are combined into a non-

overlapping atlas with a brute-force polygon packer, as 
shown in Figure 23. 

 

The 2D parameterization produced by the AutoUV 

approach can be utilized to transfer vertex colors to the 

areas of the image that correspond to the (U,V) 

coordinates. As seen in Figure 24, numerous objects are 

recognizable in the resulting texture image, including the 

school bus. 

 

With the mesh parameterized into 2D space, we can then 

perform simplification using an algorithm that preserves 
texture mapping values, such as quadric edge collapsing. 

This process recursively removes triangles based on 

removing vertices that are least important to preserving 

the shape. This results in a mesh with a target number of 

triangles, and so can be tuned for the desired level of 

complexity for the highest level of detail required. With 

the Safety Park dataset, we found that reasonable quality 

results were still achievable even when reducing from 

approximately 20,000,000 triangles down to 200,000. 

 

Given a textured and simplified 3D mesh, it is then possible to convert the mesh into 3D Tiles. Developed by Cesium, 

3D Tiles is an Open Geospatial Consortium (OGC) standard that allows geospatial geometry, textures, and metadata 
representing the terrain and other objects to be represented in a level-of-detail tile hierarchy based on glTF, a compact 

3D format designed for efficient streaming and GPU rendering (Open Geospatial Consortium, 2024). Many industry-

standard visualization frameworks and applications provide support for 3D Tiles, including Epic's Unreal Engine, 

Unity, and NVIDIA Omniverse. Cesium's Ion platform was used for this effort, as it enables the creation of 3D Tiles 

and provides a mechanism for hosting and streaming 3D Tiles both from the cloud or on-prem. The Ion web interface 

allows existing meshes to be uploaded to the platform and for the geospatial coordinates of the mesh to be specified. 

Applications can then utilize the appropriate login credentials to enable remote access to the assets associated with a 

specific account. 

 

Visualizing the surface meshes in Omniverse via the Cesium 3D Tiles plugin shows that the data can be aligned to 

other mapping products like Google Maps Photorealistic 3D Tiles, producing a much higher resolution update. 
Omniverse renders the scene using real-time ray tracing, a computer graphics technique that enables interactive 

visualization of extremely complex environments, on the order of billions of polygons (Woodard, 2019). Ray tracing 

supports physically based rendering (PBR), which utilizes light and surface material properties to compute accurate 

pixel colors. A future improvement to this process is to utilize AI to generate material mappings for each texel in the 

mesh texture, enabling dynamic relighting as well as the simulation of non-visible spectrum sensor modalities. 

 
Figure 23. AutoUV Mesh parameterization of the 

Safety Park dataset. The quilt-like patchwork 

indicates large contiguous areas of the mesh. Note 

that non-planar surfaces can be grouped, as indicated 

by the school bus. 

 

 

 
Figure 24. On the left, the texture generated by 

transferring vertex colors to a texture image based on 

the mesh parameterization produced by AutoUV. On 

the right, a subset of the texture focusing on the 

school bus. 
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Temporal Use Case Results 

 

A good use case for the workflow highlighted in the prior 

section is to perform multiple scans of a site that is 

undergoing change, as shown in Figure 25. This allows one 
to rapidly create an updated digital twin of the scene and 

compare changes that have occurred over time. To illustrate 

this concept, we utilized the same drone and collection orbit 

strategy that was used in the Safety Park scene to record data 

of a construction site. After waiting for two weeks, we re-

scanned the same site and performed 3D reconstruction. The 

two models were then rendered in the same environment, 

which provided the ability to toggle between them and 

observe the progress. It is important to keep in mind that the 

total cost / time of the collection was very minimal, with each 

scan only taking a total time of ~20 minutes. 

 
3DGS QuickView Results  

 

In this section we explore the QuickView stage implemented 

by training a 3DGS model via gsplat training and rendering. 

The construction scene from the prior section presents an 

interesting challenge due to the highly complex nature of the 

scene. The tower crane and 2x4 structures are quite difficult 

to reconstruct due to many fine grain details, while the gray 

concrete gives little contrast. In Figure 26 we show a 

QuickView result that highlights the exciting potential of 

3DGS for high fidelity rendering. 
 

We also explore QuickView results for a larger scale scene 

that presents a significant challenge in both scene complexity 

and data volume. The data for this scene was collected by the 

US Civil Air Patrol aircrews working in the Florida 

Panhandle in the aftermath of Hurricane Michael. They 

conducted imagery flights with specially equipped aircraft in 

support of the Federal Emergency Management Agency. The 

system used two Canon EOS 5DS R cameras with a 50mm 

lens, collecting ~1700 nadir and oblique 50Mpix images. 

 

The source imagery was then passed through our data preparation stage to acquire the camera pose and sparse point 
cloud used to initialize the gsplat model. Each image location pose can be optimized during gsplat training to account 

for any residual pose errors after running the COLMAP SfM pipeline. Figure 27 shows an overview image rendered 

from both Google Earth and our gsplat model. The extent of building and facility damage is clearly visible. 

 

 
Figure 27. Render of Tyndall AFB using gsplat (left) and current day from Google Earth (right). 

 
Figure 25. Temporal results, comparing 

Photorealistic 3D Tiles (top left) with mesh 

derived from our process (top right). Rescan 

differences such roof and siding (lower left vs 

lower right). 

 

 
Figure 26. 3DGS rendering highlighting fine-grain 

detailed rendering (top), 2x4 structure (lower left), 

and crane supports (lower right). 
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Finally, we compare the visual quality between the 3D model 

provided by the civil air patrol, which was created via traditional 

processing means with SkyLine Photomesh, to the model produced 

via gsplat training. Figure 28 shows how traditional photogrammetry 

can produce artifacts with missing information in areas of uniform 
color. Holes appear in regions on the jets and roof of the white truck. 

The 3DGS model does an excellent job of reconstructing these 

regions. It should be noted that the image quality is visually superior 

in the traditional case with some remaining softness in the 3DGS 

result, indicating pros and cons of each approach. 

 

2DGS Mesh Extraction Results 

 

While high quality mesh extraction can be achieved via NeRF-based 

approaches, as highlighted in the surface mesh extraction section with 

Neuralangelo, Gaussian Splatting approaches for surface mesh 

extraction are rapidly progressing in quality and speed. Figure 29 
shows the results from running 2D Gaussian Splatting for 

Geometrically Accurate Radiance Fields on the Safety Park dataset 

using the default hyperparameters. It should be noted that some 

options like pose optimization and depth loss are not currently 

available but will be available soon in the GSplat implementation. 

 

Metric Comparisons 

 

It is also useful to compare several metrics between the techniques 

that we have utilized in this work to get a sense for some of the 

practical tradeoffs when running on real world datasets. These 
results, shown in Table 1, are highly dependent on the total number 

of pixels accessed during training, scene complexity, hyperparameter 

settings, and computational hardware. Given current trends, these 

training runtimes will decrease as the approaches mature and 

hyperparameter tuning for this type of data becomes more standard. 

 

CONCLUSIONS AND FUTURE WORK 

 

Our main contribution is a novel method for generating textured, geospatial 3D geometry from 2D aerial images 

without 3D supervision or prior shape information. Our method demonstrates the strength of GPU-accelerated Neural 

Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) for producing high-quality meshes that preserve fine 

details and colors of the input images. We outlined mesh processing steps that enable the creation of 3D Tiles, suitable 
for geospatial workflows. We demonstrated the effectiveness of our method on various real-world datasets and showed 

that it can outperform existing methods in terms of visual quality, geometric accuracy, and mesh complexity. 

 

Future work will focus on continued optimizations of each stage of the processing pipeline, as well as automating 

stages that currently require manual input. There are many opportunities for applying GPU acceleration, including 

camera pose estimation, mesh extraction, mesh parameterization, and mesh simplification. Applying multi-GPU and 

multi-node acceleration will make the use of these methods on large datasets practical when combined with the overall 

framework described in (Li, R. et al, 2024).  

 

We also plan to investigate the use of non-visible-spectrum imagery, which has shown promise with initial 

experiments. We will also explore the application of automated segmentation of the output, enabling material property 
assignment, model substitution, and the application of different mesh processing algorithms appropriate for each type 

of scene geometry. There is significant ongoing research in each of these areas, which are independent of the 

approaches used for mesh creation, such that they could easily be applied as additional stages of the pipeline we have 

outlined. Finally, object segmentation applied directly to a trained 3DGS model is an exciting and promising approach, 

which in some cases can bypass the need for large-scale mesh extraction. 

 
Figure 28. Geometry artifacts present in 

traditional pipelines (left) vs more 

complete capture using 3DGS (right). 

 

 

 
Figure 29. Surface mesh visualization of 

Safety Park generated via 2DGS. 

 

 

Table 1. Safety Park results from 124 4K 

images with one NVIDIA 6000 Ada GPU. 

Method 
Training 

Runtime 

Checkpoint 

Size 
Product 

InstantNGP < 1 min. 1.2GB 
Native 

Render 

gsplat 25 min. 543 MB 
Web 

Render 

Neuralangelo 12.5 hrs. 1.5GB Mesh 

2DGS 1.5 hrs. 310 MB Mesh 
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