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ABSTRACT 

 
How do we create artificially intelligent agents capable of meaningful and trusted teaming with humans for training 
and operations? “Common ground” refers to congruent knowledge, beliefs, and assumptions among a team about their 
objectives, context, and capabilities. It has been a guiding principle in cognitive systems engineering for human-AI 
interaction, where research has focused on improving communication between human and machines. Coordination 
(e.g., directability) and transparency (e.g., observability and predictability) are important for establishing, maintaining, 
and repairing both human-AI and human-human common ground. Nonetheless, human-AI common ground remains 
relatively impoverished, and AI remains a tool rather than a teammate Communication between humans and machines 
plays a crucial role in establishing the machine's state. Conversely, when machines communicate with humans, it 
provides transparency by revealing the machine's state to the human. Among humans, common ground occurs at the 
level of concept structure; however, human concepts are not merely variables to be parameterized, but are constructed 
during discourse. For example, an instructor uses communication to activate and shape concepts (through dialog) in 
the student’s mind, contextualizing and refining concepts until shared perceptions are categorized (understood) in a 
common way. To increase autonomy and human-AI teaming, the challenge is to provide the AI with human-like 
conceptual structure. An architecture to enable human-AI common ground must provide the AI with representational 
capacity and algorithms that mimic features of human conceptual structure and flexibility. Here, we identify critical 
features of human conceptual structure, including Conceptual Blending, Situated Categorization, and Concept 
Degeneracy. We evaluate challenges of implementing these features in AI and we outline technical approaches for 
hybrid symbolic/subsymbolic AI to meet those challenges. As contemporary human-factors approaches to human-AI 
common ground continue to mature, common ground issues will move from interface transparency to concept 
congruency.   
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CHALLENGES TO ACHIEVING HUMAN-AI COMMON GROUND 
 
How do we create artificially intelligent teammates capable of meaningful and trusted teaming with humans? A critical 
barrier to achieving this vision is equipping an Artificial Intelligence (AI) teammate with the means to develop 
common ground (Clark & Wilkes-Gibbs, 1986; Klein et al., 2004; Dafoe et al., 2021; Lynn et al., 2023) with its human 
counterpart by sharing congruent knowledge, beliefs, and assumptions about the team’s objectives, context, and 
capabilities. Across the Services, strategic vision over the coming decades calls for increasing operational agility via 
human-autonomy teaming (e.g., Endsley, 2015; Zacharias, 2019). Yet, computers and humans have a limited ability 
to communicate in ways that are intuitive and expressive to humans, resulting in a meager common ground on which 
AI is perceived as a tool rather than a teammate. Thus, a navigation computer can effortlessly detect its precise position 
in space, receive information about the coordinates of a specific Point of Interest (POI), and calculate the distance and 
duration required to reach the POI. Alternatively, a computer vision classifier can undergo training to recognize 
formations of sensed contacts (such as aircraft formations like wall, echelon, or finger-four formations). However, 
while these computers can more precisely and quickly calculate statistics about the spatial information than its human 
teammate, and accurately execute actions based on them, rich communication about spatial relations in human terms 
is limited by the relatively impoverished and brittle nature of machine concepts (Brennan, 1998).  
 
Human language and co-speech gesture, by contrast, are exceptionally powerful for conveying the overall spatial 
organization and dynamics of a scene. A human might say, “the pattern is {clearing, enlarging, exploding, contracting, 
swooping left}” with accompanying gestures; the other humans in the conversation know exactly what to look for and 
easily comprehend the details. A computer’s ability to instead give the human all the spatial coordinate details for the 
elements in the pattern is almost useless. So, while humans have intuitive-seeming concepts invoked via natural-
language to create common ground, humans have not invented tools sufficient for interacting with computational 
devices to develop the ground as the communication progresses. Here, our goal is to provide the industry designs 
toward a generalizable computational framework that captures key aspects of human conceptual flexibility to support 
developing common ground within human-AI teams. 
 
Research and development on human-AI common ground has occurred around several themes. Some approaches 
focus on the AI’s ability to parse human input, which is important when the same intent can be expressed in variable 
ways. For example, getting directions to Mom’s house might be said as: “Go to Mom’s”, or “Take me to my mother’s 
home”, or “Please show me how to drive to Mom”. Some approaches focus on reassuring the human that the AI has 
a correct understanding the human’s instructions, e.g., by supplementing the AI’s response to the human’s prompt 
with specific contextualization. For example, a human using a device geolocated to Cambridge, Massachusetts, asks: 
“What’s the weather today?” and the AI responds: “The weather in Cambridge today is mostly sunny.” Contributions 
brought by the AI also add new facts to the common ground that the human would like to know. Likewise, providing 
a usable, efficient, non-overwhelming interface for the human is critical to enabling the human to understand the state 
of the AI. In addition, however, among humans common ground is also about congruent understanding of the external 
world as a domain of common input. Of the three often-cited pillars of common ground (knowledge, beliefs, and 
assumptions), only knowledge has been the concretely operationalized in human-AI common ground. Theory 
developed around the role of knowledge in common ground (Klein et al., 2005; McDermott et al., 2018) has largely 
been around facts or procedural knowledge that teammates need to know about the joint activity or the teammates. It 
stops short of establishing and refining shared mental models that put the facts to use. Nonetheless, the flexibility of 
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such models, e.g., how they are communicated and shaped by building on existing knowledge and other models, is 
key to how humans achieve common ground with other humans.  
 
Among humans, the speaker uses communication to activate and construct concepts in the hearer’s mind. Humans 
have a rich, dynamic network of concepts, of course. Therefore, the multitude of ways to refer to these concepts in 
communication with an AI (such as differences in grammar and labels) represents just one aspect of the shared 
challenge. Another aspect of the challenge is to provide the AI with human-like conceptual structures and abilities to 
reason over them. A system to enable the establishment, maintenance, and repair of human-AI common ground must 
provide the AI with representational capacity and algorithms that reflect important features of human conceptual 
structure and flexibility.  
 
Human utterances consist of blends of grammatical constructions (including words, clausal and phrasal patterns, but 
also prosody and gesture). The speaker has a conceptual network that they want to share with the hearers. Grammatical 
form-meaning pairs (i.e., communicative constructions) encoding the meanings and relations in the conceptual 
network are blended by the speaker into a coherent form, a performance (i.e., a communicative act). The hearer’s brain 
infers candidate form-meaning pairs that could have blended to create this performance and uses that inference to 
construct the conceptual network—developing common ground with the speaker. This is a flexible, adaptive, and 
creative process. However, the process works only with other human beings, not with computers.  
 
Current AI possesses impoverished conceptual structures relative to a human teammate and this is one reason human-
AI common ground has been limited. Three characteristics of human concepts contribute to the development of 
common ground among humans: concepts are blended, situated, and degenerate. These characteristics arise from the 
nature of human perception and categorization–the on-the-fly functional construction (Barrett et al., 2015) of 
conceptual instances (that is, categorization of incoming sensory data) and recognition of situations in which familiar 
percepts are present in perhaps novel combinations. An approach to modeling these features and processes for an AI 
is needed to enable the establishment, maintenance, and repair of a richer common ground within human-AI teams 
(Lynn et al., 2023). Table 1 contrasts these properties for human and AI concepts. 
 
Table 1. Differences Between Human Concepts and AI Concepts 
 

Human Concepts AI Concepts 
Function: Concepts provide understanding of 
perceptions given perceiver’s goals 

Function: Concepts are used to classify perceptions (including 
commands) as if the classes are objectively valid 

Blended: Real-time construction of concepts 
(categories) is constrained by current goals 

Static: A Class is pre-defined by a collection of features that is 
exclusive to that class 

Situated: Context informs construction and can be a 
feature of the concept 

Situated: Context used to condition classification 

Degenerate: Multiple concepts may validly “explain” a 
given perception 

Non-degenerate: One-to-one mapping between concept and 
perception; exceptions are “noise” rather than functional variability 

 
AI Concepts Must Blend 
 
Human concepts can be blended (Turner, 1996, 2014). Concepts have structure: an aircraft has parts, like wings, and 
attributes, like mass. These elements of structure can be shared with other concepts. Blending mixes elements from 
different concepts to categorize familiar elements they are encountered in novel configurations or situations. 
Conceptual blending enables the human teammate to reason about novel configurations of objects, or parts of objects, 
by applying the knowledge and entailments inherited by the blended concept from its contributing source concepts. 
For example, when you read the sentence “The greeble is on the table” you can infer features of greebles by blending 
the concept [on]1 with [the table] and use those inferences to create a novel concept of [greeble], with uncertain, yet 
experientially constrained, attributes. Specifically, you might infer that greebles (Gauthier & Tarr, 1997) are probably 
physical objects, and their size and mass is small enough to fit on and be supported by your prototypical concept of a 
table. In a human-AI teaming context, blending provides the AI an ability to mix and match perceptual primitives to 
construct a concept that “explains” an observed scene.  

 
 
1 Square brackets denote human or machine concepts, as distinct from words or labels used to refer to the concept. 
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AI Categories Must Be Situated 
 
Human categorization, the act of judging a perception to be an example of a concept, is situated in a context (Barsalou, 
2015). Situated categorization means that context influences which concepts are used to understand a situation. For 
example, when you read the sentence “The greeble is near the cup on the table,” you can infer some constraint on 
greeble size and mass, because the meaning of the spatial relationship “near” is situated; this meaning, and how you 
can reason about it, depends on the context in which it was used. The distance “near” is dependent on relative sizes of 
the objects concerned; here, the greeble, the cup, and the table. To qualify as being “near” a cup on a table, given 
prototypical notions of those objects, one can reason that a greeble is probably not vastly larger than the cup. Thus, 
situated categorization enables context, including already-active concepts, to influence forthcoming categorization. In 
a human-AI teaming context, situated categorization means that the concepts a human teammate invokes to make 
sense of their perceptions are influenced by the goals of the team and aspects of context, such as the state of the 
mission, progress toward the goals, and the condition of the team or resources. For an AI-piloted autonomous 
Uninhabited Aerial System (UAS) to converse with a human teammate about being spatially “near” a target in a way 
that reflects common ground depends on whether its payload is a long-range sensor or short-range sensor: that context 
influences the meaning of the concept [near] for both teammates.  
 
AI Concepts Must Exhibit Degeneracy 
 
Degeneracy refers to the partial overlap of function by multi-functional components (Edelman & Gally, 2001). In 
biology, a physiological function can be successfully achieved by more than one pathway. Concept degeneracy refers 
to the idea different concepts can sometimes be applied equally well to categorize the same perception. Colloquially, 
there may be more than one way to understand the world, all of which might make sense; perceptions can be suitably 
categorized by more than concept. In a human-AI teaming context, the AI may encounter situations in which an 
observation may be suitably categorized as instances of more than one concept, all of which may be good fits to the 
observation. Also, situations will arise in which the human and AI may characterize observations of the same scene 
differently from one another. As in human teams, when such differences in understanding occur, teammates must have 
the means to negotiate which concept should be operative.  
 
 
DESIGN PRINCIPLES FOR AN EMBODIED COMMON CONCEPT ONTOLOGY 
 
We describe design principles for a system that can exhibit conceptual blending, situated categorization, and concept 
degeneracy. We call this design an Embodied Common Concept Ontology (ECCO). Embodiment (Lakoff, 1987; 
Varela et al., 2017) refers to the idea that meaning is relative to the agent (e.g., the agent’s sensory capabilities, motor 
capabilities, and goals: what the agent needs and can do in the world). On this view, the idea that an entity (such as 
objects that computer vision classifiers recognize) has an objective, intrinsic definition is a fallacy. Instead, what an 
object is is defined entirely by what it affords the agent with respect to the agent’s goals. This notion explains the 
brittleness of both classical symbolic AI and neural networks: definitions are only “true” to the extent that those 
concerned have common ground with respect to their goals and perceptions. Thus, when a human’s goal becomes 
incongruent with an AI’s training, the AI’s output becomes untrustable. In the open world, agents (i.e., humans, and 
eventually AI teammates) have many and dynamic goals, so static definitions of objects in the world are insufficient 
to support flexible behavior. 
 
For scoping, we limit ECCO’s example domain of operation to spatial conceptualization and reasoning. In our 
example, ECCO is a component of a UAS teamed with a human-piloted aircraft to engaging in tactical spatial 
configurations with respect to targets and one another. The domain of spatial conceptualization and reasoning is a 
useful example for developing human-AI common ground because UAS tactics (in, e.g., search and rescue or combat 
operations), can be defined as establishing specific spatial relationships with respect to objects. Examples include 
following teammates, observing adversaries, surrounding POIs, and avoiding collisions (Lynn et al., 2020). Physical 
space is also an interesting domain in which to begin because it is a root conceptual domain within the Theory of 
Embodied Cognition (TEC). TEC posits that more abstract human conceptualization uses the same representational 
and reasoning mechanisms as those of directly embodied domains, such as space (Lakoff & Johnson, 1980). 
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The principles we describe differ from prior approaches to common in notable ways. ECCO communicates about 
contextually relative categorizations rather than objective facts. ECCO’s locus of variability is at the mapping of 
observations to degenerate concepts rather than at the mapping of variable grammar to unequivocal parameters. ECCO 
uses human-like conceptual structures to construct a model of the world that is congruent with that of the human 
teammate rather than representing facts in the human’s mind. Figure 1 illustrates the general architecture for an ECCO-
backed agent teaming with a human. 
 

 
 

Figure 1. ECCO Architecture 
 
On the left of Figure 1, our teammates observe scenes depicting spatial configurations of objects such as UASs tracking 
objects of interest on the ground or aircraft in flying formations. To complete a mission or other shared task, human 
and software agent must develop common ground understanding of the spatial relationships among the objects in the 
scenes (for example, recognizing tactics as they unfold) and take action in the scenes (for example, correctly joining 
a formation of aircraft).  
 
The agent interfaces to ECCO via an Application Programming Interface (API). By providing an API and a controlled 
language, the ECCO system is not limited to working with a particular agent architecture. ECCO is agnostic to the 
cognitive architecture with which agent teammates are implemented; it provides any agent with concepts that structure 
a domain of human experience. The agent interacts with the scene (sensing it and acting within it) via a Scene I/O 
component that interfaces with the world or a simulation environment responsible for generating the scene. The agent 
interacts with the human via the Language I/O component. There are, of course, many approaches to implementing 
an agent’s Scene and Language I/O components and a wealth of prior work in these domains, including subsymbolic 
computer vision and natural language processing. Our focus here is instead on the ECCO components rather than the 
agent components. 
 
The agent’s understanding of the scene and ability to reason about it in human terms are provided by ECCO. ECCO 
itself has two main parts, a Representation System and a Reasoning Engine. The Representation System is a types-
based, probabilistic, ontological knowledgebase containing all the concepts the system is capable of recognizing, 
associated with one another in attribute- and part- relationships to provide conceptual structure. The Reasoning Engine 
has a kernel, programming language, and libraries of type-specific algorithms that operate on entries in the 
Representation System. Depicted in Figure 1, the ECCO features described here are built on a prototype ontology 
kernel, called Score. 
 
To establish a common understanding of spatial relationships and reasoning using ECCO, the agent converts scene 
descriptions into ECCO's vector-based notation. The agent then interacts with the ECCO system, which categorizes 
the spatial relationships and returns concept names. Additional API calls using the concept names allow the agent to 
reason and carry out common ground processes. Some API calls return vectors back to the agent, which it can 
transform into a suitable representation, such as a waypoint, for taking actions in the environment. 
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The Representation System 
 
To provide a computational representation of objects and spatial relations that can support blending, situated 
categorization, and degeneracy, ECCO has a representation system. Blending means that humans combine parts of 
different concepts, therefore the schema must support conceptual structure that has elements which can be shared 
among concepts. Situated categorization means that context influences interpretation, which requires that the 
instancing of a concept can be influenced by other active concepts. Degeneracy means that more than one concept 
can be a good candidate for categorizing a perception, therefore the schema must accommodate a notion of 
goodness-of-fit between perceptions and conceptual structures. Table 2 describes key features of the ECCO 
representation system. These features combine to support real-time construction of concepts to categorize incoming 
sensor data blending to produce situated categorization and degeneracy. 
 
Table 2. Key Features of the ECCO Representation System 
 

Feature Description 
Types Ontology entries are computational types, to support processes such as creating new 

knowledgebase entries that can inherit features of their parent entries. 
Entries with internal 
structure 

Annotations, parts, and attributes of a type can have different functions with respect to inheritance 
during processes such as blending. 

Contexts [context]s are types that have a simulation structure with a typed ontology, a language with mappings 
from symbols in the language to types in the simulation structure, and facts expressed in the 
language and assigned to instances of types. 

Runtime creation of 
new ontology entries 

New types (e.g., novel combinations of ontology parts and attributes) can be created 
programmatically by the system, a requirement for blending. 

Multiple inheritance The system supports unions of types rather than requiring a strict hierarchy of types, for example, a 
blend is the child of its source concepts but is not necessarily a strict subtype or example of any of 
them. 

Depth Parts and attributes are themselves ontological entries (with their own parts and attributes), to 
support situated categorization. 

 
To support blending, entries in the ontology are structured by parts and attributes that can be shared among concepts, 
so a new blended concept entry can be constructed by mixing parts and/or attributes from existing contributing entries. 
To support situated categorization, all parts and attributes are themselves ontological entries in the knowledgebase, 
enabling entries to influence one another. To support degeneracy, the values that parts and attributes can take on are 
defined as probabilistic distributions, providing numerical values for goodness-of-fit measures between perceptions 
and the candidate conceptual structures for which the perceptions are potential exemplars. Context data types are 
central to all of these because they can be used to represent complex concepts and exchange information with other 
contexts (Weyhrauch, 1978; Talcott & Weyhrauch, 1990; Weyrauch & Talcott, 1997). 
 
As an example of representation system features, the knowledgebase entry for the spatial relationship [between] has 
parts that include an object of focus (the object that is in the [between] relationship to other objects) and two or more 
objects of reference (the objects flanking the focal object). An object of reference is itself an ontology entry, with two 
attributes that define the distributions (e.g., means and variances) of the idealized angle and distance to the focal object. 
The knowledgebase entry for the spatial relationship [beside] also has focal and reference objects but has different 
idealized distributions than [between]. Figure 2 illustrates this approach with an example of degeneracy in the 
application of [between] versus [beside]. In Figure 2, is UAS 2 between or beside UASs 1 and 3? It is ambiguous; 
UAS 2 is positioned in a region of equal [between] versus [beside] density, therefore either term is a suitable 
categorization of UAS 2’s spatial relationship with UASs 1 and 3. The human might use one and ECCO the other, in 
which case they can invoke a decision rule to choose which term to use (for example, ECCO could adopt the human’s 
preferred term). 
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The ECCO ontology captures key features of human 
concepts about objects and spatial relationships present 
in the scene. In ECCO, concepts describing spatial 
relationships among objects, such as [between] and 
[beside], can be defined by a type that specifies spatial 
relationships as distributions of vectors between objects 
or points of interest (expected angle and distance; Figure 
3). A vector distribution notation supports situated 
cognition by representing distances (vector magnitudes) 
scaled relative to the size of the objects so that, for 
example, formations of small UAS are proportionally 
distanced with respect to formations of piloted aircraft. 
Distributional attributes also support degeneracy. 
Degeneracy is modeled as similarity of goodness-of-fit 
measures between an observed spatial relationship and 
ontology entries that are candidates for categorizing the 
observation. 

 
 
The Reasoning Engine 
 
To reason over concepts and categorized observations, 
ECCO has a Reasoning Engine. This component 
implements algorithms, which operate over ECCO 
knowledgebase content, to perform processes of 
establishing, maintaining, and repairing human-AI 
common ground based on principles of embodied human 
conceptualization. Every ontology entry in the ECCO 
representation system is a computational type 
constructed from more primitive computational types. 
For example, a reference object’s vector attribute is 
comprised of a direction distribution and a distance 
distribution, and the distributions may be characterized by a mean and variance, which are themselves floating point 
numbers (i.e., floats). Floats (and integers and characters) are familiar computational types, and in a computer, each 
has type-specific algorithms that operate on it. Similarly, the reasoning engine defines algorithms that operate over 
the representation system’s ontology entries as constructed types. Thus, when the reasoning engine operates on, e.g., 
a mean or variance, those types afford additional reasoning (algorithms) over and above their status as floats. The 
ontological relationships among types and the parts and attributes from which they are composed provide a basis for 
machine-reasoning across the knowledgebase as a semantic network. The reasoning engine has several key and 
interrelated functions, including categorization of observations, conceptual blending, situated categorization, and 
support for action. 
 
Categorization of Observations 
For our purposes, categorization is the act of applying a concept (for ECCO, a type definition) to an observation, and 
we take the position that this act is the mechanism by which a human or AI comes to “understand” the observation. 
One way ECCO categorizes observations (e.g., spatial relations among objects) is by comparing vector representations 
of an observed scene to vector definitions of types to calculate the goodness-of-fit with which the type explains the 
observation (Figure 4). Goodness-of-fit is implemented as a joint likelihood function. Distributional attributes provide 
variability over which to calculate goodness-of-fit measurements between the observation and candidate concepts. 
ECCO selects the concept with which to categorize an observation based on goodness-of-fit measurements. 
 

 
Figure 2. Concept Degeneracy of Between Versus 
Beside. Looking down on three UAS traveling in the 
same direction at the same altitude in a staggered 
formation. The grey (lower, circular) blurred region 
represents the density function of [between] spatial 
relationships. The green (upper, elongated) blurred 
area represents the density function of [beside] spatial 
relationships. Darker shade corresponds to higher 
prior expectation.  

 
Figure 3. [surround] Spatial Relationship. Defined by 
probability distributions of vectors (denoted by 
dashed arrows) among swarm vehicles and the target. 
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Figure 4. Spatial relations defined by distributional attributes (left, definition of a finger-four formation) 
afford goodness of fit calculations between the definition and a given observation (middle, a good fit to a 

finger-four formation; right, a poor fit to finger four but a good fit to a ladder formation) 
 
Conceptual Blending 
ECCO is designed to blend by combining recognized parts and attributes from different known types to create 
instances of known types as well as novel types. For example, blending can include the commonplace application of 
a known spatial relation concept to known objects that have none-the-less not been seen before in that relation. 
Blending can also encompass understanding novelty by constructing a new concept (i.e., run-time creation of a new 
type in the ontology) that has attributes and parts from known concepts but replaces the parent distributions with 
observed values and the parent parts with observed instances of those parts. 
 
As illustrated with the greeble example, blending can support inferences about the attributes of unknown objects. In 
addition, ECCO is designed to use blending to learn new concepts, such as spatial configurations that are outside of 
ECCO’s current knowledgebase, illustrated in Figure 5. One intriguing possibility this application of blending offers 
is the construction of concepts collaboratively with ECCO over a series of conversations, starting from building-block 
concepts. If the human were also learning the terms at the same time, this method could be an interesting model for 
human-machine co-training (van den Bosch et al., 2019). 

Figure 5. Novel Concept Generation 
 
Situated Categorization 
In situated categorization, previously instanced concepts modify the attribute and part values of types that are 
candidates for use in categorizing the scene. Adjusting the prior distributions of the attributes of candidate concepts is 
a mechanism by which context (i.e., other concepts involved in the shared task and the scene) can influence the 
understanding of the scene. This influence of context of categorization is exemplified by an evaluation of an ECCO 
software prototype, described below. In that example, the meaning of [near] is situated by an agent’s objective (e.g., 
to deploy long-range vs. short-range sensors). The objective constrains the goodness-of-fit with which [near] 
characterizes this scene by adjusting the distribution of the vector magnitude that defines [near] in the ontology. 
 
Action 
The reasoning engine also includes algorithms to support agent actions in the shared task. It may solve for relative 
positions to enable the agent to attain a required spatial relationship with respect to some target, or to otherwise take 
actions that change the scene such that it exemplifies a specific spatial relationship. For example, if the shared task 

Pair Mu Var Mu Var
1 to 2 45 2 1 2
1 to 3 350 2 2 2
1 to 4 315 2 3 2

Frame of reference: from nose, 0 deg=>up x-axis,
 increasing counter-clockwise

Direction (deg) Magnitude (normed)

1. The agent teammate has existing concept definitions for several spatial relationships (e.g., [between], [wall formation], 
[above]), some of which have parts for multiple UASs (e.g., [wall formation]), some of which are expressed relative to a 
POI (e.g., [above]) 

2. Agent observes a spatial configuration: several UASs are positioned around a point of interest (e.g., a building) 
3. This observation has a poor goodness-of-fit with all concepts that the agent currently knows, e.g., the observed number 

of UAS does not match some concepts, and the observed vectors are unlikely to have been produce the others 
4. Nonetheless, the observation has commonalities with existing concepts: e.g., [wall formation] accommodates >1 UAS, 

[above] accommodates a point of interest. 
5. ECCO creates a new spatial relation type that uses these commonalities it recognizes with the observed vectors as 

estimates of the vectors that characterize the new relation 
6. Then, agent asks the human teammate for a label for the new type 
7. Human says, “That type of spatial relationship is called [surround]” 
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requires the agent, as an autonomous UAS, to adopt and maintain an echelon formation with the human commander’s 
aircraft, then ECCO determines the correct spatial relationship with the commander’s aircraft, using the agent as a 
part in the echelon formation type, with instances of distributional attributes, and returns the vector notation for that 
relative position back to the agent. The agent then uses its own internal algorithms to translate the vector notation into 
appropriate flight maneuvers.  
 
Human-AI Communication 
 
The human and agent teammates need a language with which to communicate to establish, maintain, and repair 
common ground. Directives, questions, answers, and reports between the teammates must be encoded in a mutually 
understood form. As a starting point, the grammar is based on the ontology kernel’s syntax. The lexicon of the 
controlled language consists of the names of all the entries in the ECCO knowledgebase. In our example domain of 
spatial relations relevant to human teaming with autonomous UAS, for example, the lexicon includes not just the 
relevant common spatial relations (“between”, “beside”, “on”) but also technical terms for spatial relations that support 
the scenarios and shared tasks (“echelon formation”, “wall formation”) and supporting objects (“AeroVironment Wasp 
III”, “MQ-1B Predator”, “Point of Interest”, “High Value Target”, and others). In addition, the types associated with 
these lexical entries are defined by specific attributes and parts, which are themselves entries in the ontology and part 
of the lexicon, down to primitive types (e.g., [float], [integer]). The lexicon also includes all the names or symbols of 
all the type-specific algorithms in the ECCO reasoning engine, both those constructed for ECCO and primitive type-
specific algorithms such as mathematical operations. The lexicon is thus potentially large and spans a broad hierarchy 
of specificity, from general types (e.g., [aircraft]) through increasingly refined types ([F-16 Fighting Falcon] and 
[Human Teammate’s F-16 Fighting Falcon]). 
 
Feasibility Assessment 
 
We developed prototype ECCO software that implements a context data structures, ontological types, and type-
specific algorithms. In a simulator, we created an operational vignette illustrating situated categorization (Figure 6). 
We asked subject matter experts in computer science, cognitive linguistics, human factors, and Government 
stakeholders to evaluate ECCO human-AI common ground. In the vignette, mission objectives influence the meaning 
of the concept [near]. Specifically, ECCO’s current goal (the current mission objective) situates how ECCO 
understands its observation of a spatial relationship in response to a human teammate’s query (e.g., Is the agent “near” 
the target?). Mission objectives were implemented as a [context] data structure. One objective was to identify Target 
1 using a camera that required the agent to be within 0.3 miles of the target. A second objective was to use locate 
Target 2 using a camera that required a distance < 0.9 miles. A third objective was to listen to Target 3 using a radio 
that required a distance of < 1.8 miles. The concept [near] was represented as a function requiring three inputs: two 
entities and a critical distance. To ask ECCO if the agent is “near” a target, the human teammate executed a query at 
the ECCO command line: ASK (NEAR ECCO1 TARGET). ECCO extracts the entities (ECCO1 and TARGET) from 
the query, looking to the currently active [context] for assignment of the lexical entries “ECCO1” and “TARGET” to 
knowledge present in the [context]’s ontology. The query also prompts ECCO to categorize the observed relationship 
between ECCO1 and the target as instance of [near] and assess the observation’s goodness-of-fit to the meaning of 
[near] as situated by the current mission objective. Because [near] requires a critical distance, ECCO must search the 
[context] for knowledge that expresses a distance relationship between the entities. That association is provided in 
details of the objective: observe a target using a particular method. The method itself (use of a particular sensor) 
contains information about the distance that the method requires.  
 
ECCO correctly responded to queries about being near the three possible targets contingent on the current mission 
objective. Evaluation confirmed ECCO technical merits, demonstrating development of common ground processes at 
the level of conceptual structure. Specifically, evaluation showed establishment of common ground understanding of 
[near] as situated by a mission objective and maintenance of common ground as the objective changed. These common 
ground processes were enabled by technical successes, including: integration of ontology, agent, and simulator 
technologies enabling the system to direct agents to take action; distributional attributes and their use in the goodness-
of-fit algorithm to assess likelihood that an observation is an example of alternative spatial configurations; an 
algorithm for goal-directed blending of known types into a novel type; and encoding of scenes in the ontology.  
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Figure 6: Screenshot from an evaluation of ECCO situated categorization of “near”.  
 
 
THE WAY FORWARD 
 
The sharing of conceptual structures with the capability for blending, situated categorization, and degeneracy presents 
a significant opportunity to advance the state of the art in human-AI common ground. Augmenting existing AI tools 
with ECCO capabilities will enable humans to communicate at a more tactical level with their AI teammates on shared 
tasks. For example, applied to the domain of spatial concepts, these features combine to enable common ground 
understanding about relative, ambiguous, and novel relationships among objects in the environment. The conceptual, 
embodied, nature of the human-AI common ground made possible by these features affords shared understanding at 
a functional level (e.g., “get near the target”), rather than at a conventional computational tool’s more mechanistic 
level of the actions needed to perform a tactic (e.g., “move to a waypoint’).  
 
These features support the use of a more natural-language style of terminology that is intuitive to the human, with the 
trade-off of some additional ambiguity of meaning that must be negotiated among the teammates. Instilling an AI with 
these features, and a mechanism for negotiating resulting ambiguity, provides a basis for the human to trust that the 
AI teammate understands its perceptions in a way that is functionally similar to how the human performs. Technical 
challenges to implementing the design principles described here include development of a sufficiently expressive 
ontology kernel, scalability of the system in terms of both deployment and domains of experience, and integration of 
subsymbolic and symbolic approaches to perception, representation, and reasoning. Successful implementation of an 
embodied, constructivist approach to conceptual structure and categorization such as that adopted here will facilitate 
additional opportunities for the advancement of AI, such as extensions to common sense reasoning and abstract 
conceptualization via conceptual metaphor. 
 
It is worth contrasting the approach described here with those of transformer-based Large Language Models (LLMs, 
see Manning, 2022), such as OpenAI’s GPT and Google’s LaMDA, including image transformers, such as 
OpenAI’s DALL-E and Stability AI’s Stable Diffusion. Current endeavors to make LLMs serviceable in new 
domains (Bornstein & Radovanovic, 2023), such as internet-search, show that humans and LLMs often have 
different goals. For example, LLMs were not initially designed (i.e., imbued with a goal) to return factual responses 
to search queries, yet humans use LLMs with that goal in mind. This misalignment of “human-AI team goals” is a 
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lack of common ground: The human and the LLM both “perceive” the same human-supplied search query, but the 
LLM has a different goal than the human, which shapes its “understanding” of the query and guides its response.  
 
As well illustrated in the popular press, LLMs produce compelling output, which is rich with blends. LLMs produce 
blends because human language contains phrases that are generated, in part, by concept blending (Turner, 1996, 
2014). LLMs are trained to produce naturalistic sequences of words by ingesting vast amounts of natural language to 
learn what can come next, phrase-by-phrase. Therefore, LLMs blend by dint of having implicit knowledge of what 
can come next during sentence construction, having been trained on content that contains blends. However, 
language merely expresses blends, which reflect interactions among human concepts (in fact, language is a primary 
source of evidence for the theory of blending). LLMs are not blending parts of models (representations of concepts) 
nor using blends to understand their perceptions, reason about their perceptions, or take actions (Chomsky et al., 
2023). Elsewhere, we have argued that generative transformer architectures are part of the solution to creating 
artificial organic-like cognitive architectures, but where LLMs generate surface behavior (language), the 
generativity of organic intelligence starts at perception and extends through action (Lynn et al., 2023). ECCO’s 
design is intended to be an approach for increasing the utility of LLM-like architectures for human-AI teaming and 
common ground. 
 
As contemporary human-factors approaches to human-AI common ground continue to mature, common ground issues 
will move from interface transparency to concept congruency. The representation and reasoning systems described 
here provide flexibility to adapt to changing circumstances, for example enabling the meaning of “near” to change as 
mission goals change. Furthermore, the typed ontology is designed to enable abstraction. For example, given a 
[context] that contained a refinement of physical distance, as an ontological type, to a new type, e.g., distance in a 
multidimensional mathematical space, ECCO would still be able to answer queries about nearness of two entities in 
that abstract space. As a generalizable framework, the ECCO approach is intended to model the structure and 
transformations of human concepts to provide an AI with knowledge, beliefs, and assumptions similar to those of a 
human teammate, facilitating trust in the AI. Beyond our UAS example, achieving common ground at the level of 
flexible conceptual structure would support training and operations in other areas where human and AI teammates 
must support each other to make best use of their distinctive strengths. 
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