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ABSTRACT 

 

Data standards govern how digital data are formatted, organized, and stored to facilitate later use. The training value 

gained through the application of data standards has long-been acknowledged Standards have enabled real-time 

performance feedback and rigorous training research, and the application of standards has poised the operational 

training community to benefit greatly during the current explosion of artificial intelligence (AI) capabilities. Doing 

so, however, assumes that training systems are built with the capability to support seamless data manipulation and 

export, which analyses have shown is not the case (NAWCTSD & Katmai, 2023). Data trapped within a training 

management or after-action review system negates the potential of current computational advances. Complexities in 

the requirements process and coordination of training system requirements for acquisition, including cross-service 

collaboration, are acknowledged across the services (Marler et al., 2021; NAWCTSD & Katmai, 2023). Organizations 

must proactively identify data requirements during the design and development of simulation-based training and after-

action review systems to realize the full value of their digital training data. Program managers considering open 

systems architecture and various data strategies have resources to guide them (e.g., Defense Acquisition University, 

2013; Guertin & Hurt, 2013), however, these resources fall short of articulating needs for specific data types and 

analyses goals to support data-driven learning analytics. This paper addresses this gap. Specifically, we discuss how 

audio, video, simulation trace, and other multimodal data should be collected and formatted to support training 

analytics with emerging AI tools and techniques. Illustrated in the context of military medical training, these 

considerations are applicable in other domains. These recommendations can be leveraged by program managers 

looking to avoid roadblocks preventing efficient and effective use of their individual and team-level human 

performance data to inform training and operational decisions.  
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INTRODUCTION  

 

Data are of great strategic importance for the U.S. Department of Defense (DoD). The DoD strategy entitled “Data, 

Analytics, and Artificial Intelligence Adoption” opens with an emphasis on the criticality of data leverage. It states, 

“The latest advancements in data, analytics, and artificial intelligence (AI) technologies enable leaders to make better 

decisions faster, from the boardroom to the battlefield. Therefore, accelerating the adoption of these technologies 

presents an unprecedented opportunity to equip leaders at all levels of the Department with the data they need, and 

harness the full potential of the decision-making power of our people” (Department of Defense, 2023, p. 3). Without 

usable data, the advantages afforded by these emerging technologies will equate to missed opportunities. In this paper, 

we offer recommendations aimed at maximizing data availability with specific focus on human performance data in 

the form of audio, video, and simulator trace data collected in the context of military training environments.  

 

Decades of research on integrated (networked) training and distributed mission operations have highlighted the 

advantages afforded by data sharing standards, which include everything from increased fidelity, opportunities for 

integrated teamwork and deliberate skills practice, enhanced performance assessment, and feedback for after-action 

review (e.g., Bell, 1999; Schreiber, 2013). Data standards govern how digital information is formatted, organized, and 

stored to facilitate later use, and standards are critical enablers for realizing the promised training value (Schreiber, 

2013). Although the benefits are well-known (e.g., Hernandez, et al., 2022; NAWCTSD & Cole Engineering, 2021), 

these best practices have failed to be fully leveraged in some contexts. Recent observations in the medical modeling, 

simulation, and training context have revealed opportunities to increase capabilities to support data manipulation and 

export (NAWCTSD & Katmai, 2023). This lack of interoperability has resulted in lost opportunities for data export 

and data sharing, which has reduced capabilities for readiness validation and analytics on emerging concepts of 

operation. Our direct observations of simulation-based data capture in such settings have revealed that the lack of 
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interoperability reduces data access, including but not limited to the audio, video and simulation trace data. Making 

data available for analysis outside of the system in which data were produced is critical to future operations.  

 

This fundamental requirement must be accounted for in future system design. Vendor solutions that fail to address 

data sharing standards, application programming interfaces (APIs), or data export capabilities essentially trap data 

within a training management or after-action review system, often void of context surrounding its capture. This negates 

the potential of current computational approaches and undermines the DoD strategy’s focus on maximizing data 

leverage for decisional advantage. Specific to training and education, requirements for future systems must address 

data availability and export in support of learning analytics (e.g., Goodell & Kolodner, 2022; Krumm, Means, & 

Bienkowski, 2018). If training is to be predictive of future performance, researchers and trainers require sufficient 

data to defend claims of predictive validity.  

 

Cross-service collaboration and complexities associated with the requirements process are extensive (e.g., Marler et 

al., 2021; NAWCTSD & Katmai, 2023). Organizations must proactively identify data requirements during the design 

and development of new systems to realize the full value of digital training data. Program managers considering open 

systems architecture and various data strategies have resources to guide them (e.g., Defense Acquisition University, 

2013; Guertin & Hurt, 2013; Wydler, 2014), however, these resources fall short of articulating needs for specific data 

types and analyses goals, including support for data-driven learning analytics and human performance analytics. Our 

paper addresses this gap by leveraging experience and expertise in the areas of engineering, learning analytics, human 

factors, human performance, industrial organizational psychology, and intelligent tutoring. The recommendations 

offered in this paper were informed by our respective agencies’ investments in human performance and training 

effectiveness research. Specifically, we discuss how audio, video, and simulation trace data must be captured and 

stored to support learning analytics using emerging AI tools and techniques.  

 

In this paper we discuss data availability in our illustrative use case (military medicine) along with data repository 

considerations, and we organize our discussion around three main data types: audio, video, and simulation trace data. 

In Table 1, we introduce a set of questions and considerations distilled from the later discussion to give a glimpse at 

what is ahead. We encourage program managers to consider these items when developing requirements for modeling 

and simulation, training, and after-action-review tools. Specific recommendations relative to these topics can be found 

in the later sections.   

 

Table 1. Questions and Considerations for Envisioned Systems. 

Questions  Considerations 

How will the system 

support data availability and 

export? 

• Which data does the system produce?  

• Which data are critical for export (e.g., metadata for context)? 

• Define the real-time and post simulation data access needs. 

• Define the expertise requirements relevant for data export use cases. 

• Clarify the unique HIPAA, PII, or security requirements. 

How will the system 

support synchronization? 
• Identify meaningful timestamp or synchronization needs. 

• Define the role time plays in reconstruction of events and analyses. 

How will the system make 

quality data available for 

analytic tools? 

• Identify critical data formats that enable or hinder analytic approaches. 

• Evaluate open standards and application programming interface needs. 

• Identify the formats that result in a loss of data or specificity. 

• Are there relevant data post-processing hurdles? 

• Identify data provenance needs to enable apples-to-apples comparisons. 

How will the system enable 

export to external stores? 
• Clarify the unique IRB requirements associated with data repositories. 

• Identify metadata requirements necessary for consent tracking. 

 

 

DATA AVAILABILITY IN MILITARY MEDICAL TRAINING 

 

We have drawn on experience across military medical training and other training contexts to distill the 

recommendations made in this paper. Specifically, the considerations we discuss were observed across projects 

executed by the Air Force Research Laboratory, the Naval Air Warfare Center Training Systems Division, the Naval 
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Medical Research Unit Dayton, and the U.S. Army’s DEVCOM Soldier Center. In this section, we summarize the 

current state of data availability and interoperability within a generalized use case, the military medical domain, as 

observed through these projects. Following this breakdown, we transition into recommendations for writing data-

informed requirements to address the observed gaps in data availability relevant to human performance and learning 

analytics. Note that these recommendations are applicable across a variety of training domains (not just medical).  

 

Joint Medical Training Readiness Tracking: A Survey 

 

Within the military medical system, specifically within education and training, current systems that track force 

readiness were developed under a multitude of separate contracts in support of service, agency, or facility-specific 

requirements. Many systems require extensive manual input, resulting in limited mechanisms available to enable data 

integration. Given that existing data are currently stored and managed separately by the Department of Defense 

(DOD), Army, Navy, Air Force, and commercial corporations and due to lack of connectivity and interoperability, 

there are missed opportunities for analyses. The outcome is that multiple systems must be used to track training and 

document compliance, with no means of aggregating the data automatically (NAWCTSD & Cole Engineering, 2021). 

 

Interoperability standards govern interoperability compliance, which enables compliance with information security, 

privacy, and cybersecurity requirements. In some use cases, these standards harmonize the sharing of data (e.g., 

courseware, competencies scenarios) among organizations and systems to meet the business needs of the larger 

healthcare enterprise. Although these organizations and systems are separated by geography and goals, this 

harmonization provides the same format and methodology across the industry to ensure the portability of data between 

organizations. In other use cases, these standards ensure data exchange is standardized between disparate Learning 

Management Systems (LMS) and Learning Record Stores (LRS) for effective information sharing (Walcutt & Schatz, 

2019). Following a standardized format and methodology allows independent learning platforms to interoperate as 

though they were designed to do so. As a result, data would be able to flow freely, but securely, between these systems 

providing learners with the full breadth of available resources (NAWCTSD & Cole Engineering, 2021). 

 

Interface standards implemented at the requirements stage aid in preventing delivery of “turnkey” systems where 

proprietary interfaces link components and result in high lifetime costs because the system is not optimized for the 

user’s particular needs. Competitors will typically offer components that are superior to some of those in the turnkey 

system and price competition will not be a factor when system components need replacement. In such situations, 

system design can still be optimized. However, the cost of modifying physical and functional interfaces to allow 

components from different vendors to work together (i.e., to “interoperate”) is usually prohibitive, and full 

functionality is often not obtained by reengineering proprietary interfaces (NAWCTSD & Cole Engineering, 2021). 

 

In summary, the current state of our data infrastructure is ripe with opportunity for advancement. Along with the 

adoption of standards in the requirements generation process, there is a need to develop implementation best practices 

that align to associated data-analysis needs. In the remainder of this paper, we focus on common data types and discuss 

considerations that are critical in the context of human performance data and learning analytic needs. 

 

 

RECOMMENDATIONS TO SUPPORT DATA ANALYTICS  

 

In this section we outline several recommendations organized around data type and specific analytic goals. First, we 

address differences in data for tracking in the context of our illustrative use case, medical team training, which include 

distinctions between clinical encounters, training system utilization, and human performance outcomes. Second, we 

discuss the implications of data repositories and how those requirements extend well beyond hardware and software. 

Third, we outline recommendations to address data format needs for audio data captured in training environments. 

Within this area, we discuss data needs for content and flow-based measurement. Fourth, we outline recommendations 

to address video data formats for automated analysis of imagery collected within training environments. Fifth, we 

discuss simulation trace data that is needed to cross-correlate with many of the other data types in support of various 

analytic needs.  

 

It is impossible to address all human performance data and metrics across the services given the limited space within 

this paper. Rather, we aim to address some common data types relevant for individual-level and team-level analyses. 

Although relevant training data are omitted from detailed discussion here (e.g., grade sheets, demographics, training 
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completion), we believe that our sampled set achieve our goal of informing future system requirements in ways that 

account for data analytic considerations and increase the availability of usable, exportable data.  

 

Encounter, Utilization, and Human Performance  

 

Before diving into the topic, there are a couple of distinctions uniquely relevant in our illustrative context of the 

military medical training space. Those include the distinctions between clinical encounters, utilization, and human 

performance data. Clinical encounters are defined within the Defense Health Agency’s procedural instructions, and 

they refer to instances of face-to-face interactions between providers and patients (Defense Health Agency, 2018). 

These encounters are distinct from measures related to simulation center and equipment utilization. Training system 

vendors may offer solutions providing equipment usage statistics. This may be helpful in evaluating equipment useful 

life remaining and estimating hardware needs across different sites. However, it is important to note that this data falls 

short of feeding analytics regarding human performance and the training efficacy of those sessions, trends to 

understand the rate of skill acquisition within learner audiences, trends and changes within a training pipeline or course 

over time and estimates for potential future concepts of operation based on past performance.  

 

Ensuring the efficacy of training depends on the availability of appropriate data to assess claims of predictive validity. 

That is, it is impossible to empirically test the degree to which a warfighter’s training performance is a valid predictor 

of how they will perform operationally if the appropriate data does not exist. The appropriateness of such data depends 

on the use case of interest, but across all situations, it is critical to operationalize warfighter performance along several 

human performance metrics. In-depth analysis is needed to identify the appropriate human performance measures to 

support readiness assessment and after-action review is a vital piece within simulation-based training and after-action 

review systems. Maximum data leverage, from the human performance perspective, includes not only simulation trace 

(event) data (i.e. “what happened in the scenario”), but also trainee or learner actions (i.e. “what did they do”), actions 

by the instructors and simulator operator, and the resulting outcomes (e.g., patient outcomes, changes in patient status). 

Lastly, it necessarily includes data provenance to know that one is comparing apples to apples down the road, as data 

is leveraged in the future for emerging needs. Possessing the necessary data to glean such insights allows researchers 

and trainers to assess the predictive validity of training simulations.  

 

Data must be sampled, stored, and exported in workable formats to enable analyses. In this paper we present 

recommendations related to these aspects of human performance data as they are split across data types. For the data 

types we discuss, there are relevant research data protection considerations. Thus, we first discuss the role of data 

repositories toward this end.  

 

Feeding Human Performance Data Repositories 

 

In simulation-based training contexts, data repositories are more than the sum of the hardware and software required 

for storage. Repositories inherently require personnel and processes to manage the informed consent process, address 

the protection of data collected from human research subjects, and continuously direct data collection to ensure 

sufficient metadata are captured. Accordingly, a data repository serving learning analytics and research is something 

that needs to be continuously designed, managed, and maintained, as opposed to a solution purchased off-the-shelf. 

 

Human performance data use in scientific research is regulated by Institutional Review Boards (IRBs) and Common 

Rule Code of Federal Regulations (Common Core, 2018), therefore a data repository intended to support future 

research must be supported by an overseeing IRB. Data repository approval requires documentation such as a protocol, 

a list of associated data managers, and informed consent documents. Data protections will differ by sensitivity of data. 

Protected Health Information (PHI) and Personally Identifiable Data (PII) require additional protections to ensure 

safety within the repository (Perazzo et al., 2019). For data that can be de-identified, gathering full consent (under 

IRB guidance) is an advantageous measure to allow for long-tail data reuse. Upfront efforts to obtain and manage 

consent, including specification for future data use, and can therefore benefit multiple future research goals. Adopting 

a multimodal data repository solution is strategic for data preservation, access, and reuse of big data. Exportable 

datasets are most effective when supported by context rich metadata (Greenberg et al., 2009; Martin et al., 2017; 

Trisovic et al., 2021).  

 

Metadata should be used to connect various types of data pertaining to the same instance of collection. Contextual 

metadata includes participant identification, date of capture, and other variables that can be used to navigate mass data 
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sets. Data provenance, or the origin of data, is a critical factor when designing and managing a data repository. For 

instance, recorded training scenarios must be tagged with dates of training and participant IDs to enable analytic 

connections to other types of relevant data such as subject demographics or student grade sheets. These contextual 

pieces of metadata must be included in mass data export to ensure accuracy in later analyses, and to support data 

management needs in instances where research data participants withdraw consent. Without the ability to connect 

metadata to relevant outputs, research data are less informative and require more intervention to untangle. In summary, 

it is critical to appropriately characterize the data management and protection responsibilities associated with data 

repositories. Having introduced some of the ways metadata plays a critical role in effective data use, we now turn to 

discussions and recommendations organized around data source.  

 

Audio Data Recommendations  

 

Audio data are a critical enabler for analysis of team performance in complex settings such as military medicine. The 

recommendations we present draw from existing industry practices and our experience developing advanced analytics, 

for which we leverage recordings of military medical teams capturing during simulation-based training. Our analytics 

involve calculation of scores depicting team behaviors such as adaptation, reorganization, and leadership. These 

calculations are based on derivations from the actual audio data, such as time-stamped transcriptions (what is said) 

and diarization (who said it) files segmented by individual speaker (Reynolds et al., 2005). The accuracy of the 

transcriptions and diarizations is critical for ensuring optimal audio capture. There are countless elements of audio 

recording that may impact data quality. Those critical to the transcription and diarization processes are explored here. 

 

Our review of available IEEE standards revealed a stark lack of relevant guidance on audio capture and storage within 

the context of research analysis. IEEE 1857.8-2020 does articulate standards for audio, but strictly within the context 

of streaming it over a network connection (IEEE Standard for Second Generation Audio Coding, 2020). IEEE 3302-

2022 describes systems to enhance audio for moving picture using artificial intelligence, such as emotion-enhanced 

speech, audio recording preservation, and speech restoration (IEEE Standard Adoption of Moving Picture, Audio and 

Data Coding by Artificial Intelligence (MPAI) Technical Specification Context-based Audio Enhanced (CAE) 

Version 1.4, 2023). IEEE 1857.2-2023 describes new audio coding algorithms for lossless audio compression, which 

may prove useful in the future, but provides little guidance on audio capture methodology (IEEE Standard for 

Advanced Audio Coding, 2023). None of these standards address the design choices we have seen threatening audio 

data access and quality in military medical training settings today.  

 

Audio File Formats and Sizes 

Common file formats for audio recordings include Waveform Audio File Format (WAV) and Moving Picture Experts 

Group (MPEG) Audio Layer-3 (MP3) (den Uijl et al., 2013; IASA Technical Committee, 2009). The WAV format is 

a lossless, uncompressed audio format that stores raw linear pulse code modulation (LPCM), which directly 

corresponds to the data output from most recording devices. Alternatively, an MP3 recording is a compressed audio 

format that aims to significantly reduce file size by carefully removing audio features from the original recording. The 

removal of audio features by compressed formats hurts the accuracy of the transcription and diarization process, and 

should be avoided (Ng et al., 2004). There are also lossless compressed audio formats, such as Free Lossless Audio 

Codec (FLAC) and MPEG4-Audio Lossless Coding Scheme (MPEG4-ALS). However, managing codecs and audio 

for these formats adds complexity to data processing as most transcription and diarization processes do not natively 

support these file formats, thereby requiring audio conversion. Thus, using the WAV audio file format would be the 

best practice, but FLAC or MPEG4-ALS with appropriate codecs and audio conversion tools could be used instead to 

maximize storage space while preventing any quality loss (Harada, Moriya, & Kamamoto, 2007). 

 

The size of audio files will also be influenced by the audio sampling rate. The current standard sampling rate is 

44.1kHz (Garcia et al., 2020), though most transcription and diarization processes sample audio at 16kHz, resampling 

input data as necessary. Thus, the minimum required sampling rate is 16kHz, with 44.1kHz as a best practice for 

maximum compatibility with modern audio software and tools. 

 

The Distributed Interactive Simulation (DIS) standard is a major player in the training and simulation space. 

Reviewing the DIS Standards for radio and audio transmission, we see the supported audio formats: 8-bit μ-law, 

CVSD, ADPCM, 16-bit Linear PCM 2’s complement, 8-bit Linear PCM. Of these formats, only 16-bit Linear PCM 

2’s complement should be used, as all others use compression or a limited bit depth that will hurt audio analysis. The 

standard also allows for a range of sample rates between 8kHz and 48kHz. Where possible, avoid a sampling rate 
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below 16kHz to prevent transcription and diarization accuracy loss (IEEE Standard for Distributed Interactive 

Simulation–Application Protocols, 2012). 

 

Audio Tracks 

Audio recordings captured during training can either be captured using a single acoustic microphone positioned 

centrally in a room (i.e., single track) or by having a dedicated microphone worn by each participant (i.e., multi-track). 

When using only one microphone, the resultant audio file has one single track with speech from all participants 

together as one audio waveform. While this approach boasts easy setup and minimal user burden, it adds multiple 

pitfalls to the analysis process. Common transcription models do not perform well with multi-speaker, single 

waveform data, particularly in the presence of “step-ons,” when the speech from two or more participants overlaps 

(Park et al., 2022). This can result in major transcription accuracy loss. Moreover, the need for diarization to effectively 

segment the audio file by speaker can further limit the validity of any subsequent analysis. Alternatively, the use of 

multi-track audio recordings completely removes the need for diarization, representing a substantial improvement. 

This reduces the negative impact that overlapping speech events on transcription accuracy, since only one speaker is 

represented in each recording track. Consequently, our recommendation is to utilize individual recording devices to 

capture separate audio tracks for each participant in an exercise, and store audio files with each track separated. In 

cases where a single-track audio file is required, audio manipulation software can achieve this by “mixing down” the 

multi-track source file into a mono audio file. 

 

Audio Analysis 

We have discussed the criticality of being able to successfully export data for analysis outside of the system in which 

they were captured. The audio analysis process is a generally domain-specific topic, meaning the analytic standards 

and comparisons may vary widely depending on research needs. The types of team-level communication measurement 

we are advancing analyzes audio data, which involves the preparation of transcripts and then implements algorithms 

to evaluate communication-based metrics (Harrison et al.,2023; Gorman et al., 2020; Gorman & Wiltshire, 2022). We 

use a secured data store dedicated to the audio recordings, transcriptions, and diarization data. Others conducting 

similar research may use data store systems in the form of in-house hardware hosting a file share, a cloud-based storage 

service, or a hosted web application. Although it is impossible to predict all future use case considerations, the 

following list provides a couple of important considerations:  

1. A 30-minute WAV audio file with a 44.1kHz (16 bit depth) sampling rate takes ~92MB on disk (The 

Sustainable Heritage Network, 2015). 

2. Transcription and diarization models are likely to continue to improve in accuracy over time. We encourage 

system developers to avoid designs that effectively limit the application of these models (e.g., compression 

of the data, reducing multiple microphone feeds into single track recordings). Also, if real time data analytics 

are required for a given use case, it is important to understand the real time factor of a system to determine 

the level of analysis that can be reasonably performed. The real time factor of an automated speech 

recognition system describes how many seconds are needed to process a single second of audio data. Thus, 

a real time factor of 1 means that the model can transcribe one second of audio in one second. (Srivastav et 

al., 2023). 

3. In environments where security and data classification are crucial, networked storage systems introduce 

additional complexity with system security and approvals. Cloud-based systems impose different 

requirements than in-house hardware. Note: in human performance data contexts, cloud-based systems may 

trigger additional IRB requirements due to consent and data protection requirements.  

 

Natural Language Processing  

Several metrics characterize the structure of information exchange (e.g., word count, speech frequency measures, 

communication pathway analyses). These can lead to useful insights into how teams communicate, but not what is 

being shared. Natural language processing (NLP)-based text classification and dialogue act recognition allows for 

analysis of the content of messages shared between team members, allowing insight into aspects of team behavior 

(e.g., information sharing efficiency). NLP can support quantitative and qualitative investigation of decision making 

and behavioral processes at the individual or team level. Content-based analyses of communications or think-aloud 

protocols can provide useful insight into how speakers process information and conceptualize tasks, but decisions 

made regarding how data are collected and what elements are included can affect how easily such analyses are applied. 
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NLP requires accurate representations of message content for analysis. It is therefore important to ensure the 

communication modality used accurately captures the messages shared within the team. Text-based interfaces, such 

as chat, text messaging, and short-answer response formats, have the advantage of inherently generating an accurate 

transcript of team interactions. If audio communication is to be used, care must be taken to ensure good quality to 

facilitate later transcription and analysis. Poor audio quality can lead to transcripts with missing data due to inaudible 

or unintelligible speech. If possible, audio data should be collected with equipment that minimizes background noise 

and maintains consistent quality regardless of the actions of the speaker (e.g., moving around a space).  

 

NLP analyses can be facilitated by the structure of the data. Some NLP analyses examine the timing of speech. 

Communication systems that incorporate timing into the data stream are extremely useful for later analysis. If using 

an open channel system, some sort of master timer to align to the data can be helpful. More resolution is generally 

preferred if the data context allows (e.g., time stamps for each sentence are better than time stamps for each 

conversational turn, and time stamps for the beginning and end of each sentence/utterance are better than time stamps 

only at the beginning). Similarly, data must support time alignment across multiple channels/sources. Events in one 

data stream (e.g., a simulator) should be relatable to events in another (e.g., a radio channel). If data streams cannot 

be synced directly to one another, other means such as event markers are useful.  

 

NLP-driven communication analysis requires knowledge of not only what was said, but who said it. Sender 

identification is a key component of NLP in a team context. Possible means to facilitate speaker identification include 

separate communication channels for each speaker or standardized communication practice (e.g., starting each 

message with an address such as “Doc to Nurse. I need…”). A tagging procedure such as starting each recording with 

all participants identifying their role can also facilitate post-hoc assignment of speakers to each utterance.  

 

Communication step-ons in which team members try to talk over one another can lead to messy transcripts that are 

difficult to construct and interpret. Alternatively, step-ons can be viewed as a potential outcome measure for analysis. 

If the situation allows control over communication systems, the investigator should think deliberately about selecting 

a system that allows step-ons to occur or how such events will be treated in the data stream. For instance, open channels 

may allow step-ons that are not easily transcribed. Systems that leverage multi-channel recordings allow the team to 

experience a step-on but still facilitate accurate transcription of all speakers’ utterances with overlapping timestamps.  

 

Video Data Requirements 

 

Capture of structured video data is critical for accurate and comprehensive analysis and is common in medical team 

training. This involves collecting quality video of the operational environment with appropriate context around the 

physical characteristics of the space, the tasks being executed, and metrics utilized to assess quality in performance. 

To ensure that the video data is suitable for driving analytics and computer vision processes, several best practices 

and considerations should be followed. First, using high-resolution cameras is essential to capture detailed movements 

and expressions, with a recommended resolution of at least 1080p (Aghajanzadeh et al., 2020). The frame rate should 

be sufficient to avoid motion blur, with 30 frames per second (fps) being a minimum standard, though higher frame 

rates like 60 fps can provide even more detail. 

 

Next, it is important to record video under optimal lighting conditions when appropriate. Proper lighting not only 

enhances the visual quality of the footage but also enables more accurate tracking and analysis of movements, gestures, 

and expressions. A combination of natural and artificial light sources can be utilized, with careful positioning and 

diffusion to minimize shadows, glares, and low-contrast areas that can hinder analysis. Understanding that medical 

and military operations are often performed in a multitude of lighting conditions, it is important to continue video 

capture under these contexts to help improve current algorithms to account for non-ideal recordings. 

 

Proper positioning and setup of recording equipment are also critical. Cameras should be placed at angles that capture 

the most relevant activities without obstruction, with careful consideration for the activities that require monitoring 

for analysis purposes. This requires decisions on placement of device, which can include egocentric (i.e., body worn 

camera for first-person perspective) or exocentric (i.e., external to the performers’ view with reference to the external 

environment). Exocentric placement can involve strategic locations for fixed cameras, while also being fixed to either 

a human or drone observer providing dynamic footage. For example, in medical training, cameras might be positioned 

to focus on hand movements, facial expressions, and the interaction between trainees and medical instruments. 
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Beyond proper setup within the training environment, adhering to relevant standards and guidelines is important to 

ensure that video data is collected securely, consistently and with analysis in mind. While specifics for the capture of 

video to drive analysis do not exist, some general IEEE and ISO (International Standards Organization) standards 

provide guidance. For instance, IEEE 802.1 addresses network capabilities for real-time video transmission, ensuring 

that high-quality video data can be reliably transferred and accessed (Hofmann, Nikolić & Ernst, 2019). In addition, 

ISO 23090-3:2021 addresses Versatile Video Coding, which is a method that can be leveraged to ensure efficient 

compression and transmission of high-resolution video data, enabling seamless capture and storage of high-quality 

footage for analysis (Hamidouche et al., 2022). Privacy and ethical considerations are also paramount when capturing 

video data for performance training and assessment. Obtaining informed consent from participants is essential, with 

clear communication about the purpose, scope, and intended use of the collected video data. Measures should be taken 

to protect the privacy and confidentiality of the data, such as anonymization, secure storage, and access controls, while 

ensuring compliance with relevant data protection regulations. This is critical when considering capture of video 

outside the oversight of IRBs and human-subjects research protections. 

 

By leveraging AI, the military and organizations can streamline assessment processes, provide more personalized 

learning experiences, and gain deeper insights into student learning outcomes, ultimately enhancing the effectiveness 

and efficiency of video-based assessments in educational settings. 

 

Detection and Tracking with Computer Vision 

Preparing an effective computer vision algorithm for automated detection and tracking requires a multi-faceted 

approach. The foundation lies in the availability of high-quality and diverse training data, comprising annotated images 

or video frames that accurately label and segment the objects of interest (Everingham et al., 2010). This training data 

should encompass a wide range of scenarios, lighting conditions, and viewpoints to ensure the algorithm's robustness 

and generalization (Brock, De, Smith & Simonyan, 2021). Data augmentation techniques, such as rotation, flipping, 

scaling, and adding noise or occlusions, can be employed to artificially increase the diversity of the training data and 

enhance the algorithm's ability to handle variations in real-world scenarios (Shorten & Khoshgoftaar, 2019). 

 

The selection and implementation of appropriate deep learning architectures and techniques are also crucial. 

Convolutional Neural Networks (CNNs) and object detection models like YOLO (You Only Look Once), Faster R-

CNN, and Mask R-CNN have proven effective for object detection and tracking tasks (Li, Yang, Peng & Zhou, 2021). 

Additionally, techniques like optical flow analysis (Fortun et al., 2015) and temporal modeling (Kang et al., 2016) can 

be incorporated to improve the tracking capabilities of the algorithm, enabling it to maintain consistent object identities 

across frames and handle occlusions or rapid movements. 

 

Beyond the training requirement, efficient data preprocessing and feature extraction pipelines are necessary to ensure 

the algorithm can process and analyze video data in real-time or near real-time. This may involve techniques like 

frame sampling, background subtraction (Bouwmans et al., 2019), and object tracking algorithms (Vatral et al., 2022) 

to reduce computational complexity and improve overall performance. Furthermore, continuous evaluation and fine-

tuning of the algorithm are essential to ensure its accuracy and reliability in real-world deployment scenarios. This 

can involve techniques like cross-validation, performance metrics, and human evaluation to address biases or errors 

in the algorithm's predictions. Collaboration between domain experts, data scientists, and computer vision researchers 

is often necessary to develop and deploy successful automated detection and tracking solutions (Raghu et al., 2019). 

 

Simulation Trace Data  

 

Simulation trace data capture refers to the comprehensive collection of information generated by a simulation or game 

engine during its execution. This data encompasses multiple variables aligned to the state of the simulated 

environment, the sequence of user interactions, and performance metrics, providing a rich source for learning 

analytics. Some common examples of simulation trace data include:  

 

1. State variables represent the state of the simulation at any given time, capturing attributes such as entity 

positions, speed/direction, health, and inventory statuses. State information also associates with weapons and 

systems that can be interacted with during scenario within a simulation environment.  

2. Event data allows for the identification of start and stop times of specific events during a simulation-based 

training exercise, which include injects that drive a training and behavioral response. This information can 
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be invaluable for tracking and analyzing critical occurrences within the simulated scenario, with recent work 

focusing on the auto-detection of events for tagging and logging purposes (Goldberg et al., 2021).  

3. Execution logs capture the sequence of actions taken by users, including navigation information, menu 

selections, and interactions with non-player characters (NPCs). These logs provide insights into the decision-

making processes and behaviors exhibited by participants during the training exercise. 

4. Performance metrics, such as task completion times, task accuracy, and other quantifiable variables, offer a 

means to measure and evaluate participant performance throughout the simulated exercise. These metrics can 

be crucial for assessing learning outcomes and identifying areas for improvement. 

Collectively, these data streams generated by simulation trace data offer a comprehensive record of the training event, 

capturing the state of the simulation at various time points, user interactions with entities, and performance or criterion 

information. Logged at millisecond intervals, this data facilitates learning analytics by providing a rich source of 

actions, states, and assertions that can be analyzed to gain insights and inform instructional design. There are several 

current standards that drive the logging and sharing of trace data aligned to distributed simulation protocols. Those 

most commonly applied in the context of military training include Distributed Interactive Simulation (DIS; Hofer & 

Loper, 1995); High Level Architecture (HLA; Falcone, Garro, Anagnostou & Taylor, 2017), and Google Protocol 

Buffers (Currier, 2022). These standards provide an extensible approach for managing the capture and sharing of 

structured data sources around a defined schema. By leveraging simulation trace data, researchers and instructional 

designers can deeply understand the learning experiences within simulated environments, enabling them to optimize 

training scenarios, identify patterns, and ultimately enhance the effectiveness of simulation-based training programs.  

 

Regardless of the standard that represents the simulation trace information, there needs to be a strategy to collect, 

contextualize the data through labeling, and then properly store the data and align it with other sources to drive 

analytics associated with learning and training outcomes. To ensure effective data capture, we recommend using 

existing data standards that offer a structured framework for organizing and representing information that can facilitate 

learner modeling. Standards such as the Experience API (xAPI) enable consistent tracking and communication of 

learning experiences across various platforms. The xAPI specification emphasizes interoperability, providing 

guidelines for diverse training environments to output performance data in a controlled manner for persistent storage 

and longitudinal modeling. This allows training systems and devices to operate within a broader ecosystem of training 

resources, supporting overall training progression toward readiness. Additionally, standards like SensorML and the 

OGC Sensor Observation Service (SOS) facilitate the capture of low-level and raw event data from various sensors 

and devices. Furthermore, time series data can be effectively captured using standards like OGC TimeseriesML, 

allowing for the storage and retrieval of time-stamped data for detailed analysis and visualization. By utilizing these 

standards, organizations can enhance interoperability, streamline data capture processes, and enable comprehensive 

analysis across different data sources and domains. 

 

By leveraging machine learning algorithms, institutions can streamline assessment processes, provide more 

personalized learning experiences, and gain deeper insights into student learning outcomes, ultimately enhancing the 

effectiveness and efficiency of video-based assessments in training settings. 

 

 

CONCLUSION 

 

The demand for data availability within the DoD is crystal clear, yet today’s systems are lagging. Anticipation of data 

export and learning analytic needs is non-trivial but must be achieved to advance the art. Requirements for emerging 

training systems will be meaningfully informed only to the extent that human performance, learning analytics, and 

data needs are fully understood. This paper addresses a gap by presenting recommendations for a sample of specific 

data types critical for human performance analyses and by discussing the implications for system design and data 

export requirements. Our treatment of the topic is not exhaustive. We presented in-depth discussion related to audio, 

video, and simulation trace data to equip program managers and system developers with a perspective on design 

considerations that make-or-break future analytic capabilities. These are just a few types of relevant data to be 

considered. As always, more work is needed.  

 



 

 

 

2024 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 

I/ITSEC 2024 Paper No. 24112 Page 12 of 14 

We urge designers of future systems to adopt these recommendations to maximize data availability in support of 

readiness and learning analytics. Pursuit of this goal requires careful consideration of data repository needs, an in-

depth understanding of the criticality of metadata, and educated approaches to system design to avoid negative impacts 

to data quality. These considerations have tangible impact on the DoD’s ability to perform advanced analytics and 

adapt to ever-changing operational conditions. As the warfighting context evolves, system designs that suffer from 

these known issues effectively limit access to data and contribute to the ways the DoD can be outpaced. Alternatively, 

proactive solutions built on an understanding of data analytics and a vision toward future capabilities will answer the 

DoD’s call for data availability and will be key enablers in maximizing data leverage for decisional advantage. 
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