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ABSTRACT 

 

In the current global threat environment, homeland security depends on both domain and situational awareness. The 

probability of a secure homeland is based on conditional probabilities describing domain and situational awareness. 

Data-driven models that make sense of large volumes of information available increase probability estimates. With 

data continuing to grow in scope and complexity, the Department of Homeland Security (DHS) Science and 

Technology (S&T) and DHS Customs and Border Protection (CBP) Air and Marine Operations Center (AMOC) for 

National Air Domain Security require innovative strategies, services, and technologies to unlock the value of their 

data analytics potential. This paper describes an approach for doing predictive threat models (PTM) where multiple 

classification and deep learning models are tested and evaluated. Some of the models used include multilayer 

perceptron (MLP) classification, adaptive boosting, and artificial neural networks (ANN). The top performers are 

then selected and deployed using modern machine learning operations (MLOps) best practices such as automated 

pipelines, continuous integration/continuous deployment (CI/CD), and model performance evaluation. Doing so 

allows the models to easily adapt to and accommodate changes in mission priorities. This helps DHS fulfill various 

missions such as providing real-time predictive analytics to operators for faster and better decision making. The 

models can also be used as stand-alone tools to predict future trends/events and provide support for tactical resource-

allocation decisions. 
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INTRODUCTION 

 

Background 
 

The evolving threat of illegal smuggling and entry along the U.S. southern border requires efficient threat classification 

and resource allocation (Rosenblum et al., 2013). The U.S. southern border remains a primary entry point for illegal 

drugs into the United States. Transnational criminal organizations, particularly drug cartels, employ sophisticated 

methods to smuggle narcotics such as cocaine, methamphetamine, heroin, and fentanyl across the border using means 

such as vehicles, tunnels, and aircraft. Ninety percent of fentanyl flows through our southern border. U.S.-Mexican 

cooperation on drug trafficking has faced significant challenges over the past decade, and between fiscal years 2017 

and 2021, fentanyl trafficking offenses increased 950% (U.S. Sentencing Commission, 2021). 

 

The CBP AMOC Detection Enforcement Officers (DEO) are tasked with diminishing drug trafficking through 

aviation. DEOs do so through threat classification where they determine which flights are likely to pose a risk to the 

country, establishing suspicious flight profiles, and assessing the risk level they pose to national security. Threat 

classification helps prioritize and allocate resources to each threat effectively. DEOs classify flights following patterns 

seen previously that led to illegal smuggling of drugs or people such as unauthorized intrusions into U.S. airspace and 

suspicious aircraft behaviors. Once a flight is classified as a high risk to the country, DEOs determine the destination 

of the flight; this way they can intercept the flight and prevent drugs from entering and being distributed in the U.S. 

 

The job of a DEO is complex. Thousands of flights enter the U.S. each day, and the classification, resource allocation, 

and final destination must all be determined in a short window. Handling so many flights at once and making complex 

decisions in real time poses challenges as research has shown that individuals can effectively handle only up to five 

tasks at a time (Cowan, 2010). Considering the combination of temporal and geospatial aspects, the complexity of 

data availability, format, and model input variables, this task becomes increasingly difficult, even for experts in the 

field. Additionally, DEOs heavily rely on historical information and personal experience to make decisions. However, 

the high turnover rate among staff leads to a loss of valuable knowledge when employees leave their positions.  

 

Use of Big Data and Machine Learning  

  
Big data and machine learning (ML) have the potential to significantly enhance the support provided to DEOs in threat 

classification and resource allocation activities. Currently, DEOs must rely on their own knowledge, remembering 

previous patterns they have seen and applying those that are applicable to the current tracked flights. The number of 

previous patterns seen is more expansive for some DEOs than others but is still limited to the knowledge of one officer. 

By building an ML model that can view all historical flight data, it is able to learn the pattern of every flight quicker 

than a human and remember them all at once. Using this knowledge, the ML model acts as a force multiplier, joining 

the experience and minds of all current and previous enforcement officers to make these classifications. By using these 

models, each DEO will have that same expansive knowledge allowing them to make more informed and quicker 

decisions on which flights to intercept, resulting in more flights being intercepted, and fewer resources being used. 

This, in turn, increases the utilization of available assets and enables leadership to make more strategic decisions, 

optimizing the allocation of human resources and assets while developing better data-driven acquisition strategies. 

 

A key aspect of using big data and building ML models as described above is the ability to rapidly develop, scale, and 

deploy predictive solutions at both the department and component level. This includes using available data sources, 
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processing and integrating the data, and applying predictive modeling analytics to support various core mission areas 

of the DHS. Currently, many components lack the comprehensive data architecture, collections, and storage 

mechanisms necessary for developing more comprehensive predictive analytics. By addressing these limitations, the 

DHS can harness the power of big data and ML to support mission-critical operations. Doing so allows the ML models 

discussed above to be integrated in real time into DEOs’ decision-making processes to swiftly classify flights, establish 

suspect flight profiles, and assess the risk they pose to national security.  

 

Models Used 

 

To assist DEOs with making quicker and better-informed threat classification and landing location decisions, two 

types of ML models were implemented: classification models and a deep learning model. These models were created 

by training on historical data of flights entering U.S. airspace. Classification models were used to predict the (a) level 

of risk a flight poses to the nation, (b) type of mission it is on, and (c) possible landing area. The classification models 

used for this research included decision trees, Naive Bayes, logistic regression, support vector machines (SVM), MLP 

classification, and adaptive boosting. All these models were well suited for use cases a, b, and c, respectively. After 

the models were trained, we compared the accuracy of each and then selected the top performer using a predefined set 

of criteria. Each of our models, a, b, and c, could have a different ML model technique based on their performance for 

the particular need. After the classification model deems a flight a high enough risk to require interdiction, the deep 

learning model will determine the potential landing area by predicting coordinates along with the surrounding area of 

uncertainty that could then be used to pick out the most likely airstrip destination.  

 

 

METHOD 

 

Model Development 

 

The predictive models were developed using six-steps that follow a similar approach to those performed in previous 

studies (e.g., Wei et al., 2019): (1) Data capture, (2) Extract, Transform, Load Phase (ETL) and Feature Engineering, 

(3) Feature Selection, (4) Building and training models, (5) Selecting the best models, and (6) Deploying the models. 

 

Step 1: Capture Data: 

Collecting and capturing data in a secure manner is a crucial foundational step in the process of building a reliable 

and effective model. It involves gathering the necessary data from various sources and helping to ensure its integrity, 

quality, and confidentiality. For this study, Amazon Web Services (AWS) GovCloud was used to capture and 

consolidate government data of historical flights of interest collected by radar detection. AWS GovCloud is a 

specialized cloud computing environment designed to meet specific regulatory requirements and security standards 

for government agencies and other highly regulated industries. AWS GovCloud helps ensure the data collection 

process adheres to the stringent security measures and compliance standards necessary to handle sensitive 

information. 

 

Step 2: ETL and Feature Engineering: 

The next step is the ETL phase and feature engineering. To achieve this, a custom automated ETL pipeline was 

developed to streamline the collection, processing, and transformation of the data. 

 

The pipeline retrieves the relevant data from AWS GovCloud and then cleans the data by handling missing values, 

outliers, and inconsistencies. Additionally, data normalization, standardization, and scaling techniques are applied to 

bring the data to a common scale or range, enabling fair comparisons between different features. 

 

Feature engineering was then performed to create enhanced training features not available in the raw data with high 

predictive value. This allowed for the creation of model training data that has greater predictive value than the sum 

of its parts and the ability to uncover latent patterns and capture complex relationships that may not be readily 

apparent in the raw data alone. By enriching the training data with these valuable features, it enhanced the modeling 

process and enabled the models to make more accurate predictions. 

 

Step 3: Feature Selection 
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After the data was prepared and new features were created, feature selection was performed. Feature selection is a 

technique used to identify the most relevant features or variables from a dataset that contributes significantly to the 

variability of the target variable. It helps in reducing dimensionality by selecting a subset of features that have a 

strong association with the target variable and discarding those features that are irrelevant or redundant. In doing so, 

it enhances model performance, reduces computational complexity, and improves interpretability. 

 

For this study, Analysis of Variance (ANOVA) and Spearman were engaged to perform feature selection. ANOVA 

can be used when both the target variable and the features are numeric, to assess the relationship between the target 

variable and each individual feature. It examines whether the variation in the target variable can be explained by the 

variability in the numeric features. Since not all our features are numeric, one-hot encoding was required in the ETL 

pipeline to transform any categorical features into numeric. Once that was complete, ANOVA was used to calculate 

the F statistic and associated p-value to determine the statistical significance of the relationship between the target 

variable and the features. 

 

Whereas ANOVA performs well for linear relationships, Spearman performs well for nonlinear and nonnormally 

distributed data and is therefore a good comparison for our models. To perform this analysis, Spearman uses 

statistical measures to assess the strength and direction of the monotonic relationship between two variables. It is 

therefore able to compare the target variable to each feature and determine those most strongly associated with each 

other. 

 

Both feature selection processes were performed in this study. After collecting the features that met a given 

threshold and comparing the performance of both, the better performing features were identified. 

 

Step 4: Building the Predictive Threat Models: 

The PTM models were split into two parts: classification and deep learning. 

 

Classification Models 

Classification models provide valuable insights by categorizing data into distinct classes or categories (Nikam, 2015). 

The primary objective of classification models is to identify patterns and relationships within datasets, enabling the 

prediction of class labels for unlabeled instances based on their features. The power of classification models lies in 

their ability to convert raw data into actionable insights. These models enable decision makers to understand and 

interpret large volumes of information, leading to informed decision making and improved outcomes (James et al., 

2013). Classification models are commonly used for multiple forms of analysis such as email spam detection where 

it is used to classify an email as either “Spam” or “Not Spam.” 

 

As discussed previously, the classification models used for this study predict the risk level of a flight, the particular 

mission it is on, and bucketed values for latitude and longitude. The risk classification involves binary categorization 

into high or low risk, while the mission classification aims to identify the purpose of the flight. The bucketed latitude 

and longitude values provide a range for each coordinate, so rather than predicting 31.54° latitude, it would predict 

30–32° degrees, for example. 

 

ML classification models have proven superior performance compared with traditional statistical methods. Previous 

studies have identified Naive Bayes, logistic regression, SVMs, adaptive boosting, and random forest as some of the 

best-performing models for classification problems (Chilyabanyama, et al. 2022), along with MLPs. All of these 

models are described in Table 1. 

 

Table 1. Classification Models 

 

Model Type Description 

Naive Bayes 

Naive Bayes is advantageous due to its lack of presumptions about relationships among data 

elements (Domingos & Pazzani, 1997). Bayesian modeling is part of a class of modeling 

methodologies called adaptive systems that are continuing to learn to improve decision making. 

Organically built data-driven models offer much greater chance of success because this approach 
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minimizes the expert’s subjectivity of preconceived notions about how the variables relate and 

impact each other. 

Logistic 

Regression 

Logistic Regression is a commonly used method for binary classification, estimating the 

probability of the outcome based on input variables. 

SVM 
SVM creates a linear model to separate data into classes using a line or hyperplane in a high-

dimensional space. 

Random 

Forest 

Random forest constructs multiple decision trees through bagging, reducing variance and 

improving prediction accuracy. 

Adaptive 

Boosting 

Adaptive Boosting is developed for problems that require binary classification and can be used to 

improve the efficiency of decision trees. It iteratively builds weak classifiers or decision stumps 

and weights them based on their performance to create a stronger overall classifier. Adaptive 

Boosting is generally considered to be more accurate than random forest but can also be more 

sensitive to overfitting. It does well for imbalanced data which can occur for our use case.  

MLP 

Classification 

MLP Classification is a type of neural network model that consists of multiple layers of 

interconnected nodes, enabling it to learn complex patterns and relationships in data. MLPs are 

particularly effective in solving classification problems where the relationships between input 

features and output classes are nonlinear. They have the ability to capture intricate decision 

boundaries and can handle a wide range of input data types, making them a powerful tool for 

various applications such as image recognition, natural language processing, and pattern 

recognition. 

 

By comparing the results of multiple models, researchers and practitioners can make informed decisions and ensure 

the deployment of the most effective predictive model. For this reason, we use all models listed in Table 1 and select 

the best performing for deployment. 

 

Deep Learning Models 

Although classification models perform well for binary target variables such as risk (High, Low) and categorical data 

such as the bucketed latitude, they cannot predict the exact coordinates at which a flight would land. For this, a deep 

learning model was used. Deep learning models recently gained prominence due to their ability to automatically learn 

hierarchical representations of data through multiple layers of interconnected neurons. This hierarchical representation 

enables the models to capture intricate and nonlinear relationships that may be challenging to capture using traditional 

ML techniques (LeCun et al., 2015). Deep learning models have achieved groundbreaking results across various 

domains, including computer vision (Krizhevsky et al., 2012), natural language processing (Mikolov et al., 2013), 

recommendation systems (He et al., 2017), and time series analysis (Lipton et al., 2015). 

 

Deep learning models can also generalize well to unseen data. By scanning large amounts of training data and 

employing techniques such as regularization and dropout, deep learning models can effectively combat overfitting, 

leading to improved generalization performance (Goodfellow et al., 2016). This is especially valuable when the 

availability of extensive labeled data is limited, as deep learning models can learn meaningful representations through 

the inherent structure of the data. 

 

Furthermore, deep learning models can use parallel computing architectures, such as graphics processing units (GPU) 

and specialized hardware like tensor processing units (TPU), to accelerate model training and prediction. The 

computational efficiency and scalability of deep learning models enable the processing of large datasets and the 

deployment of models in real-time applications (Abadi et al., 2016). 
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The application of deep learning models for similar purposes has been explored in previous studies. Liu et al. (2017) 

presented a deep learning approach for airline arrival time prediction, demonstrating superior prediction accuracy 

compared with traditional models. 

 

The deep learning model used for this study incorporates various processors for tasks such as imputation, one-hot 

encoding, data cleaning, and principal component analysis (PCA). The inclusion of a residual block allowed 

information to flow from the first layer to the last, facilitating more efficient learning. PyTorch’s nn library, coupled 

with rectified linear units, was used to compile the model sequentially. The training data was then processed through 

the pipeline to create the model, which was subsequently used to process all relevant data. 

 

In addition to the feature selection process in step 3, the deep learning model applies PCA to reduce the dimensionality 

of the dataset. PCA is a technique that creates new uncorrelated variables, maximizing variance and improving 

interpretability while minimizing information loss. By incorporating these techniques, we aim to enhance the 

efficiency and accuracy of the deep learning model in determining the landing coordinates for flights. 

 

Step 5: Select the Best Models: 

Validation in predictive modeling can be challenging when dealing with distributions rather than point estimates as 

predicted results. Additionally, the presence of multiple potential outcomes and mission suggestions further 

complicates the validation process. To address this, cross-validation has been widely used as a standard method to 

obtain unbiased estimates of a model’s goodness of fit (Buda et al., 2018). By comparing various learning strategies, 

including different combinations of algorithms, fitting techniques, and parameters, researchers can select the best 

model for the latest dataset based on transparent and quantifiable metrics. 

 

The weighted F1-score is then used to determine which model performed the best out of those listed in Table 1 for 

risk and mission. The F1-score is a metric that combines both precision (measures the ability of a model to correctly 

identify only the truly positive instances among all instances predicted as positive) and recall (sensitivity: measures 

the ability of a model to correctly identify all positive instances from the total actual positive instances in the 

dataset), equally into a single metric. By combining the two metrics, it provides a balanced metric of both precision 

and recall, which performs well with our imbalanced data. Imbalanced data is data in which there is a significant 

difference in the number of instances between classes (values of variables we are trying to predict) such as many 

more High than Low risk flights. Utilizing the weighted F1-score further helps with handling the imbalanced data. It 

is calculated by taking the average between recall and precision for each class and assigning a weight based on the 

frequency of the class. A higher weight is given to a less frequent value, therefore ensuring equal importance is 

given to all classes. Doing so avoids being overly biased to a majority class.  
 

To determine the performance of the bucketed latitude and bucketed longitude models, weighted accuracy was used. 

The accuracy shows how often the predictions were correct, meaning if the actual latitude is 3.4° and the model 

predicted the plane to land in the 2–4° box, this was considered a correct prediction. Accuracy represents model 

performance better, especially due to this data being less imbalanced, and allows for it to be compared to the deep 

model performance.  

 

The deep model predicted both the latitude and longitude and provided the actual coordinates. To select the best 

deep learning model, the distance loss was used, which is a form of the mean squared error (MSE). The formula 

used to calculate it is shown in equation (1). 

 

Distance loss = avg(square(latitude prediction – actual latitude)) 

 + avg(square(longitude prediction – actual longitude) (1) 

This formula was used to calculate the distance between each of the longitude and latitude predictions from their 

actual value. Using distance loss allowed the model with the closest predictions to the actual to be selected. 

Therefore, the smaller the distance loss, the better the model. To then compare the deep model performance to the 

latitude and longitude bucketed models, a separate metric was created for each to determine the accuracy within 2°. 

By doing so, the deep model performance could be compared to the latitude and longitude bucketed models, 

respectively. The deep model predicted a separate latitude and longitude, rounded each prediction into a 2° bucket, 

and then determined if that bucket included the correct prediction.  
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Step 6: Deploying the Models: 

The highly customizable ML training pipeline described above is aimed at creating a hunger games system for training, 

validating, and selecting the best-performing predictive models. The next step is deploying the selected models via a 

CI/CD pipeline. This pipeline was designed to ingest, process, and run predictions on millions of records in real time 

and send operators critical decision-making/supporting information from the predictive model. 

 

The pipeline developed for deployment is an open source, automated, predictive modeling pipeline that trains, 

optimizes, validates, containerizes, and selects the best performing models for operational testing and deployment in 

support. The pipeline was developed and deployed in an open-source event-driven microservices architecture for quick 

and recurrent operational implementation of the containerized predictive models so that they are scalable, portable, 

highly available, and secure. 

 

 

RESULTS 

 
Due to our results being law enforcement sensitive, we are only able to share the results from training on sanitized 

data. The models performed similarly in comparison with each other when using actual data, but the values themselves 

are different. 

 

Six different classification models (adaptive boosting [ada], random forest [rf], logistic regression [lr], Naive Bayes 

[bayes], SVM [svm], and MLP [nn]) were run for the risk, mission, and the bucketed landing location latitude and 

longitude values. Various parameters were attempted for each to find the optimal model performance. Feature 

selection was used as discussed previously to include Spearman and ANOVA. Different thresholds were then used to 

determine the level of correlation needed for a feature to be included. For example, the model risk_Spearman_0.6 

used a Spearman correlation to find all features that had a correlation coefficient, r, of 0.6. The runs performed were 

each a combination of the following: 

- Spearman correlation with a threshold of 0.9, 0.06, 0.3, and 0.1 

- ANOVA correlation with a threshold of 0.95, 0.9, 0.6, 0.3, and 0.1 

- All features 

These combinations were then each run for the six classifiers, resulting in 60 runs total.  

Note: ANOVA included 0.95 but Spearman did not as we found that high of a threshold for Spearman eliminated 

almost all features from being selected. It was therefore determined this would not be an applicable method to use. 

 

Table 2 looks into the performance of the binary classification risk model and shows the top 10 runs. The top 

performing model was the MLP with a weighted F1 score of 86.73%. This model was then selected and deployed to 

predict the outcome risk levels, High or Low, which informs DEOs whether they should pursue a flight and coordinate 

with local enforcements for their interdiction. As the models continue to operationalize, performance is expected to 

increase resulting in a better high-value target hit rate after their implementation. 

 

Table 2. Risk Model Runs 

 

Model Classifier 
Weighted  

F1-Score 

Weighted 

Precision 

Weighted 

Accuracy 

risk_Spearman_0.6 nn 86.73% 86.50% 87.36% 

risk_ANOVA_0.3 lr 84.95% 85.67% 86.81% 

risk_Spearman_0.6 ada 84.87% 84.64% 85.16% 

risk_Spearman_0.9 nn 84.34% 84.18% 85.71% 

risk_Spearman_0.1 lr 84.16% 84.26% 84.07% 

risk_Spearman_0.3 bayes 83.89% 83.58% 85.16% 

risk_Spearman_0.3 rf 83.81% 87.22% 86.81% 

risk_Spearman_0.9 lr 83.72% 83.28% 84.62% 

risk_Spearman_0.9 bayes 83.72% 83.28% 84.62% 

risk_Spearman_0.6 bayes 83.72% 83.28% 84.62% 
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For nonbinary classification target variables, SVM was the top-performing model, as shown in Table 3, with a 

weighted F1-score of 53.32%. This model was then selected and deployed to provide DEOs with additional 

information on the type of mission flights the monitored aircraft are on, therefore providing additional information on 

whether they should interdict the plane. 

 

Table 3. Mission Model Runs 

 

Model Classifier 
Weighted 

F1-score 

Weighted 

Precision 

Weighted 

Recall 

mission_Spearman_0.3 svm 53.32% 54.25% 47.46% 

mission_Spearman_0.3 lr 50.54% 50.43% 46.89% 

mission_Spearman_0.6 ada 48.95% 38.01% 27.47% 

mission_Spearman_0.6 nn 48.61% 35.67% 40.11% 

mission_Spearman_0.6 rf 48.47% 38.59% 33.52% 

mission_Spearman_0.6 lr 48.19% 36.04% 26.92% 

mission_Spearman_0.6 bayes 48.12% 1.21% 8.79% 

mission_Spearman_0.1 svm 48.06% 31.79% 28.02% 

mission_Spearman_0.1 ada 47.57% 38.58% 27.47% 

mission_Spearman_0.1 nn 47.55% 8.16% 28.57% 

 

Predicting the landing location proved to be more challenging. Table 4 shows the results for the bucketed latitude 

model where the weighted accuracy was used to find the performance of the model in predicting the flight within a 2° 

latitude range. Adaptive boosting was the top performing model, correctly predicting the latitude bucket 48.59% of 

the time.  

 

Table 4. Classification Latitude Model 

 

Model Classifier 
Weighted 

Accuracy 

Weighted 

Precision 

Weighted  

F1-score 

lat2_ANOVA_0.3 ada 48.59% 55.53% 46.67% 

lat2_ ANOVA _0.3 lr 47.46% 48.06% 45.35% 

lat2_ANOVA _0.3 bayes 46.89% 50.23% 44.78% 

lat2_ ANOVA _0.1 rf 46.33% 52.88% 44.73% 

lat2_ANOVA _0.1 bayes 46.33% 51.80% 43.53% 

lat2_ANOVA _0.3 rf 46.33% 48.87% 44.27% 

lat2_ANOVA_0.3 bayes 46.33% 54.78% 44.44% 

lat2_ANOVA _0.6 rf 46.33% 48.73% 44.26% 

lat2_ANOVA _0.6 bayes 45.76% 46.94% 43.71% 

lat2_ANOVA _0.9 rf 45.76% 53.09% 44.27% 

 

Table 5 shows the results for the bucketed longitude model where the accuracy was used to find the performance of 

the model in predicting the flight within a 2° longitude range. Random forest was the top performing model predicting 

the correct longitude bucket 48.02% of the time. 

 

Table 5. Classification Longitude Model 

 

Model Classifier 
Weighted 

Accuracy 

Weighted 

Precision 

Weighted 

F1-score 

lon2_Spearman_0.3 rf 48.02% 52.82% 46.56% 

lon2_Spearman_0.6 lr 45.20% 50.84% 44.28% 

lon2_Spearman_0.9 rf 44.07% 46.44% 43.16% 

lon2_Spearman_0.1 rf 44.07% 45.17% 40.90% 
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lon2_Spearman_0.6 ada 43.50% 47.58% 43.25% 

lon2 _Spearman_0.95 rf 43.50% 50.03% 42.73% 

lon2 _Spearman_0.3 rf 43.50% 50.99% 42.47% 

lon2 _Spearman_0.3 lr 42.94% 49.59% 42.87% 

lon2_ANOVA_0.95 lr 42.94% 49.59% 42.87% 

lon2_All_Fields rf 42.94% 46.52% 40.13% 

 

Table 6 displays the deep learning model results, which show the performance of the model in predicting the actual 

coordinates of the flight. The distance loss was used to determine the best performing model. Multiple parameters 

were tested to compare the model performance including the train_test_split function, which determines the 

percentage of data to train on, validate on, and test on. 80/15/5, 90/5/5, and 95/3/2 were all tested and are represented 

in the table as 80_15_5, 90_5_5, and 95_3_2. Additionally, the batch sizes of 128 and 256 were compared. The batch 

size represents the number of data samples processed for each step during each epoch-iteration of the datasets while 

the model is learning and updating. Based on the results, 80_15_5_b128, performed best, which represents 80% given 

to training, 15% given to validating, and 5% of the data set aside for testing, with a batch size of 128. 

 

Table 6. Deep Learning Latitude and Longitude Models 

 

Deep Model Run Distance Loss 

80_15_5_b128 46.20 

95_3_2_b128 46.77 

95_3_2_b256 48.86 

90_5_5_b128 50.46 

80_15_5_b256 62.96 

90_5_5_b256 64.93 

 

When comparing the performance of the deep learning model to predict the landing location of flights with the other 

bucketed methods, the accuracy of each was compared. Table 7 compares the best performing model from Table 4 to 

the best performing model in Table 6 by looking at their accuracy to predict flight landing locations within 2° latitude 

buckets. It then also compares the best performing model from Table 5 to the best performing model in Table 6 by 

looking at their accuracy to predict flight landing locations within 2° longitude buckets. The table below shows the 

deep model outperformed the latitude bucketed model 56% to 48.59%. For longitude, the two models performed 

nearly identically. We therefore deployed the deep learning model as it predicted as well as or better than the 

classification models were able to do while providing more specific coordinates on the flight’s final destination.  

 

Table 7. Landing Location Prediction Comparison 

 

Model 2° Latitude Accuracy 2° Longitude Accuracy 2° Latitude and 

Longitude Box 

80_15_5_b128_deep_model 56% 48% 33% 

lat2_ANOVA_0.3 48.59% Not applicable (NA) NA 

lon2_Spearman_0.3 NA 48.02 NA 

 

 

IMPACT, BENEFITS, AND OTHER APPLICATIONS 

 

Predictive analytics play a crucial role in supporting faster and better data-driven decisions across the DHS enterprise. 

By transcending agency boundaries, these analytics enable operators and leadership to proactively mitigate threats to 

the homeland across all domains. The predictive threat models discussed above are a great use case of this. With the 

success of the risk classification models, DEOs can focus their attention on flights that pose a threat to our nation with 

a high level of certainty. They can then pair that knowledge with the mission model to have an idea of the type of 

behavior a flight will perform, giving them additional insights into the level of attention the flight needs. Pairing the 

models results with their own expertise gives DEOs the information they need to classify a flight as a threat to our 
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nation. Once this is determined, the deep learning model’s location prediction provides them with a better idea of 

where this flight is going to land, allowing them a head start to coordinate interdicting it with law enforcement.  

 

Though there is room for improvement for each model, they perform at a high enough level to provide additional 

information that leads to improved operations by fostering more efficient, proactive, and data-driven decision-making 

processes. This improvement is significant regardless of an individual’s experience or the availability of local technical 

or human resources. By implementing the vendor-agnostic open-source solutions described in this paper, the barriers 

to development are lowered, allowing for seamless cross-systems integration. Furthermore, these open-source tools 

enable clients to harness the latest, most advanced, and secure technologies available. 

 

The research also aims to bring the full MLOps lifecycle to the DHS, with the potential for rapid expansion into other 

mission areas and domains within the DHS enterprise. This comprehensive approach enables the predictive modeling 

pipeline to be low maintenance, highly scalable, flexible, and always available. Continuous integration practices 

guarantee that all aspects of the pipeline incorporate the latest evidence-driven and battle-tested methodologies. 

Moreover, these practices help ensure that the pipeline remains secure and free from threats posed by bad actors and 

common software development issues. 

 

 

DISCUSSION 

 

The predictions are currently being implemented into the DEOs’ decision-making process. It is too early to determine 

the changes in performance, but the ability to apply modern ML algorithms as discussed in this paper will become a 

crucial component in helping enforcement officers detect suspect aircraft behavior and mitigate risk in and around 

U.S. airspace, whether using the models discussed in this study or others. The architecture of more advanced 

applications of ML, such as the deep learning models, is very flexible, lending to highly customizable models. This 

by consequence adds to the challenge of achieving model optimality for niche problems. However, this is also a benefit 

of these models—the ability to continuously execute various combinations of hyperparameters, regularization 

techniques, activation functions, and more to reach optimality. Because of this flexibility, the models can be adjusted 

to solve other use cases. 

 

Other ML models such as Long Short-Term Memory (LSTM) could be a good method to try in the future as they 

perform well for time series data such as that which is collected on each flight. After determining the impact of the 

models created in this study for DEOs in practice, a follow-on study could involve comparing the performance of 

DEOs in predicting the landing location of a flight using the methods described above with those predicted by a trained 

LSTM model. In fact, we have begun developing such an LSTM model, which we believe could eventually be used 

or even paired with the current deep learning model to achieve significantly improved results. 
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