
 
 

2024 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 
 

I/ITSEC 2024 Paper No. 24103 Page 1 of 14 
 

Implementation of Game-based M&S Tools to  
Enhance K9-12 STEM Learning Effectiveness  

 
Kevin F. Hulme, Ph.D., CMSP; Qian Wang, Ph.D.; Gongda Yu; Aaron Estes, Ph.D.; Irina Benedyk, Ph.D. 

Presentacion Rivera-Reyes, Ph.D.; Vidhi Solanki; Emeric Humbert 
University at Buffalo / The Stephen Still Institute for Sustainable Transportation and Logistics (SSISTL) 

Buffalo, NY 14260 
hulme@buffalo.edu; qw6@buffalo.edu; gongdayu@buffalo.edu; aaronest@buffalo.edu; birina@buffalo.edu; 

privera1@buffalo.edu; solankiv@buffalo.edu; emerichu@buffalo.edu 

 
ABSTRACT 

 
The mandate to measurably improve learning effectiveness remains an ongoing challenge within Education. Despite 
numerous limitations, teacher-centered didactic instruction remains the most prevalent mode of instruction in K9-12 
Science, Technology, Engineering, and Mathematics (STEM) courses.  In these settings, teachers promote a passive 
classroom environment where students are less engaged and less motivated to learn.  For many students, such docile 
training environments frequently result in substandard learning outcomes. Particularly, for underrepresented minority 
(URM) students, passive learning environments are not effective at addressing performance gaps.  Accordingly, 
educators have been exploring the application of instructional best practices for active learning - including advanced 
Modeling & Simulation (M&S) tools to cultivate outcomes within both individual and team-based settings.   
 
The effectiveness of Game-based Learning (GBL), physics-based modeling and high-fidelity driving simulation to 
convey critical dynamics principals to a high-school STEM cohort was evaluated.  Our implementation included 
hands-on analysis of two key vehicle parameters: 1) front-to-rear weight distribution, and 2) front-to-rear tire stiffness 
distribution.  The experiment served as a primary instructional component for the National Summer Transportation 
Institute (NSTI), sponsored by the Department of Transportation (DOT) during the summer of 2023 at the University 
at Buffalo.  Experimental content was deployed upon two additional college-age student cohorts: CSTEP (Collegiate 
Science and Technology Entry Program) and WiSE (Women in Science and Engineering), respectively.  To 
supplement quantitative simulator data, questionnaires and self-report surveys were issued pre- and post-experiment 
to gauge conceptual understanding and to better understand individual learning preferences.    
 
Primary outcomes of our experimental deployment include: i) nuanced performance increases on the simulator (i.e., 
depending on vehicle type); ii) cohort improvement on the conceptual quiz (comparing pre- to post-); iii) comparable 
cohort preferences between theory/simulator implementations; and iv) mild correlations between simulator 
performance and simulator preference, which could reveal the potential benefits of a simulator-centric pedagogy in 
amplifying driving performance. 
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INTRODUCTION AND BROADER IMPACTS 
 
The mandate to measurably improve Science, Technology, Engineering, and Mathematics (STEM) learning 
effectiveness remains an ongoing challenge within Education, and recent performance gaps suggest the ongoing need 
for curriculum re-evaluation.  Didactic instruction (i.e., teachers giving lessons to students) remains the most prevalent 
mode of teaching in STEM courses (Ha et al., 2023).  However, the result is a passive classroom environment where 
students are less motivated and less engaged, which often leads to substandard learning outcomes (Sandoval et al., 
2022). This dilemma has been amplified for underrepresented minority (URM) students, where passive learning 
environments are not effective at addressing performance gaps (Matthews et al., 2020). 
 
Accordingly, educators in STEM fields have been investigating more active instructional practices (Nguyen et al., 
2021), where students learn experientially (Staehle et al., 2023), by doing rather than by observing (Nadelson et al., 
2019).  Active learning can enable meaningful connections to the real-world (Ješková et al., 2022), and implemented 
practices have demonstrated substantial benefit, including improved examination scores and passing rates (Ballen et 
al., 2017).  A specific construct of active learning that has been rapidly gaining interest in high school STEM (Wang 
et al., 2022) is Game-based Learning (GBL); a form of (digital or non-digital) gameplay to target specific learning 
outcomes (Jääskä et al., 2022).  A related concept within GBL – “gamification” – is a framework that often involves 
ranking or rating a learner for a task (Balci et al., 2022).  GBL implementations focus less on content (Fromm et al., 
2021), and are most effective when spatial/temporal decisions are required simultaneously (Reynaldo et al., 2021). 
 
In this study, we evaluated the effectiveness of Game-based Learning (GBL), physics-based modeling and high-
fidelity driving simulation to convey critical vehicle design and motion dynamics principals to a high-school STEM 
cohort.  The experiment served as a primary instructional component for the DOT-sponsored National Summer 
Transportation Institute (NSTI).  Quantitative simulator data, self-report questionnaires and brief surveys were issued 
to gauge conceptual understanding and learning preferences.  Our implementation addresses numerous priorities from 
the Education subcommittee, including instruction strategies/best practices, STEM implementations to accelerate 
learning, and training strategies staged within individual and team-based settings.   
 
Forecasted Broader Impacts to the M&S and military training communities are numerous.  By incorporating game 
elements, traditional training programs become more engaging and enjoyable, which often leads to elevated 
participation and performance levels and other training outcomes among soldiers and warfighters. (Warfighter Digital, 
2023).  Likewise, our methodology suggests conceptual parallels to other I/ITSEC subcommittees, including GBL 
implementations to improve driver education (Training/PSMA), novel gaming approaches to advance the science of 
learning (Education/ECIT), and applied M&S to improve and enhance driver/vehicle safety (Simulation/HPAE).   
 
EXPERIMENTAL DESIGN AND METHODOLOGY 
 
Our primary objective is to assess the utility of GBL and motion-based vehicle simulation as a critical tool for STEM 
(9-12) training and education.  The experiment has been designed such that active learning occurs for both the driver 
and passenger of the driving scenarios, and for their class peers observing the simulations (offboard) in a large group 
format upon a large projection screen.  Targeted data collected before, during, and after the simulator experiment help 
confirm our central hypothesis that applied M&S can enhance conceptual understanding of vehicle performance.   
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Vehicle Dynamics background theory 
 
The key concepts of understeer and oversteer are used to describe 
the overall sensitivity of a ground vehicle to steering input.  They 
are defined by an “understeer gradient” that serves as a measure of 
how the steering required for a constant turn varies as a function of 
lateral acceleration. Steering at a steady speed is compared to the 
steering that would be required to follow the same circular path at 
low speeds.  The low-speed steering for a given turning radius is 
referred to as Ackermann steer (e.g., Milliken & Milliken, 1995). 
The vehicle is understeer (i.e., has a positive understeer gradient) if 
the difference between required steer and Ackermann steer 
increases with respect to incremental increases in lateral 
acceleration.  Alternatively, the vehicle is oversteer (i.e., has a 
negative understeer gradient) if the difference in steer decreases 
with respect to incremental increases in lateral acceleration.  If the 
understeer gradient is zero, the vehicle is classified as neutral steer.  
Refer to Figure 1, which compares these three conditions. 

 
Figure 1 – Steering responses within a 

curve (Yin et al., 2017) 
 
Defined more plainly, understeer occurs when a car steers less than the driver’s input; oversteer occurs when a car 
steers more than the driver’s input; and neutral steer is when the vehicle output closely matches the commanded input 
and provides a balance of stability and maneuverability.  Our experiment sought to employ hands-on GBL for 
discovery of oversteer/understeer and the two primary variables that influence its impact.   
 

1) Weight distribution (center-of-gravity - CG) dictates how much of the vehicle’s weight distribution is 
toward the front tires.  A front-heavy vehicle is more stable (i.e., understeer), easier to drive, but also less 
maneuverable.  For reference – a typical sedan might have a 60% front (40% rear) weight distribution.   

2) Tire stiffness distribution (TSD), otherwise known as cornering stiffness, determines the vehicle’s response 
on a turn.  A vehicle with stiffer tires towards the front of the vehicle is more stable (i.e., understeer), and is 
therefore less maneuverable. 

 
Most critical is the key inter-relationship between these two variables.  The general trend is that a CG that is more 
towards the front of the vehicle than the TSD results in a more stable (i.e., understeer) configuration.  Refer to Figure 
2, where the CG marker is shown in yellow/blue, and the TSD marker is shown in black/white.  If the (% front) CG 
is greater than the (% front) TSD, the vehicle will understeer; if the (% front) CG is equal to the (% front) TSD, the 
vehicle is neutral steer; and if the (% front) CG is less than the (% front) TSD, the vehicle will oversteer.   

Figure 2 – CG/TSD interrelationship (left-to-right: understeer | neutral steer | oversteer) 
 
For the K9-12 experiment that was conducted for this effort, we examined nine vehicle configurations that varied the 
CG and TSD systematically.  Each of the two variables ranged from 35% to 65% front, resulting in the combinations 
displayed (in sequence) within Table 1.  For each combination, the associated steering condition is listed, alongside a 
brief comment on the expected handling characteristics associated with that coupling of variable settings.  
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Table 1 – Experimental Grid for simulated vehicle variable settings 
Drive # % front CG % front TSD Condition comment 

1 65 35 Understeer Stable, but underperforming 
2 65 50 Understeer Stable, and more easily driven by novices 
3 65 65 Neutral steer Partially stable; challenging to drive 
4 50 35 Understeer Stable, easily driven by novices 
5 50 50 Neutral steer Partially stable, but easy to drive  
6 50 65 Oversteer Not stable, challenging to drive at elevated speeds 
7 35 35 Neutral steer Partially stable; challenging to drive 
8 35 50 Oversteer Not stable, challenging to drive at elevated speeds 
9 35 65 Oversteer Not stable, incredibly challenging to control 

 
Note that there are three pairwise conditions of each of the three steering conditions: understeer (drives 1, 2, and 4); 
neutral steer (drives 3, 5, and 7); and oversteer (drives 6, 8, and 9).  The expected within-condition variances observed 
across the understeer and oversteer conditions are easy to explain intuitively.  That is, the larger the assigned difference 
between % front CG and TSD (i.e., positive for understeer; negative for understeer), the more pronounced the observed 
steering characteristics.  Furthermore, elevated stability is to be expected the closer the parameters are towards the 
front of the vehicle.  The latter of which is to say that a 65/50 (drive #2) vehicle has more stability than a 50/35 vehicle 
(drive #4), even though the CG/TSD differential is +15% across both configurations.   
 
Comparison of the three neutral steer conditions is more nuanced.  In these configurations, only the front tire is steered, 
so when steering input is applied, a lateral force is produced at the front tire that is proportional to the cornering 
stiffness of the front tire.  In the 65/65 case (drive #3), the front tire has massive cornering stiffness, and the CG is 
right next to the front tire.  Conversely, in the 35/35 case (drive #7), the lateral force (and front cornering stiffness) at 
the front tire is reduced for the same steering input, however, there is a larger moment arm to the CG which is now 
located by the rear axle.  Further technical nuances lie outside the intended scope of this experimental deployment. 
 
Supporting Hardware and Software 
The K9-12 GBL experiment was performed on a high-fidelity driving simulator featuring a 360-degree, 16-foot 
diameter, 6’ high, six-channel display system (each HD channel is 1920x1080p, resulting in a 11520x1080p 50Hz 
composite image).  Visual rendering surrounds the vehicle and driver/passenger and  provides occupants with a full-
surround depiction of the virtual driving environment.  The system features a true Ford Contour vehicle cabin (see 
Figure 3), USB input navigation controls (see Figure 4), 6-DOF motion cueing and washout filtering, as well as a 
stereo system for aural cues that emulate sounds heard both inside and outside the vehicle during a driving excursion.   
 

   
Figure 3 – simulator cabin Figure 4 – control console Figure 5 – K9-12 GBL Training area 

 
Our experimental setup was designed to support instructional best practices for active learning (i.e., using M&S and 
GBL).  Figure 5 shows the multi-purpose student seating area, which enabled viewing of a theoretical presentation, 
the live simulator itself (i.e., including the 360-degree display screen), and an off-board display screen that displayed 
the forward cockpit view during the simulator drives.  The latter infrastructure enabled classroom trainees (i.e., those 
outside the simulator vehicle) to continuously observe and learn from their peer performances and engage in the 
instruction within a more “team-based” experience. 
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Simulator driving task and scoring mechanism 
The racetrack that was used for our K9-
12 GBL experiment was designed in-
house (using the C++ OpenGL API) and 
is called The Quad-radial speedway.  It 
begins with a short straight segment into 
Turn #(1), a large swooping left turn; 
after a brief straight segment, next comes 
Turn #(2), a sharp 90-degree left turn; this 
is followed quickly by Turn #(3), a 
challenging hairpin right turn; this 
transitions immediately into Turn #(4), a 
moderate radius left turn, which leads 
into a long straightaway back to the start 
line.  Refer to Figure 6 where the Quad-
radial speedway is illustrated.  Each 
driver was given a vehicle with varying 
(% front CG, and % front tire stiffness) 
parameters per Table 1 and were afforded 
2.5 minutes on the speedway.   

 
Figure 6 – The Quad-radial speedway 

 
The primary experimental goal was to maximize the number of (legal) laps achieved during this period.  Note that a 
legal lap implies that the driver remains on the asphalt (i.e., without striking any cones that border the speedway), and 
maintains control of the vehicle to avoid a spinout or crash.  Quantitative rating of driver performance was achieved 
through the implementation of a heuristic weighted sums scoring (“gamification”) model; refer to Table 2.  Note that 
the component weightings are parameterizable, and prioritized the primary driving goals (i.e., number of legal laps 
and fastest legal lap, measured in seconds) alongside the settings difficulty (i.e., vehicle handling) per each assignment 
of experiment variables.  The readily quantifiable categories (i.e., fastest legal lap, average travel speed, crash metric, 
and number of legal laps) are rated on an interval (rank-ordered) scale, while the handling difficulty is rated on an 
ordinal scale. 
 

Table 2 – Scoring model (rating components) 
Component Description Rating type Weighting 

Legal laps How many legal laps achieved in allotted time? Interval (x/9) 30% 
Fastest lap What was the fastest (legal) lap achieved? Ordinal (x/12) 30% 
Handling How difficult were the assigned handling characteristics? Ordinal (x/12) 30% 
Crash metric How many critical mistakes were made in allotted time? Interval (x/9) 5% 
Travel speed How consistent was the overall rate of travel? Ordinal (x/9) 5% 
GAMIFICATION RATING TOTAL (x/51) 100% 

 
Conceptual Quiz  
To supplement quantitative data acquired from the driving simulator, a brief conceptual quiz was issued.  The quiz 
contained four questions on the underlying theory relating to steering, handling, performance, and the primary 
variables that influence these characteristics.  The multiple-choice questions each had a range of three to five possible 
responses.  The (pre-/post-) quiz was issued to gauge overall improvement of conceptual understanding.  Table 3 
summarizes the questions from the conceptual quiz and the correct responses.  Upon reflection, questions 3 and 4 both 
had candidate responses that deserved partial (0.5) credit and were rated as such during the final tally. 
 

Table 3 – Conceptual Quiz 
Question # Conceptual Query Correct response 

1 Which vehicle configuration is less maneuverable, but more stable? Understeer 
2 Which vehicle configuration is favored for balanced performance? Neutral steer 
3 Does a more front CG make a car more stable or less stable? Depends on tires* 
4 Do stiffer tires towards the front make a car more stable or less stable? Depends on CG* 

*: partial credit was issued for a response: “more stable,” which is (generally) a true statement. 



 
 

2024 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 
 

I/ITSEC 2024 Paper No. 24103 Page 7 of 14 
 

STUDY COHORT 
 
The K9-12 STEM GBL simulator experience comprised one training module associated with the National Summer 
Transportation Institute (NSTI) at the University at Buffalo.  The week-long NSTI enables high school students to 
explore the current state-of-practice associated with Transportation Science, and a critical opportunity to investigate 
careers and educational opportunities in the Transportation industry.  Broad support for the NSTI program is provided 
by the Federal Highway Administration through the Department of Transportation. 
 
Experiment activities and sequence details 
 
The NSTI experience was designed to intersperse theory with simulator exposure in a progressive manner.  All 
students in the cohort were given note sheets and were instructed to take as many (or as few) notes as they chose 
during the entire experiment and were collected and observed for downstream analysis.  We began with a general 
experiment briefing, which was followed by entrance surveys and a conceptual quiz to gauge preliminary concept 
comprehension.  This was followed by a general introduction to the simulator and a basic theoretical overview of 
vehicle oversteer/understeer.  We then staged simulator drives #1-3, which was followed by conceptual reinforcement 
(i.e., vehicle weight distribution | CG).  This was followed by simulator drives #4-6, and further conceptual 
reinforcement (i.e., tire stiffness distribution, and interrelationships with the CG).  This was then followed by simulator 
drives #7-9.  We concluded with exit surveys, including re-taking the conceptual quiz, a statement of learning 
preferences, a sickness questionnaire, and a general satisfaction survey.  Refer to Table 4 for the experiment grid. 
 

Table 4 – K9-12 GBL simulator experiment grid 
Activity Description Duration 
Overview/briefing Description and overall purpose of experiment 5 minutes 
Entrance surveys Conceptual Quiz, basic driver demographics 10 minutes 
Simulator introduction Description of Lab, Simulator operation, Quad-radial track 10 minutes 
Conceptual overview  Oversteer, understeer, neutral steer theory 10 minutes 
Simulator drives (Part I) Simulator Drives #1-3 (see Table 1) 15 minutes 
Conceptual reinforcement (Part A) Weight Distribution (CG); vehicle performance/stability 10 minutes 
Simulator drives (Part II) Simulator Drives #4-6 (see Table 1) 15 minutes 
Conceptual reinforcement (Part B) Tire (cornering) stiffness distribution; relationship to CG 10 minutes 
Simulator drives (Part III) Simulator Drives #7-9 (see Table 1) 15 minutes 
Exit surveys Conceptual Quiz, learning preferences, satisfaction survey 10 minutes 
Q/A and Conclusion Lab walkthrough, concluding remarks 10 minutes 
TOTAL EXPERIMENT DURATION 120 minutes 

 
Content demonstration sub-cohorts 
Our experimental content was pre- and post-deployed by two URM college-age cohorts.  The former was leveraged 
as a preliminary deployment of the drive sequence (Table 1) and consisted of undergraduate students from CSTEP 
(Collegiate Science and Technology Entry Program).  Sponsored by the New York State Department of Education, 
CSTEP provides hands-on research experiences in critical STEM content areas.  The latter was used to re-evaluate 
the interspersion of the simulator drives with theoretical concepts and consisted of undergraduate students from WiSE 
(Women in Science and Engineering).  Sponsored by regional private sector partners, WiSE provides extracurricular 
research opportunities with a goal of improving success of women in STEM fields.  Note that for sake of brevity, and 
to maintain focus on the NSTI cohort, data from these sub-cohorts has not been included in this dissemination. 
 
RESULTS AND DISCUSSION 
 
In our results presentation, our intention is to determine the educational effectiveness of our implementation – 
specifically if student learning patterns and behaviors were observable on the simulator.  After a brief presentation on 
our study cohort, we offer quantitative insights on data captured by the driving simulator, including a demonstration 
of our scoring model.  This is followed by a presentation of the survey/self-report/quiz data that was collected, to 
gauge overall improvement of conceptual understanding, and to better understand individual learning preferences.  
Finally, the section concludes with a brief discussion of supplemental analyses that attempted to correlate these 
findings and ascertain how knowledge transfer was reflected on the theoretical takeaways. 
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Cohort demographics 
 
A total of N=23 participants (16 male, 7 female) were enrolled in the summer 2023 NSTI program.  Note that there 
was no additional selection criteria for this experiment; that is, all students who enrolled for the week-long Institute 
were automatically recruited for this experiment.  This is to say that no preference was given to any students based on 
gender, driving experience, simulator experience, gaming experience, nor any additional factors that might have 
unduly influenced the outcome of our deployment.   
 
The average age for the cohort was 15.05 years (σ=1.20), with just over half (N=12) self-reporting some experience 
operating an actual vehicle.  As a component of their entrance survey, we queried video-game experience and risk-
taking propensity, both on a 4-point Likert scale.  The cohort self-reported as being moderately high (μ=3.41/4.0, 
σ=0.67) in terms of video game experience (i.e., the talents of which could lend themselves to successful operation of 
a simulator), and moderate (μ=2.59/4.0, σ=0.85) in terms of risk-taking (i.e., which could be indicative of general 
driving habits/tendencies). 
 
Simulator data 
Refer to Figure 7, which illustrates the simulator scoring model across the NSTI experiment.  Towards the bottom of 
the plot are the (five) individual rating components (for each driver) that were introduced in Table 2, and towards the 
top of the plot is the cumulative simulator rating (dark blue curve).  The Y-axis represents the scoring (on a 0.0 to 1.0 
scale), and the X-axis displays the 9 individual NSTI student drives, with vehicle parameter assignments first defined 
in Table 1.  The green horizontal line is the calculated cohort average (μ=0.58/1.0; σ=0.17).   
 
From the plot, numerous general 
observations can be made.  There was a 
wide variance in rated simulator 
performance, with three drivers rated 
above, and six drivers rated below the 
overall cohort average.  Of the three 
drivers who drove “very well”, two (#2 
and #4) were understeer vehicles, and 
surprisingly, one (#8), drove 
exceptionally well with a moderate 
oversteer vehicle.  The remainder of the 
cohort rated between 40.0 (low) and 
52.1 (high), including one understeer 
vehicle (#1), two oversteer vehicles (#6 
and #9), and (surprisingly), all three 
neutral steer vehicles (#3, #5, and #7). 

 
Figure 7 – Simulator drive results (NSTI cohort) 

 
To compare the relative performance of different vehicle types (i.e., understeer, neutral steer, oversteer), in the 
forthcoming plots, we present position traces for Drive #1 (65/35 | understeer), drive #5 (50/50 | neutral steer), and 
drive #8 (50/65 | oversteer), respectively.  On these plots, the track geometry of the Quad-radial speedway is denoted 
by the yellow circles (cones), and the student position X/Y trace across their 150 second drive duration is shown in 
red.  We have also depicted an X/Y trace of an experienced “expert driver” shown in green, to illustrate a more ideal 
“racing line” for reference.  However - illustrating the entire speedway at scale, it is difficult to observe nuances that 
influence performance to enable comparison of the key differences between the three primary vehicle configurations.  
Of particular interest is the most challenging segment of the speedway, which is the Turn #2/Turn #3 hairpin sector.  
For this reason, in Figures 8-10, we have magnified this area of the racetrack, which typically distinguishes drivers 
across skill levels.   
 
When we observe the recovery from Turn #2 into Turn #3, with the understeer vehicle (Figure 8), the student is 
consistent (while the expert has more variance, likely due to higher attempted entry velocities), and the exit bands of 
both student and expert driver appear highly linear and undamped (i.e., no oscillatory behavior).  For the neutral steer 
vehicle (Figure 9), both the student and the expert driver apex at the exact same point on each lap, and their exit bands 
appear as slightly damped oscillations.  With the oversteer vehicle (Figure 10), there is a wider band of variability for 
both the student and expert driver, and their exit bands appear as moderately damped oscillations.   
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These general trends further accentuate as we observe the recovery from Turn #3 heading towards Turn #4.  With 
the understeer vehicle (Figure 8), both the student, and expert driver are late exiting Turn #3, with hard braking 
required to slow down prior to the barrier cones.  Again, the expert driver patterns are more pronounced due to elevated 
velocity.  For the neutral steer vehicle (Figure 9), exiting Turn #3 happens much sooner, and appears controlled and 
consistent across both student and expert drivers.  Finally, for the oversteer vehicle (Figure 10), exiting Turn #3 trends 
earlier than understeer, but there is much more variance and less control during this critical transition.   
 

   
Figure 8 – Drive #1 (close-up) Figure 9 – Drive #5 (close-up) Figure 10 – Drive #8 (close-up) 

 
From an education perspective, the takeaways from the simulator portion of our experiment serve to confirm 
theoretical first principals.  The NSTI student cohort discovered that with the ability to control the vehicle and regulate 
speed during transitions, increased performance can be achieved – with both caution and skill - from a more oversteer 
vehicle.  From high school physics, students’ sense that centripetal acceleration is proportional to velocity squared 
divided by the turn radius (i.e., a = v2/r).  Accordingly, an oversteer vehicle can achieve elevated speeds and more 
naturally maneuver racing lines on turn sequences by widening the turning arc.  After completing the turn, an oversteer 
vehicle can then recover more quickly to maneuver towards an optimal racing line on the straightaways, whereas an 
understeer vehicle lumbers for a prolonged period on its previous turning arc.  As expected, the neutral steer vehicle 
provided more moderate and “idealized” driving characteristics.  NSTI students (i.e., with little or no previous real-
world nor simulator driving experience) discovered that this stratagem is easier stated than achieved.   
 
Conceptual quiz 
The conceptual quiz was issued both pre- and post-simulator and contained four questions (see Table 3) that related 
directly to the primary vehicle dynamics theoretical underpinnings for our GBL implementation.  Refer to Figure 11 
for a concise summary of the cohort results.  For each of the N=22 students who completed both surveys, the red series 
are the PRE scores (range: 0 to +4), the blue series are the POST scores (range: 0 to +4), and the corresponding green 
overlay illustrates the improvement for each student (range: -4 to +4).  
 

 
Figure 11 – Conceptual Quiz results (pre/post) 
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Accompanying statistics can be viewed in Table 5.  The cohort mean increased from μ=2.18 to 2.89 from Pre to Post, 
with a companion reduction in standard deviation from σ=1.14 to 0.58, respectively.  This is a general indicator that 
the NSTI conceptual understanding of oversteer/understeer, as well as vehicle weight and tire stiffness distribution, 
might have improved due to GBL exposure on the driving simulator.  Score improvement averaged μ=0.71 per student, 
with a wide variance of σ=1.14.  Overall, of the N=22 NSTI students, 13 student demonstrated improvement, 2 
students remained the same, 3 students exhibited a reduction in score, and 2 students scored perfectly (both Pre and 
Post).   
 

Table 5 – Conceptual quiz statistics 
Metric Mean (μ) Standard deviation (σ) 

PRE score 2.18 1.14 
POST score 2.89 0.58 
Improvement 0.71* 1.14* 

*: N=2 scored perfect both pre/post | N=13 improved  | N=4 remained constant | N=3 decreased 
 
In reviewing the data, we were concerned by the four students whose scores remained constant, and most concerned 
with the three students who performed worse after the theoretical and simulator segments.  After a deeper analysis, 
we made an interesting discovery.  All three students whose scores decreased – and two of the four students whose 
scores remained the same – had the exact same responses on their POST conceptual quizzes: Questions #1 and 
#2, correct; Question #3, partial credit; and Question #4, incorrect.  This observation seems to imply that the 
experiment amply conveyed differences between vehicle conditions (i.e., over/under/neutral steer), while for some in 
the NSTI cohort -- confusion was elicited regarding the parameters that influence these conditions (i.e., weight and 
tire-stiffness distribution).  The partial credit responses on Question #3 are not overly concerning, because these 
students recognized that a forward CG (generally) increases vehicle stability – whereas ultimately - stability is also 
interdependent on tire stiffness.  However, the incorrect responses on Question #4 are concerning, as the exact same 
trend was misunderstood for tire stiffness: that is, forward tire stiffness (generally) implies increased stability, whereas 
ultimately, stability is also interdependent on weight distribution.  Upon reflection, this confusion may have been 
because in the drive scenarios where stiff tires were nearest to the front of the car (i.e., drives #3, 6, and 9), the first 
was neutral steer, and the latter two were oversteer, all resulting in extremely erratic driving performance (and the 
lowest ratings/scores) by the young and inexperienced cohort.  As such, it is possible that through experimentation, 
we inadvertently induced negative training (Hulme et al., 2021) with respect to this parameter, and the NSTI cohort 
would have benefited from additional conceptual reinforcement. 
 
Learning preferences 
At experiment completion, we queried the NSTI students to determine which mechanism was preferred to better 
understand vehicle dynamics concepts.  The results are visualized in Figure 12.  Of the N=22 students who completed 
the entire experiment, a majority of the cohort either preferred viewing slides (i.e., theory) that were interspersed with 
the simulator segments, or the simulator itself as being the MOST effective instructional mechanism.   
 
A minority of the cohort preferred passively 
viewing others on the simulator, which for 
some, was an ideal opportunity to observe, 
analyze, and learn from peer performance.  It 
is interesting to note that all three mechanisms 
were rated equally as the LEAST effective 
training mechanism.  Anecdotally, we learned 
that many who rated the simulator in this 
manner commented that they did so simply 
because they did not have the opportunity to 
drive the simulator during the allotted 
experimental period.  This was a noted 
weakness of our implementation which will be 
discussed further in the concluding remarks. 

 
Figure 12 – NSTI student learning preferences 
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Overall experiment compliance 
Post-experiment, the NSTI cohort rated the simulator demonstration positively.  On a 4-point Likert scale, the average 
cohort rating was a 3.65 (±0.49), which is a strong indicator that the students appreciated and found value in the overall 
experience.  Likewise, students in the NSTI cohort tolerated the simulator positively from a simulator sickness 
perspective.  Post-experiment, we issued the Motion Sickness Assessment Questionnaire (MSAQ) (Gianaros et al., 
2001), which is a 16-question survey (across four sickness categories) that rates on a 0–144-point scale.  The average 
cohort score was 7.12 (±8.80), with a max score of 23, and a minimum score of 0 (frequency: N=8).  This result was 
not unexpected, as younger adults are more compliant to simulators (Gálvez-García, 2015).   
 
Correlation Analyses 
Finally, we conclude this section by investigating correlations between the quantitative (simulator) and self-report 
(survey) data types to identify tendencies among the NSTI cohort participants.  The following four analyses were 
attempted, with varying degrees of statistical success: 
 
Correlation #1: Conceptual Quiz rating vs. simulator driving performance 
We hypothesized that those in the cohort who drove well might also score high on the conceptual quiz (pre/post), and 
hence expected to observe an elevated positive correlation.  However, the Pearson correlation (2008) between driving 
performance and the pre-Quiz score is approximately -0.054, which suggests a weak negative linear relationship 
between the two variables. For the post-Quiz scores, the Pearson relationship is -0.343, which indicates a moderate 
negative linear relationship.  Both findings are therefore counter to our preliminary hypothesis. 
 
Correlation #2: Self-rated propensity for risk-taking vs. simulator driving performance 
Our intake surveys included one 
question regarding self-rated (1-4) 
propensity for risk-taking.  The cohort 
(taken as a whole) reported a moderate 
average score of 2.59/4.0 (σ=0.85); 
this finding led us to speculate that 
there might be a relationship between 
calculated simulator performance (0 to 
1.0) and risk tolerance.  The Y-axis 
displays the normalized (average) 
simulator score for those who attested 
each of the 4 risk-propensity levels, 
which are plotted on the X-axis. 
 

 
Figure 13 – Risk-taking correlation 

Refer to Figure 13, which applies linear regression to analyze the relationship, and a small (non-significant) positive 
correlation is observed. 
 
Correlation #3: Learning preference vs. simulator driving performance 
Student respondents (N=9) who identified "simulator learning" as their primary mode of content assimilation 
demonstrated an elevated average driving score of approximately 0.68; higher than the overall cohort average (0.58), 
which is shown as the green line on Figure 7. In contrast, the mean score of those (N=10) students who favored 
traditional lecture-based learning was 0.51. The Pearson correlation coefficient {0.527} indicated a moderately 
positive linear relationship between simulator learning preference and driving performance. These findings suggest 
that a preference for simulator-based learning could be linked to improved (simulated) driving performance.  
Implications: This observation reveals the potential benefits of simulator-centric pedagogy in amplifying driving 
performance. The positive correlation suggests that driving education platforms might consider integrating or 
enhancing GBL and advanced M&S to potentially yield superior outcomes. 
 
Correlation #4: Stated learning preference for lecture vs. note-taking propensity 
Although the (N=10) NSTI students who preferred lecture-based instruction did not perform as well on the simulator, 
we wanted to observe and analyze their academic tendencies a step further.  As noted previously, we allowed NSTI 
students to (optionally) take notes during the experiment, and we collected these note sheets – and codified the extent 
of each student’s note-taking - at experiment completion.  To ascertain relationships between these experiment 
parameters, a Chi-Square test (e.g., McHugh, 2013) was conducted. The derived p-value of 0.078, although surpassing 
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the conventional threshold of 0.05, was noteworthy at α=0.1, hinting at a potential statistical association.  Implications: 
While this correlation may not be deemed significant under traditional standards, our findings postulate that 
individuals gravitating towards more passive, lecture-based learning might simultaneously benefit from an active 
strategy for independent engagement with the instructional material. This insight suggests the potential need for 
Education reforms that emphasize traditional lecture delivery with proactive learning techniques (e.g., note-taking). 
 
CONCLUSIONS AND FUTURE WORK 
 
Didactic instruction remains the most prevalent mode of teaching, however, the result is often a passive classroom 
environment where students are less motivated and not fully engaged, which historically results in substandard 
learning outcomes.  The ongoing transition in Education is focusing on designing curriculum experiences to stimulate 
interaction with the world, where spatial and temporal decisions are required simultaneously.  In this study, we 
evaluated the effectiveness of implementing Game-based Learning (GBL), physics-based modeling and high-fidelity 
M&S to convey critical vehicle design and motion dynamics principals to a high-school STEM cohort.  Through 
hands-on participation, students observed vehicle steering conditions (oversteer/understeer) alongside two key design 
parameters that influence these conditions: 1) the percent front-to-rear weight distribution, and 2) the percent front-
to-rear tire stiffness distribution.  Our methodology addresses numerous priorities in Education, including novel 
instruction strategies, STEM implementations to accelerate learning, and training strategies staged within a variety of 
constructs.  An executive summary of our primary experiment outcomes is provided below: 
 

 We developed a five-category rating model to quantify (gamify) driver performance across the NSTI study 
cohort.  Nine drivers participated in the experiment across vehicles with different assignments of the primary 
variables and results unsurprisingly suggested a general preference towards understeer. 

 Delving deeper into the observed nuances between vehicle types, the NSTI cohort discovered that increased 
performance can be achieved – with both caution and skill - from a more oversteer vehicle, while the neutral 
steer vehicle provided more moderate driving characteristics.   

 The four-item conceptual quiz cohort mean increased from μ=2.18 to 2.89 from Pre to Post.  Of the N=22 
NSTI students, 13 students demonstrated improvement; a general indicator that the NSTI conceptual 
understanding was enhanced due to experiment participation.  Note however that because there was no control 
group for the present examination, additional experimental testing is necessary to compare performance 
differences between the GBL implementation and conventional didactic (i.e., front-of-class) instruction. 

 There was some lingering concern that for those students whose scores reduced on the conceptual quiz, and 
trends that were observed in the post-score responses, we may have inadvertently induced negative training 
on the simulator regarding tire stiffness behavior, specifically. 

 Based upon post-experiment responses, we learned that about an equal number of NSTI cohort students 
preferred to learn experiment concepts from theory and the simulator.  Furthermore, those that scored the 
simulator unfavorably admitted to doing so because not all among the cohort were afforded the opportunity 
to drive.  This was a known weakness in our experimental design (due to time limitations); future 
implementations would address this demerit by having each member of a study cohort drive all nine 
combinations of vehicle parameter settings. 

 Correlation analyses indicated that i) a preference for simulator-based learning could be linked to improved 
(simulated) driving, which reveals the potential benefits of simulator-centric pedagogy in amplifying driving 
performance; ii) those that preferred lecture-based learning might benefit from an active strategy for 
independent engagement with instructional material – i.e., traditional lecture delivery with proactive learning 
techniques (e.g., note-taking).  (note: neither finding was statistically significant). 

 Overall enjoyment of the experiment was rated high (μ=3.65/4.0) post experiment, with simulator 
maladaptation rated as minimal, the latter of which was not unexpected. 

 
Future Goals 
 
While recent literature portrays an optimistic view of the potential for GBL to improve learning in higher education 
(Vlachopoulos & Makri, 2017), randomized controlled trials are uncommon, and supporting assessments (Ifenthaler 
et al., 2012) are often overlooked.  It has been suggested that in-game (quantitative) data can be leveraged to improve 
retention rates, conceptual knowledge, learner engagement, performance measurements (e.g., gamification) and 
learner assessment among GBL students in engineering education.  We will leverage the experimental outcomes from 
this study to continue to advance these urgent areas of interest in STEM education. 
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The discipline of Engineering Education continues to rapidly emerge, and researchers have yet to ascertain the degree 
to which GBL can positively impact learning systems, student performance, and trainee diversity and inclusivity 
(Wang et al., 2022).  For a longitudinal analysis of concept reinforcement, it would be beneficial to include exposure 
to additional real-life applications using similar GBL approaches.  The associated analyses would demonstrate the 
degree to which students have applied the learning principals garnered from the original exposure to GBL.  
 
Ideas for improving the current study are being considered.  In our next implementation, we plan to initiate a mixed 
cohort, where the students are divided in two groups.  The first would receive the GBL component first (and then 
evaluated) and compared to the second (control) group, who would receive the theoretical component first (and then 
evaluated).  After the formal evaluations, the groups would transition to the alternate training mechanism so that all 
students receive both training types; this approach would yield a more direct assessment of the effectiveness of GBL.   
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