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ABSTRACT 

 
Managing the differences between training systems and the platforms they simulate is a persistent engineering and 
acquisition challenge. Training system deployments often trail production systems, sometimes by years, due to 
underlying differences between the two. This delay prevents operators from training on deployed system 
configurations. To move at the speed of relevance, it becomes critical to create new development and deployment 
strategies that minimize the gaps between training and production systems. This paper describes the concept of ‘hyper-
concurrency’ in the development and deployment of simulation systems. Hyper-concurrency is the state of deploying 
working software to both fielded platforms and training systems simultaneously. Hyper-concurrency is attainable by 
converging development, test, and training environments. To achieve hyper-concurrency, software development 
architectures for platforms must use the same simulation models, virtual environments, and tools as the test and 
training systems. By using modern software architectures, applying lessons from ARINC-610, and leveraging 
advanced simulation, applications can be built for multiple targets simultaneously, tested in high-fidelity simulation 
environments that replicate the operational domain of the System Under Test (SUT), and deployed to training systems 
alongside production deployments. Integration of DevOps and Digital Engineering environments enables automation 
and ensures integrity of the development process. Implementing ARINC-610 functions during aircraft systems 
development and using simulation technology from the training industry within virtual test environments reduces both 
the need for costly and slow rehosting activities, as well as development cycle times by enabling rapid integration and 
automated test for the SUT.  
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INTRODUCTION  
  
According to the USAF Operational Training Infrastructure 2035 Flight Plan, training system concurrency is the 
“condition where the configuration and operation of [a] training system matches the configuration and functionality 
of the reference weapon system, to the extent necessary to provide required training” (2017). Despite decades of 
innovation, managing the differences between training systems and the platforms they simulate is a persistent 
engineering and acquisition challenge. Training system deployments continue to trail production systems, sometimes 
by years, due to underlying differences between the two. This delay prevents operators from training on deployed 
system configurations. In order to close the concurrency gap, it is critical to create new development and deployment 
strategies that minimize the differences between training and production systems. 
 
The Digital Engineering (DE) revolution underway in the defense industry holds great promise for delivering war 
fighting capabilities at an unprecedented pace. However, rapid capability acquisitions powered by DE will compound 
the concurrency problem requiring training systems to keep up with newly deployed platform capabilities like never 
before. Additionally, the adoption of Joint All Domain Command and Control (JADC2) is increasing the need for 
multidomain training (Dempsey & Editors, 2020). In multi-domain training, concurrency challenges are compounded 
by the need not only to keep pace with rapid capability deployment, but also to maintain compatibility between training 
systems across domains in the virtual battlespace (Dempsey & Editors, 2020). Additionally, the complexity of 5th and 
6th gen platform Operational Flight Programs (OFPs) and sensors require high-fidelity simulation environments that 
have their own concurrency requirements. Therefore, new concurrency paradigms are necessary to address the 
evolving challenges posed by rapid multidomain capability acquisition and deployment.  
 
Literature on training system concurrency spanning decades has focused on a litany of problems and potential 
solutions for improving concurrency with successes along the way. Past efforts aimed at improving concurrency have 
concentrated primarily on data availability for simulator manufacturers, simulator design, methods for incorporation 
of OFPs in training simulators, device test efficiency, cost-benefit analysis, and concurrent development of training 
devices during the platform Engineering & Manufacturing Development (EMD) phase. A new approach is necessary; 
one that builds on past successes, integrates modern digital engineering and software development practices, and 
creates collaboration environments throughout development, test, and training phases of the platform lifecycle. 
Through the application of this new approach, we propose that the level of concurrency achievable is extraordinarily 
high, and the deltas between platform development, test, and training systems will begin to blur or become 
operationally meaningless. We have termed this state ‘hyper-concurrency’. Historically speaking, the DoD's goal of 
concurrency has had limited success with occasional breakthroughs. We need to create systems that are inherently 
concurrent. We need an approach that accelerates the platform lifecycle. The traditional approach to concurrency is 
iterative and sequential with a platform update followed by test updates followed by training system updates. Rather, 
an emergent process is needed by which one can achieve a continuous ‘hyper-concurrent’ state. Hyper-concurrency is 
defined as the convergence of platform development, test, and training environments allowing simultaneous 
deployment of approved release artifacts to fielded platforms and training systems, resulting in training systems that 
accurately represent fielded configurations.  
 
The following sections layout a vision for hyper-concurrency, suggest paths forward to achieve hyper-concurrency, 
and identify areas where inroads have been made. The focus of this paper is primarily on engineering. The authors 
acknowledge that procurement, contracts, program management, and organizational challenges will continue to pose 
barriers to achieving concurrent systems; however, they are not the main focus of this paper.  
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THE PROBLEM WITH CONCURRENCY  
  
In recent decades, inroads have been made to improving concurrency; however, many challenges remain. Aircraft 
avionics are no longer monolithic, immutable, unchanging systems. Gone are the days of steam gauges and fixed 
instrumentation. Aircraft avionics have evolved, and today, they are complex software-defined systems that can be 
updated frequently and at times with large new feature sets. The legacy process of creating a training device (simulator) 
after the aircraft system is fielded is no longer practical due to the aforementioned challenges. Simulating aircraft 
equipment or integrating real equipment into training devices has been used as an approach to address the concurrency 
problem. However, as avionics have become more complex, it became impractical to continually update simulated 
versions in training systems. Additionally, when aircraft equipment is used in a training system it creates added 
expense and a supply chain issue for production due to competition for platform parts. Today, advances in rehosted 
avionics have obviated the need to use aircraft equipment in trainers. The current challenge is ensuring that rehosts 
are available at the right time from original equipment manufacturers (OEMs) and support trainer integration and 
training patterns.  
 
Another approach to addressing concurrency has been to award a single weapon systems contract that includes training 
systems development during platform EMD. Early training system development is a key first step in solving the 
concurrency problem; however, developing the training system with the platform in parallel has created a new set of 
challenges. First and foremost, it has created a moving target for the training system development. Having a training 
capability ready by platform Initial Operating Capability, or sooner, is crucial to fielding a weapon system; however, 
schedule slips, requirements changes, and development priorities all impact the ability to field a trainer. 
 
As platform upgrades bring more and more complexity to existing training devices, new problems have arisen. Today, 
concurrency is as much about integrating aircraft OFP changes as it is about ensuring that the synthetic environment 
is represented in sufficient fidelity to support mission training and rehearsal. For example, simulated threat 
environments require frequent updates to ensure concurrency with the latest national intelligence data and models. 
Additionally, a platform update that adds a capability such as a Tactical Targeting Network Technology (TTNT) radio 
to a fielded system not only requires OFP updates and radio model development, but it often requires complex 
environment modeling such as datalink behavioral modeling and RF modeling, which may not have existed in the test 
or training environment previously. This challenge could be solved by authoritative models of systems outside the 
boundary of the system under development that are used across stages of the engineering lifecycle. However, models 
developed for analysis, development, test, or training rarely are created with such considerations.  
 
Other challenges continue to persist with only incidental progress in pockets across the industry. Inflexible and 
proprietary simulator designs often require costly updates to replace obsolete compute resources or operating systems. 
Timely access to data from OEMs remains a problem, particularly when OEMs are faced with limited resources and 
must prioritize system development over training system support.  
 
Perhaps the biggest problem with concurrency is when the platform architecture does not adequately address training 
during system design and development. Although platform systems are typically designed for purpose, designed for 
cost, and designed for testability, they are rarely designed for training. This is likely due to the best overall value not 
being considered during procurement where requirements could be levied for compatibility with training design 
patterns (for example the ARINC-610 consideration in Avionics designs). Although, not a technical issue, it is worth 
noting that training system funding and requirements often come from different program offices with different funding 
sources, which results in implementation challenges. Simulation is used extensively throughout the engineering 
lifecycle, particularly in the development, test, and training domains. A lack of standardization, reuse, and 
interoperability across lifecycle stages limits the ability to create highly concurrent systems.  
 
Platform development practices pose challenges to achieving training system concurrency. Simulations created during 
platform development often do not translate to the test or training environment. Simulation fidelity may be 
inappropriate for other purposes due to tooling, timing, and cost. These simulations may not be authoritative or may 
only simulate the externalities of a segment of platform development sufficient to achieve engineering goals. Likewise, 
synthetic environments used during development are often not sufficient to replace development activities virtually as 
required by DE. Systems are often created for specific development and deployment environments, which can prevent 
reuse across multiple contexts (development, test, and training). Legacy practices including use and development of 
simulation often do not support the DE paradigms of today’s rapidly changing digital world.   
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Whether performing subsystem test, platform test, developmental test (DT), or operational test (OT), simulation is 
necessary to test advanced weapons systems. A lack of interoperability between simulation environments and 
components across disparate customers and suppliers prevents data sharing and deployment of updates to test 
environments. Simulations created during platform development often do not translate to the test realm. Delivery and 
deployment pipelines stop at organizational boundaries preventing rapid integration of system and simulation updates. 
Accurately representing the synthetic environment sufficient for OFPs integration into virtual operational 
domain poses significant challenges for test environments. Security requirements and compartmentalized systems 
without multi-level security environments limit interoperability and integration within and across platforms.  
 
Bespoke training systems suffer from a lack of commonality with technological solutions used by platform developers 
and testers due to a variety of factors. Simulation environments created during platform development often do not 
translate to the training realm either due to the lack of real-time nature or incompleteness with respect to the operational 
domain. Simulations for testing may exist at an interface level or conversely require much higher fidelity and system 
in the loop capabilities that would be cost prohibitive to include in a training system. Further, platform system designs 
that do not consider training system needs during development will continue to require extensive rework and 
integration during update cycles. And finally, the lack of authoritative operational domain simulation usable across 
the platform lifecycle hinders the ability of a training system to integrate new platform capabilities as previously noted.  
 
A VISION FOR THE FUTURE 
 
Solving the problems laid out in the previous section can be accomplished, but in order to do so, there needs to be 
convergence among development, test, and training. Only by removing barriers to interoperability, simulation reuse, 
and data sharing across the digital engineering lifecycle can the concurrency challenge be laid to rest. 
 
Hyper-concurrency is not simply a matter of process, rather it is a state to be achieved.  Programs can attain this state 
through the application of five hyper-concurrency tenets. The five key tenets for achieving hyper-concurrency are 
discussed below. There is not a one-sized fits all approach to hyper-concurrency, and there are many paths, as specific 
implementations will differ based on the needs of a program.  
 
Tenet #1 – Design Systems for Development, Test, and Training 
To achieve reuse across development, test, and training environments, systems must be designed with the requirements 
for all of them in mind. If test and training requirements are not considered upon initial design, it becomes significantly 
more difficult to ensure reuse of applications in each subsequent environment. Hyper-concurrency can only be 
achieved when collaboration occurs between different teams, suppliers, and customers. The criteria are: 
 

1. Training-specific capabilities (e.g. ARINC-610) must be added to platform requirements. 
2. A shared collection of authoritative simulation models is used across all phases of the lifecycle - 

development, test, and training - by OEMs, suppliers, customers, and training system manufacturers. 
 
Tenet #2 – Perform Integration Early in the Lifecycle 
System integration needs to begin in the development environment. When feature creation occurs in a vacuum, it often 
results in features designed in isolation from the overall system. The criteria are: 
 

1. Developers work in virtualized environments that enable early integration. 
2. Feature creation is completed in vertical slices, where features are integrated and tested to produce 

functional units. 
 
Tenet #3 – Embrace a Test-Oriented Process 
Features are tested throughout their lifecycle. A program can identify issues earlier in the product lifecycle by testing 
during the creation of said features, resulting in reduced cost and schedule risk as compared to when those issues are 
found later in the process. The criteria are: 
 

1. System tests are developed and run prior to the deployment of new features to production and training. 
2. System tests are run alongside development rather than as a distinct testing phase. 
3. Unit tests are used to ensure requirements are met. 
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4. Automated testing exists that validates both training and production workflows. 
 
Tenet #4 – Create Near Ops Environments for Development, Test, and Training 
A Near Ops environment is a virtualized operationally representative execution context that allows us to replicate how 
a system is deployed in the real world. The goal is to replicate the operational domain such that it is indistinguishable 
from reality from the perspective of the system under development. It is paramount that consistent, working updates 
are provided to training and production systems. Programs must be able to replicate issues that arise within training 
and production systems in development and test environments. Development and test must have environments that 
are nearly identical to training and production. This allows the developer/tester to replicate issues/bugs found 
downstream in the lifecycle process. Using Near Ops environments assures that code working in one environment will 
work in all. The criteria are: 
 

1. A Near Ops environment exists where virtual integration and test can occur. 
2. The Near Ops environment replicates the operational domain context of the system under development. 
3. Test runs an identical software load out to both training and production instances, testing for both use cases 

from the start.  
 
Tenet #5 – Deploy to Training and Production in Parallel 
Features are deployed in parallel to training and production environments. Features should be developed in such a 
way that identical artifacts can be deployed to training and production. As much as possible, differences to how 
training and production systems interface with new features are kept to a minimum. The criteria are: 
 

1. Software is developed to run in containers to allow dependencies to be built into deployment solutions, 
resulting in closer deployment processes between training and production. 

2. Training systems reuse simulation environments created across the lifecycle resulting in reduced rehost 
activities. 

 
ACHIEVING HYPER-CONCURRENCY 
 
Achieving hyper-concurrency is a challenge. It will require a confluence of customer requirements, purposeful design 
decisions, and technology investments. The following sections detail the design considerations and technology 
investments necessary to move toward a hyper-concurrent future.  
 
Greenfield vs. Brownfield Platform Development 
The barriers to achieving a hyper-concurrent state are dependent on whether a platform update is greenfield, new 
development, or brownfield, legacy development. For example, a new 6th generation fighter where the production and 
training systems are new development has more flexibility to implement the methods, practices, and designs required 
to achieve hyper-concurrency than a 4th/5th generation fighter that is already fielded and undergoing a platform update. 
 
On greenfield development, program schedule is partially driven by key requirements such as certifications, or ground 
testing, flight testing, and operational test & evaluation (OT&E) that cannot be completely eliminated with Digital 
Engineering tools and processes. If the tenets discussed in the Vision for the Future section are considered in program 
design, programs will be inherently hyper-concurrent, even if the aforementioned immutable requirements are present. 
Additionally, when the criteria described in the tenets are applied during initial development, they will provide a solid 
foundation for hyper-concurrency and the opportunity to reduce the overall program schedule. It is paramount that 
greenfield development activities incorporate a near ops environment early in the process so that it can be used across 
development, test, and training.  
 
During brownfield development, achieving hyper-concurrency is much more difficult. Transformational change will 
require investment in development, test, and training improvements driven by customer concurrency requirements. 
The challenges with existing platform modifications are worthy of a separate paper on the topic. Therefore, the 
remaining sections will discuss achieving hyper-concurrency goals on new platform development.  
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Converge Simulation Environments 
 
The concurrency challenge cannot be met without evolving our ability to replicate operational constructs at every 
stage of the Digital Engineering lifecycle. We must converge simulation environments across lifecycle stages and 
ensure that development environments, test environments, and training environments match to the maximum extent 
possible. Creating a simulation environment sufficient to meet the goals of development, test, and training and to move 
at a sustainable pace is key to achieving inherently concurrent systems. A common, authoritative simulation 
environment can address challenges posed by concurrency requirements by enabling rapid development, simulation-
driven virtual integration, scenario-based automated test, and concurrent deployment of new training system 
capabilities. A common approach to simulation will unlock value from existing unintegrated capabilities and allow 
developers to focus on creating solutions for the customer rather than developing complex simulation infrastructure 
and simulation models for a single use (development, test, or training). Efficiencies can be realized by reducing 
duplication of simulation efforts, breaking down silos, and increasing reuse of simulation assets across platform 
lifecycle stages. Application of open standards and MOSA architectures will ensure that simulations are interoperable 
with suppliers, customers, and end users, enabling deeper integration and collaboration. A converged simulation 
environment will provide the foundation for hyper-concurrency. The following sections detail the superset of 
capabilities and needs for such an environment.  
 
Account for Needs Across the Platform Lifecycle 
A converged simulation environment must account for the needs of 
each lifecycle phase. Without a shared simulation environment 
between development, test, and training, the ability to share 
components ranging from simulations to rehosted operational 
software applications will be reduced and will drive additional 
schedule, cost to the total program, and limit the ability to achieve 
concurrency. Figure 1 depicts a lifecycle for a program that would 
continuously be updated. 
 
Development – The environment should assist in system requirement 
and design definition. It should also be capable of integrating with 
tools necessary to perform hardware or software development; along 
with low level or unit level testing on the component being developed. 
The simulation environment should support performing a System of 
Systems (SoS) integration using a mix of real and virtual systems. An 
example would be integrating multiple new radios into an avionics system. Integration should support human on the 
loop as well as human in the loop. The use of Live, Virtual, and Constructive (LVC) paradigms would be a key tenet 
of the SoS integration as well as during training.  
 
Test – This same environment should be able to be used for test; inclusive of contractor test, government DT, and 
OT&E. The test environment should support individual bit manipulation for subsystems as well as high-fidelity 
scenario-based testing that leverages physics-based dynamic simulation of the operational domain of the system under 
test at sufficient fidelity to achieve a trusted test outcome with system-in-the-loop.   

Training – The simulation environment should support dynamic and scenario-based test cases. Simulator functions 
supporting operations such as initialize, reset, freeze, snapshot, and malfunctions are essential to achieving training 
goals but also support test and development activities. Simulation interoperability is a prerequisite to support 
distributed training and integration in joint training environments. Recent trends from live training to virtual training 
require the synthetic training environment to achieve higher fidelity levels that will allow more of the training curricula 
to be performed virtually. As such, the simulation environment must be interoperable with other training systems 
through distributed simulation standards.  

Faster Than Real Time 
The simulation environment should provide real-time execution, resulting in deterministic run time with periodic 
scheduling and management of models and simulations. However, for developers to be able to rapidly iterate on new 
features, they need to be able to quickly see how their code functions within the context of the overall system. Full 

Figure 1. Modeling & Simulation Lifecycle 
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system integration tests can often run for hours or even days at time, preventing the ability for efficient iteration. By 
supporting Faster Than Real Time (FTRT) simulation execution, developers can quickly see how their new features 
work within the context of the larger system, and unit and systems tests can be executed orders of magnitude faster 
than human in the loop testing. A FTRT mode can also support the need for an accelerated capability within training 
simulators.  
 
Hardware / Software in the Loop 
The simulation environment needs to easily support integration of 3rd party operational software and simulations. It 
should support a distributed network topology and be highly scalable for up to and including large-force n-participant 
cooperative simulation events. It should also easily transition between use of virtual models, simulations, and rehosted 
software, to include a mix of real hardware and software components in a virtual testbed. There should be native 
support for Hardware in the Loop (HWIL) testing, allowing system testing to occur at incremental system maturity 
levels. The HWIL infrastructure should incorporate discrete interfaces, analog interfaces, as well as standard digital 
bus protocols (such as MIL-STD-1553, ARINC 429, RS-232, etc.). Platforms with complex software integration 
require a Software in the Loop (SWIL) testing capability to run software application(s) on target hardware, while 
having the rest of the system still function in the virtualized environment. This allows for reuse of aspects across the 
different environments. An example would be a set of software test procedures run daily on builds in the virtualized 
environment, and when that virtualized software is loaded onto target hardware, the same test procedures can be 
executed with no modifications. The environment should extend from a purely virtualized environment, to a mixed of 
real hardware and/or software in the loop, to integrating external live assets for test and training. The ability to leverage 
virtual, SWIL, and HWIL environments across the lifecycle is key to achieving hyper-concurrency.  
 
Virtualize Everything 
 
According to Dr. Will Roper in Bending the Spoon, “Digital Engineering must achieve a measure of authoritative 
virtualization that replaces, automates, or truncates formerly real-world activities” (2021). An authoritative 
virtualization is a trusted simulation of a system that can be used as a surrogate for the real system throughout the 
engineering lifecycle. Authoritative virtualizations are important because they allow us to shift activities that are costly 
and slow into the virtual domain in order to shorten acquisition cycles and reduce sustainment costs. 
 
Hardware Virtualization 
Virtualized environments are a must for distributed development. Virtualized environments help to reduce program 
cost due to the reduction of dependence on physical assets. Given today’s atmosphere where work-from-home 
initiatives are more prevalent than in the past, the dependence on virtualized environments as opposed to physical 
assets has dramatically increased. The virtualized environments should be built for distributed simulation and cloud 
deployment using containerization (e.g., Docker) and other cloud-native architectural methods which provide scalable 
capacity and worldwide connectivity between partner sites. This is needed to allow collaboration between companies, 
so they can integrate independent and jointly developed applications. 
 
With virtualized environments of sufficient fidelity and containerized software, identical software can run in many 
kinds of compute, adjusting for the needs of the program phase. This includes both on-premise and cloud compute, 
allowing for program readiness as the defense industry pushes towards a more cloud-oriented world. Isolating software 
from the underlying hardware architecture allows deployment to any platform, VMs, Kubernetes clusters, cloud 
environments, and target hardware. This hardware virtualization methodology assures that software built once will 
run in any environment whether development, test, and training.  
 
Imbue Digital Twins with Training Technology 
Digital twins are authoritative virtualizations that can be used for a variety of development, test, and training use cases. 
A “digital twin is a digital representation of a real-world entity or system. The implementation of a digital twin is an 
encapsulated software object or model that mirrors a unique physical object, process, organization, person, or other 
abstraction” (Gartner, 2022). The convergence of development, test, and training requires that the digital twins of 
platforms be adaptable to all three use cases; however, this does not mean that each use case has the same fidelity 
requirements nor that the digital twin must replicate every single aspect of the physical twin in true fidelity. Instead, 
there is a completeness constraint for all simulations and digital twins. A digital twin needs only to be complete with 
respect to the system interfaces and of sufficient fidelity to stimulate said system. It is important to recognize the use 
cases of converged environments for development, test, and training and the limitations of any “digital twin solution” 
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from vendors. Hyper-concurrency will undoubtedly require custom digital twin solutions supporting development, 
test, and training. This does not imply that hyper-concurrency dictates the creation of a superset of digital twin tools, 
but that digital twins created during the lifecycle be interoperable across use cases to the maximum extent practicable. 
Test and training environments require the integration of real avionics, whether a hardware or software solution, to be 
effective. Therefore, it is imperative that engineering digital twins slated for use in test and training include all 
capabilities required for those use cases.  
 
Virtualize the Operational Domain with Authoritative Representations 
To reduce cycle times during development, trusted testing outcomes must be reached quickly, and to create effective 
up-to-date training, the converged simulation environment must faithfully replicate the real world. It is insufficient to 
virtualize the system under development without also virtually replicating the operational domain in which the system 
operates. Digital twins need a synthetic world in which to execute missions. The Near Ops environment used during 
development and test should form the basis for the synthetic training environment providing a high-fidelity 
authoritative virtual world in which to train. The environment should provide tunable fidelity where appropriate to 
achieve development, test, or training objectives. For example, the physics-based virtual RF simulation that provides 
accurate signal attenuation and multipath effects necessary for a test environment may not be desirable for a procedures 
trainer where training objectives may not require degraded communications. Creating a shared authoritative simulation 
environment is a challenge for industry; however, simulation environments such as the DoD’s Joint Simulation 
Environment (JSE) are steps towards creating an authoritative representation of operational domain contexts that can 
be reused across development, test, and training paradigms. 
 
Embrace Digital Engineering and DevOps to Accelerate Concurrency 
 
Digital Engineering (DE) is “an integrated digital approach that uses authoritative sources of systems data and models 
as a continuum across disciplines to support lifecycle activities from concept through disposal” (DAU Online). 
DevOps is the combination of development methodologies, practices, and tools that increase the ability to deliver 
systems at high velocity. Digital Engineering and DevOps practices are essential to achieving hyper-concurrency by 
reducing cycle times and connecting the previously unconnected across lifecycle phases. 
 
DevOps Key Principles 
The ‘Three Ways’ of DevOps provide principles that can help achieve hyper-concurrency. The First Way of DevOps, 
“Flow/Systems Thinking” (Error! Reference source not found.) emphasizes the performance of the entire system 
rather than a single silo of work. Traditionally, development, 
test, and training are separate silos each individually optimized 
to achieve schedule, cost, and performance goals. However, 
thinking of platform development, test, and training as a single 
system in which flow must be understood, maximized, rework 
minimized, and optimized across the entire system can provide 
a profound understanding of how to achieve hyper-concurrency 
for a platform.  
 
Hyper-concurrency relies upon rapid iteration of new features 
across multiple environments simultaneously. The Second Way 
of DevOps, “Amplify Feedback Loops” (Error! Reference 
source not found.) stresses the need to shorten cycles and 
ensure that working software and systems are passed 
downstream. Within traditional concurrency methods, it is not 
unheard of that defects are found in platform systems during 
training device integration, even after the platform had been 
updated in the field. To achieve a hyper-concurrent state, 
lengthy feedback loops are nonstarters. By using Continuous 
Integration / Continuous Deployment (CI/CD) automation across traditional silos, feedback loops can be created, and 
full system (development, test, and training) cycle times can be reduced. In an increasingly software-driven world, the 
test approach becomes crucial to achieving DevOps flow and fast feedback loops. Within these pipelines, builds can 
be created and tested for multiple environments immediately following a code commit. If builds or any tests fail, the 
developer can receive an immediate notification about the issues. If these builds and tests succeed, they can be 

Figure 3. The Second Way 

Figure 2. The First Way 
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immediately merged into subsequent development or production environments, including releasing any artifacts, and 
then made available to test, training, and production systems. In conjunction with the use of CI/CD pipelines, 
Infrastructure as Code can be used to store the details of each environment’s infrastructure configuration, allowing the 
CI/CD pipeline to spin up its own test environment using the same virtual near ops environment across all lifecycle 
phases.  
 
The Third Way of DevOps, “Continuous Experimentation and 
Learning” (Error! Reference source not found.), enshrines a 
culture that fosters taking risks, learning from failures, and 
understanding that practice and repetition builds mastery. Much 
the same way that DoD training systems require concurrency, 
industry and its customers must embrace the hyper-concurrency 
goal and build competency in the domain, while understanding 
that there will be failures along the way. However, only by 
taking the risk and learning from failure can the reward be 
reached.  
 
Model Based System Engineering (MBSE) 
The International Council on Systems Engineering (INCOSE, 2007) defines MBSE as “the formalized application of 
modeling to support system requirements, design, analysis, verification and validation activities beginning in the 
conceptual design phase and continuing throughout development and later life cycle phases.” In more practical terms, 
the vision for using modeling that MBSE ascribes transitions Systems Engineers away from the legacy processes of 
requirements capture using written/narrative text and instead leverages modeling languages (e.g., UML, SysML) to 
describe the system requirements. The modeling language approach combined with modern digital engineering 
software tools means that the system is more clearly defined and ensures better alignment between the requirements 
generator (customer) and the developers building the system. Modern MBSE software tools enable code stub creation 
which ties the implementation backwards through the requirements. These stubs are then passed along to software 
developers, who then create the code for the subsystem. After code is written, it can be fed back into the MBSE tool 
which created the stubs based on the design, improving the MBSE models, thus reducing friction between systems 
and software developers and completing a necessary feedback loop for attaining hyper-concurrency. MBSE as an 
authoritative source of truth for an entire platform inclusive of its training system can enable hyper-concurrency by 
managing requirements and design for all at the same time; allowing the impact of system upgrades to be modeled 
within modeling languages and applied across development, test, and training.  
 
Design for Concurrency and Collaboration 
 
A convergence of environments, tools, and practices alone is insufficient to achieve hyper-concurrency. Designing for 
concurrency from the earliest stages of platform development must occur. A hyper-concurrent design can be achieved 
by understanding the needs at program onset of the entire platform lifecycle inclusive of test and training requirements 
and collaboration environments between contractors.  
 
ARINC 610C 
Perhaps the “most important consideration in designing for concurrency is simulating the avionics systems such that 
future changes to the aircraft configuration and software can be incorporated into the simulator with minimal time and 
resources (Caylor, 2002).” ARINC Report 610C, Guidance for Design of Aircraft Equipment and Software for Use in 
Training Devices, is a key tool in achieving training system concurrency. ARINC Report 610C (hereafter A610C) 
“sets forth the general philosophy and basic design guidance for using aircraft equipment (hardware and/or software) 
in training devices. It specifies unique simulator functions that shall be supported by this equipment” (ARINC, 2009). 
Simulator functions or “trainer-isms” such as Freezes, Repositions, Snapshot, Faults, Stores Management and Speed 
Times N are essential to implementing effective training systems. However, getting those features integrated with a 
newly released OFP in a timely manner is often the crux of the concurrency challenge. A610C helps solve that 
problem, but over the years, it has been applied inconsistently across the avionics industry and is often not part of the 
initial system design, particularly within the military avionics realm. A610 must be a requirement for avionics. A 
comprehensive overview of A610C and how it can be used to support concurrency of training systems is available in 
the past IITSEC paper Concurrency – A Moving Target. The same functionality defined by A610C for training systems 
can be used to enable rapid iteration in development and test environments, helping to create the convergence of 

Figure 4. The Third Way 
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development, test, and training that is needed for hyper-concurrency. Platform systems and simulation models that 
can readily initialize, reposition, and execute faster than real time during development, integration, and test can be 
integrated into DevOps toolchains and enable rapid execution of simulation-based unit tests and scenario-based 
acceptance testing. A610 should not only enable training but also power development and test environments.  
 
System Certification 
Beyond the environment used, the architecture and system design of the actual product should consider how to limit 
the impacts to functions / capabilities that require certification efforts. For example, as the threat environment changes 
and the mission capabilities required need to be changed, the system should not have to go through an entire 
certification effort again as this is costly and more importantly runs counter to achieving hyper-concurrency due to 
the time required to go through certification.  
 
The system design should provide a separation between the safety critical and mission functionality. This would allow 
the safety critical portion to be certified a single time and then have a continuous authority to operate as the mission 
system changes constantly, as the mission system has less test/certification rigor. Safe-guards or preventative 
mechanisms would need to be put into place to prove that changes to the mission system could not impact the 
certification of the safety critical components. One design methodology to achieve separation may be a modular 
microservice-based architecture. Where certification is required, hyper-concurrency can only be achieved when a 
continuous authority to operate is attained; allowing feature development without impacting system certification. 
Without the continuous authority to operate, updates to the system would require new certification efforts.  
 
Collaboration 
Collaboration between the government customer, the OEM and their suppliers, and the training system provider is 
critical to the attainment of a hyper-concurrent state. It is important to design for collaboration when designing for 
hyper-concurrency. This can be accomplished in a number of ways. 
 
A common interoperable environment is a key component for collaboration. Regardless of who designs the 
environment, industry or the customer, the benefits discussed in the previous sections are achievable if the tenets for 
hyper-concurrency are followed. A technique for collaboration that has been found to be effective is to share the same 
environment with a customer during integration and then provide that same environment to the producer of the training 
system to use as a basis for the trainer. Another way to design for collaboration is to ensure that there is schedule 
synchronization across all parties involved in the process. To facilitate delivery and deployment of system updates, 
development timelines need to complement each other such that different groups align and do not fall out-of-sync. 

There are also other constraints that need to be considered, such as data rights and the ability to share Intellectual 
Property and proprietary data between disparate vendors. More work and coordination are required in this area to help 
drive to hyper-concurrency. Hyper-concurrency can be achieved when coordination and agreements are made at the 
beginning of a program to ensure all vendors share a common framework, as well as a common set of tools and 
processes. 

APPLIED HYPER-CONCURRENCY 
 
This section details progress towards hyper-concurrent systems and the convergence of development, test, and 
training. The following example covers a convergence of development and test with deployment to a manned-
unmanned teaming (MUM-T) Human Machine Interface (HMI) simulator approximating a training device. While it 
does not include sustainment of a training system, it shows steps toward achieving hyper-concurrency.  
 
The authors applied many of the hyper-concurrency tenets during the Development and Test phases of a recent 
Unmanned Mission System program. During the program, teams developed and integrated Minimum Viable Products 
(MVPs) based on given scenarios/requirements, with incremental demonstrations for customer feedback. This 
methodology segmented the customers’ desired end-state mission into individual capabilities and allowed for rapid 
incremental development. During the project’s 15-month duration, the team used a DevOps pipeline to rapidly stand-
up three environments for development, integration, and test. A Software-In-the-Loop (SWIL) environment was 
created, followed by a Faster-Than-Real-Time (FTRT) environment to speed up testing. Finally, a Hardware-In-the-
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Loop (HWIL) environment was used to evaluate the mission system on target hardware. These environments used a 
common simulation baseline and built upon each other to increase levels of fidelity in the system integration lab (SIL).  
 
The CI/CD pipeline used commercial off the shelf (COTS) tools and automation scripts to build and deploy the 
software to each environment. The team unit tested the mission system software with the FTRT environment using a 
subset of the mission system applications with simulation plugins running on a single developer's machine. Once 
verified locally, modified software is moved into the SWIL/HWIL environment for scenario-based testing.  
 
Agile and DevOps techniques enable rapid software development, integration, and testing. When the SIL was initially 
stood up, some CI/CD pipelines were absent: an engineer had to manually install software on each test fixture requiring 
at times a full day to complete. After CI/CD pipeline implementation, software changes could be implemented, tested, 
compiled, and deployed within minutes. On a typical day, developers built locally on the FTRT environment as often 
as once an hour, testing their changes with simulation-based tests prior to checking them in. Then, simulation 
environment software and mission system software are built and deployed to the SWIL and HWIL environments in 
the SIL up to five times a day. This process is only limited by the duration of the two-hour mission through the 
synthetic environment. CI/CD pipeline agility allows rapid response to customer inputs on overall mission design, as 
well as tactics and autonomous behaviors.  
 
The use of the DevOps pipeline facilitated the creation of a virtual System Integration Lab (vSIL). The vSIL is a 
complete synthetic duplicate of both the mission system software and architecture, and the simulation software and 
architecture. Using the vSIL improved designs without purchasing physical hardware or needing real-world testing to 
discover problems. This provides a standardized ‘clean slate’ start-up for every run, minimizing the risk of incorrect 
initializations between tests. A significant benefit of the vSIL is that it deconflicts resource utilization between the 
simulation team and the mission system software development team, allowing both teams to develop and test in 
parallel. 
 
Upon completion of the baseline effort, the team extended these processes and tools to flight test. In just three months, 
the team took the digital twin and integrated two COTS UAS Ground Stations that allowed for full control of both the 
live and virtual UAS platforms. Using the FTRT environment, the team was able to rapidly configure and test the 
autonomy with the new autopilot and scenario. By running thousands of FTRT scenarios in a matter of days on the 
ground with the integrated ground controllers, the team built confidence in the solution and went on to have three 
successful days of flight testing with no lost assets. 
 
This same environment was used to power a cockpit demonstrator (Figure 
5) for another team working on HMIs for unmanned systems. The 
demonstrator was very similar to a flight training device and required 
occasional updates as system development progressed. This demonstrator 
could then be employed in a relevant operational context to evaluate the 
HMI and recommend design changes. Building once and deploying to 
development, test, and demonstration environments provided a solid 
foundation for different teams to work across different aspects of a 
platform for a common purpose.  
 
CONCLUSIONS  
 
The digital engineering revolution is providing the tools necessary to 
accelerate not only platform development but training systems deployment and concurrency as well. After decades of 
work and progress on concurrency, the development of inherently concurrent platform training systems is within 
reach. Building on the practices of digital engineering and DevOps, concurrency updates can match the pace of rapid 
platform feature development. Hyper-concurrency is possible with the tools and technology available today. Through 
thoughtful, intentional design, converged simulation ecosystems, and the use of digital engineering tools, programs 
can become hyper-concurrent and deliver the platform updates and training systems critically needed by the 
warfighter. 
 
  

Figure 5. Cockpit Demonstrator 
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