

Refugee Flow Management and Resilience Implications

Orlin Nikolov, Kostadin Lazarov

CMDR COE

Sofia, Bulgaria

orlin.nikolov@cmdrcce.org, kostadin.lazarov@cmdrcce.org

ABSTRACT

The management of refugee flows presents complex challenges requiring accurate modeling and prediction techniques. This article proposes a novel approach to refugee flow modeling by leveraging artificial intelligence (AI) algorithms and drawing an analogy to electrical currents. The analogy draws upon the similarities between the flow of refugees and the behavior of electrical circuits, aiming to enhance our understanding and prediction capabilities in managing refugee populations.

Drawing on the electrical current analogy, we adapt established equations from electrical circuit theory to the context of refugee flows. By treating refugee movements as currents, we consider factors such as the "source" of displacement, "pathways" taken, "resistance" encountered, and "flux" of individuals seeking refuge. We integrate these factors into mathematical models and leverage AI algorithms to predict the behavior and distribution of refugee populations.

Moreover, we address the limitations and challenges in applying the electrical current analogy to refugee flows, including the presence of parasitic effects and the capacity constraints of source and destination countries. We discuss how these limitations can be mitigated by incorporating additional variables, such as cultural factors, policy dynamics, and regional capacities, into the modeling framework.

Keywords: refugee flows, modeling, artificial intelligence, electrical current, machine learning, data analytics, policy analysis, humanitarian response.

ABOUT THE AUTHORS

Orlin Nikolov Colonel Nikolov graduated in 1991 from the High military school "P. Volov" – Shumen, Bulgaria. In 2003 he earned his Master from National Defence College "G.S. Rakovski" - Sofia, Bulgaria. He completed Junior Staff Officer Course – Liptovský Mikuláš, Slovakia in 2005, and Joint Specialized Operation Course in Joint Specialized Operation University, USA. Colonel Nikolov has PhD in National Security presenting "Ways for improving of education and training for crisis management and disaster response". He is an author of many articles and feature on Air Defense and Modeling and Simulations thematic. Colonel Nikolov is a member of distinguished NATO Modeling and Simulation Groups.

Kostadin Lazarov Colonel Lazarov graduated in 1999 from the High air force school "G. Benkovski" – Dolna Mitropoliya, Bulgaria. In 2011 he earned his Master from National Defence College "G.S. Rakovski" - Sofia, Bulgaria. Colonel Lazarov is PhD candidate in Engineering Physics, working on research "Modelling of supersonic aircraft". Colonel Lazarov is mastering Artificial Intelligence technologies and work on transformation of AI models to classical one.

Refugee Flow Management and Resilience Implications

Orlin Nikolov, Kostadin Lazarov

CMDR COE

Sofia, Bulgaria

orlin.nikolov@cmdrcce.org, kostadin.lazarov@cmdrcce.org

REFUGEE FLOW MODELLING AS SCIENTIFIC PROBLEM

Modelling the behavior of individuals as refugees, is increasingly challenging if we try to apply classical equations on an individual level. The behavior, motivations, and decisions of each individual fleeing their home country are influenced by a multitude of complex factors, including personal circumstances, experiences, and aspirations.

However, when considering a larger group of refugees, statistical and probabilistic models can be applied to gain insights into the collective behavior and patterns that emerge. By aggregating data and considering the characteristics and trends observed among groups of refugees, researchers and policymakers can analyze and predict certain aspects of refugee flow at a broader scale.

These models might incorporate factors such as demographic data, conflict dynamics, economic conditions, social networks, and historical migration patterns to understand the movement of large groups of people. They can provide estimations and projections regarding the number of refugees, their distribution, potential destinations, and other relevant factors.

Law of large numbers could be applied and this makes the application of mathematical modelling permissible (equation 1). [1]

$$\bar{X}_n = \frac{1}{n} \sum_{k=1}^n X_k \quad (1)$$

Something more, the number of the variables in the mathematical model describing the refugee flow is expected to exceed one hundred. It allows to use the Normal (Gaussian) distribution which limits significantly the uncertainty (Figure 1). [2] [3]

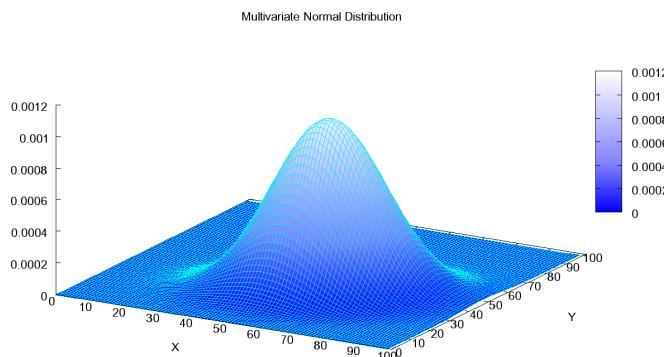


Figure 1. Multidimensional Normal Distribution

The refugee flow homogeneity could improve significantly the model accuracy. The presence of individuals with significant deviations in the characteristics could be detected and such outliers could be filtered out when the number is relevantly small. If the number of people with specific characteristics is above 500 (the threshold is set for this particular research), a new group is formed and the model is applied to this sub-flow.

It's important to note that these models are not without limitations.

Why to Model the Refugee Flow

It is often necessary to model a process in order to better understand how it works, identify potential problems or inefficiencies, and develop strategies for improving it. The three most important potential benefits of refugee flow modelling are:

1. Improved management efficiency. By modelling the refugee flow process, we can identify and compare the weights in the mathematical equations. This information can be used to optimize the refugee flow management process and improve its overall efficiency.
2. Predictable outcomes. Refugee flow process modelling can help us predict how changes to the process will impact its outcomes. For example, we can use a model to estimate how changing certain inputs will affect the output, or how adding additional resources will impact the time it takes to manage the process.
3. Identified risks. Modelling a process can help us identify potential risks and areas where errors or mistakes are more likely to occur. This can help us develop strategies to mitigate these risks and improve the quality and safety of the refugee flow management process.

Refugee Flow as a Vector in a Multidimensional Space

The concept of refugee flow can be represented as a vector in a multidimensional space, with each dimension representing a different aspect of the flow. The vector is a mathematical construct that allows us to visualize and analyze the various components of refugee flows in a systematic way.

To understand how the concept of refugee flow can be represented as a vector, it is helpful to think of the various dimensions that can be used to describe and analyze refugee flows. These dimensions can include the number and characteristics of the refugees, the countries of origin and destination, the reasons for displacement, the routes taken, the modes of transport, the duration of displacement, the conditions of reception, the legal and policy frameworks, and the socio-economic and cultural impacts.

Each of these dimensions can be thought of as a separate axis in the multidimensional space. For example, the number and characteristics of the refugees could be represented by one axis, with the number of refugees as the magnitude of the vector and the characteristics such as age, gender, and nationality as the direction. The countries of origin and destination could be represented by another axis, with the country of origin as the starting point and the country of destination as the endpoint. The reasons for displacement could be represented by another axis, with the different types of conflict or persecution as the direction.

By combining these different dimensions, we can create a multidimensional vector that represents the refugee flow in its entirety. This vector can be used to analyze and compare different refugee flows, to identify patterns and trends, and to evaluate the effectiveness of different interventions and policies.

Classical or AI Modelling

Classical mathematical modelling and AI both have their own advantages and disadvantages. Some potential advantages of classical mathematical modelling over AI are: Interpretability, Transparency, Simplicity, Computational efficiency, etc.

One of the main advantages of the classical modelling vs AI modelling is the better extrapolation behavior in phase changing zones. This means that classical models tend to provide more accurate predictions or representations of system behavior during or after significant transitions or changes, while AI models may struggle in such situations.

Classical models, built on well-defined principles and assumptions, can often capture the underlying dynamics and mechanisms of a system, allowing them to better handle phase-changing zones. In contrast, AI models, which primarily rely on patterns in available data, may have limitations in capturing the underlying principles governing phase changes and may struggle to provide accurate predictions in such zones.

Modeling Refugee Flow using Electrical Current models

Modeling refugee flow as electrical current can be a useful analogy to better understand the movement of refugees and the forces driving their displacement. In this analogy, we can think of the source of displacement as the voltage, and the flow of refugees as the electrical current.

To begin, we can conceptualize the voltage in terms of the various factors that cause people to flee their homes, such as conflict, persecution, environmental disasters, and economic hardship. Each of these factors can be thought of as a source of voltage that drives refugees to seek safety and stability elsewhere.

The flow of refugees, on the other hand, can be thought of as the electrical current that results from these sources of voltage. The flow of refugees is influenced by a number of factors, such as the availability of safe routes of travel, the policies of neighboring countries, and the support of international organizations.

One way to model this flow as electrical current is to use a network model, where the sources of voltage are represented as nodes and the flow of refugees is represented as the current that flows through the network. In this model, we can use mathematical equations similar to Ohm's law to describe the flow of refugees and the resistance they face along their journey.

In the refugee flow model, the voltage is interpreted as potential difference between the source and destination countries (equation 2). There are various characteristics of both countries that influence the magnitude of this potential difference. These characteristics can be likened to the parameters that affect the potential difference in an electrical circuit.

Refugee flow and electrical current analogy

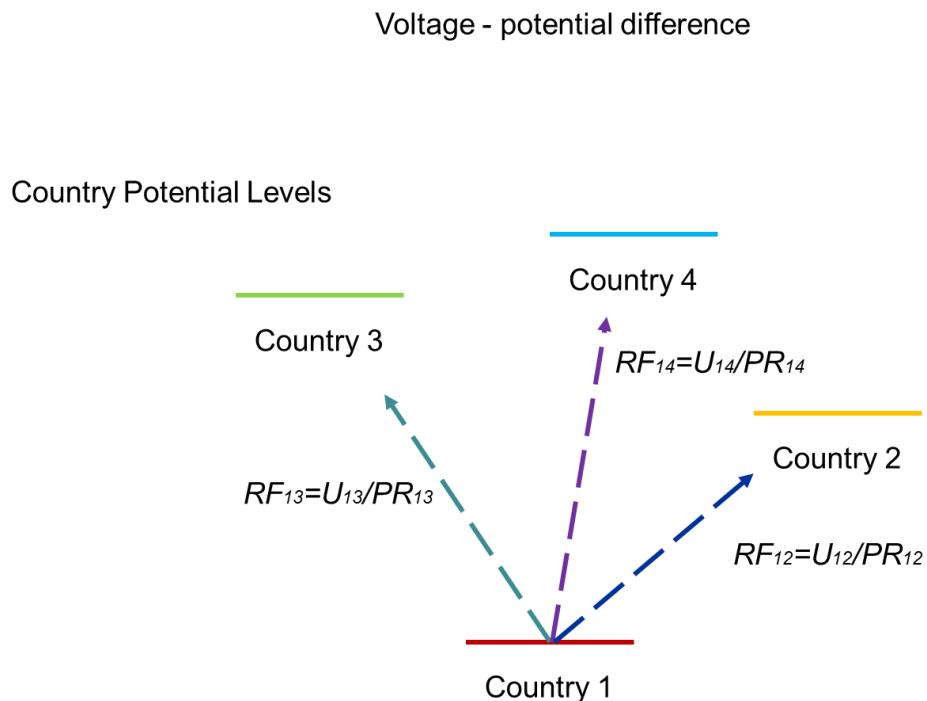
$$I=U/R \quad (2)$$

Refugee Flow=State Potential Difference/Path Resistance

In order to assess the overall country potential is necessary to use a tool for analyses of complex system like PMESI for example.

Economic Disparities. Economic conditions play a significant role in motivating refugee flow. A large economic disparity between the source and destination countries can create a higher potential difference. Factors such as GDP per capita, unemployment rates, income inequality, and job opportunities can influence the economic attractiveness of the destination country and, consequently, the potential difference.

Political Stability and Security. The political stability and security of a destination country relative to the source country can significantly impact the potential difference. Countries experiencing political turmoil, conflict, or social unrest are likely to have higher potential differences, as refugees seek safety and stability in more politically stable nations.


Human Rights and Civil Liberties. Countries that uphold human rights, provide civil liberties, and ensure a fair and just society may have a higher potential difference. Refugees fleeing persecution, discrimination, or the violation of their rights in the source country may view a destination country with stronger human rights protections as having a greater potential difference.

Social Welfare and Infrastructure. The presence of social welfare systems, access to education, healthcare facilities, and infrastructure development in the destination country can affect the potential difference. Countries offering better social amenities and infrastructure may attract more refugees, leading to a higher potential difference.

Legal and Immigration Policies. The immigration policies, refugee acceptance programs, and asylum laws of the destination country are critical factors. Countries with more favorable policies and efficient immigration processes can create a higher potential difference, as refugees perceive greater chances of acceptance and integration.

Cultural and Language Factors. Cultural ties, shared languages, and existing diaspora communities in the destination country can influence the potential difference. Refugees may be more inclined to migrate to countries where they share common cultural backgrounds or can easily integrate into existing communities.

The potential difference (voltage) and the path resistance describe the direction and the absolute value of the refugee flow – Figure 2.

Figure 2. Refugee Flows

Real Component versus Ideal Electrical Current Modelling

The ideal electrical current analogy and the refugee flow model have limitations in accurately representing the real world due to various factors, including the presence of parasitic effects and the capacity constraints of source and destination countries.

In electrical circuits, parasitic effects such as resistance, inductance, and capacitance can affect the behavior of the circuit and deviate from the idealized model. Similarly, when applying the analogy to refugee flows, there are various

complex factors and influences that cannot be fully captured by a simple model. These factors may include political dynamics, cultural differences, individual motivations, legal frameworks, and socio-economic conditions. The behavior of refugees is not solely determined by a linear and predictable set of factors, making it challenging to accurately model their movements.

Just as electrical circuits have limitations in terms of the maximum current they can handle or the voltage levels they can support, countries and regions have finite capacities in terms of resources, infrastructure, and reception facilities to handle large influxes of refugees. The analogy of an electrical source and destination does not fully capture the complexities associated with the capacity constraints of real-world countries. The ability to provide shelter, healthcare, education, and other necessary services to refugees varies significantly across different regions, and this can impact the movement, distribution, and management of refugee populations.

Instead of the simplified equation, the formula of the electrical current charging capacitor could be applied (equation 3). It consists of more components. These components could be linked to the parameters describing the refugee flow as phenomena, improving the accuracy of the model.

$$I = \frac{ECR^2}{4L^2} te^{-Rt/(2L)} \quad (3)$$

Possible Model Parameters

In the table 1 are randomly listed the parameters which could be used to elaborate the potential difference between the origin and destination countries and the refugee flow (the current).

Table 1. Example of possible parameters included in the refugee flow mathematical model

Number of refugees	Access to healthcare services for refugees	International relations between countries involved in refugee flow
Demographic characteristics of refugees (age, gender, ethnicity, religion, etc.)	Availability of vaccinations	Political stability of countries involved in refugee flow
Country of origin	Environmental factors (climate, terrain, etc.)	Economic stability of countries involved in refugee flow
Reasons for fleeing (war, persecution, violence, etc.)	Security situation in refugee camp	Role of international organizations (UNHCR, ICRC, etc.)
Destination country	Security situation in country of origin	Access to clean water for refugees
Immigration policies of destination country	Security situation in destination country	Access to adequate sanitation for refugees
Refugee camp capacity	Humanitarian aid availability and quality	Access to energy sources for refugees
Refugee camp location	Role of NGOs in providing aid to refugees	Climate and environmental factors in destination country
Availability of basic necessities (food, water, shelter, medical care)	Role of government in providing aid to refugees	Availability of family reunification programs
Duration of stay in refugee camp	Accessibility of aid distribution points for refugees	Support for unaccompanied minors
Integration programs for refugees	Access to information for refugees	Support for elderly refugees
Availability of employment opportunities for refugees	Availability of legal assistance for refugees	Support for disabled refugees
Education opportunities for refugees	Policies of neighboring countries towards refugees	Support for pregnant and nursing women

Cultural similarities/differences between host and refugee communities	Transportation infrastructure in destination country	Availability of psychosocial support for refugees
Language barriers	Transportation infrastructure in country of origin	Accessibility of education for refugee children
Support from local community for refugees	Availability of safe transportation routes for refugees	Accessibility of vocational training for refugees
Ability of refugees to communicate with loved ones left behind	Proximity to home country	Availability of job training programs for refugees
Mental health of refugees	Distance from home country	Language training programs for refugees
Physical health of refugees	Role of social media in refugee flows	Religious freedom for refugees
Presence of infectious diseases in refugee camps	Role of traditional media in refugee flows	Access to places of worship for refugees

NATO and EU Implications

The development of effective and efficient refugee flow management theory could be useful for NATO and the Alliance members for several reasons.

One of them is the Public Diplomacy - NATO and its member states have a strong interest in promoting their values and principles, including respect for human rights and the rule of law. Effective refugee flow management can help demonstrate these values in practice and enhance the public diplomacy efforts of NATO and its member states.

Another reason is the operation planning - In some cases, refugee flows may be directly related to ongoing military operations. The development of effective refugee flow management theory can help NATO and its member states better anticipate and manage the consequences of military operations on civilian populations.

One of NATO's main objectives is to provide humanitarian assistance and protection to civilians affected by conflict and disaster. The development of effective refugee flow management theory can help NATO and its member states better understand the needs of refugees and develop strategies for providing assistance and protection.

Refugee flows can have significant implications for the stability and security of countries and regions. Effective management of refugee flows can help reduce the risk of conflict, social unrest, and other security challenges that may arise from large-scale displacement.

REFERENCES

Pál Révész, (2014). *The Laws of Large Numbers*, Academic Press.

Włodzimierz Bryc, (1995). *The Normal Distribution*, Springer.

[Multivariate Gaussian.png - Wikimedia Commons](#)