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ABSTRACT

In the current global threat environment, homeland security depends on both domain and situational awareness. The
probability of a secure homeland is based on conditional probabilities describing domain and situational awareness.
Data-driven models that make sense of large volumes of information available increase probability estimates. With
data continuing to grow in scope and complexity, the Department of Homeland Security (DHS) Science and
Technology (S&T) and DHS Customs and Border Protection (CBP) Air and Marine Operations Center (AMOC) for
National Air Domain Security require innovative strategies, services, and technologies to unlock the value of their
data analytics potential. This paper describes an approach for doing predictive threat models (PTM) where multiple
classification and deep learning models are tested and evaluated. Some of the models used include multilayer
perceptron (MLP) classification, adaptive boosting, and artificial neural networks (ANN). The top performers are
then selected and deployed using modern machine learning operations (MLOps) best practices such as automated
pipelines, continuous integration/continuous deployment (CI/CD), and model performance evaluation. Doing so
allows the models to easily adapt to and accommodate changes in mission priorities. This helps DHS fulfill various
missions such as providing real-time predictive analytics to operators for faster and better decision making. The
models can also be used as stand-alone tools to predict future trends/events and provide support for tactical resource-
allocation decisions.
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INTRODUCTION
Background

The evolving threat of illegal smuggling and entry along the U.S. southern border requires efficient threat classification
and resource allocation (Rosenblum et al., 2013). The U.S. southern border remains a primary entry point for illegal
drugs into the United States. Transnational criminal organizations, particularly drug cartels, employ sophisticated
methods to smuggle narcotics such as cocaine, methamphetamine, heroin, and fentanyl across the border using means
such as vehicles, tunnels, and aircraft. Ninety percent of fentanyl flows through our southern border. U.S.-Mexican
cooperation on drug trafficking has faced significant challenges over the past decade, and between fiscal years 2017
and 2021, fentanyl trafficking offenses increased 950% (U.S. Sentencing Commission, 2021).

The CBP AMOC Detection Enforcement Officers (DEO) are tasked with diminishing drug trafficking through
aviation. DEOs do so through threat classification where they determine which flights are likely to pose a risk to the
country, establishing suspicious flight profiles, and assessing the risk level they pose to national security. Threat
classification helps prioritize and allocate resources to each threat effectively. DEOs classify flights following patterns
seen previously that led to illegal smuggling of drugs or people such as unauthorized intrusions into U.S. airspace and
suspicious aircraft behaviors. Once a flight is classified as a high risk to the country, DEQOs determine the destination
of the flight; this way they can intercept the flight and prevent drugs from entering and being distributed in the U.S.

The job of a DEO is complex. Thousands of flights enter the U.S. each day, and the classification, resource allocation,
and final destination must all be determined in a short window. Handling so many flights at once and making complex
decisions in real time poses challenges as research has shown that individuals can effectively handle only up to five
tasks at a time (Cowan, 2010). Considering the combination of temporal and geospatial aspects, the complexity of
data availability, format, and model input variables, this task becomes increasingly difficult, even for experts in the
field. Additionally, DEOs heavily rely on historical information and personal experience to make decisions. However,
the high turnover rate among staff leads to a loss of valuable knowledge when employees leave their positions.

Use of Big Data and Machine Learning

Big data and machine learning (ML) have the potential to significantly enhance the support provided to DEOSs in threat
classification and resource allocation activities. Currently, DEOs must rely on their own knowledge, remembering
previous patterns they have seen and applying those that are applicable to the current tracked flights. The number of
previous patterns seen is more expansive for some DEQs than others but is still limited to the knowledge of one officer.
By building an ML model that can view all historical flight data, it is able to learn the pattern of every flight quicker
than a human and remember them all at once. Using this knowledge, the ML model acts as a force multiplier, joining
the experience and minds of all current and previous enforcement officers to make these classifications. By using these
models, each DEO will have that same expansive knowledge allowing them to make more informed and quicker
decisions on which flights to intercept, resulting in more flights being intercepted, and fewer resources being used.
This, in turn, increases the utilization of available assets and enables leadership to make more strategic decisions,
optimizing the allocation of human resources and assets while developing better data-driven acquisition strategies.

A key aspect of using big data and building ML models as described above is the ability to rapidly develop, scale, and
deploy predictive solutions at both the department and component level. This includes using available data sources,
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processing and integrating the data, and applying predictive modeling analytics to support various core mission areas
of the DHS. Currently, many components lack the comprehensive data architecture, collections, and storage
mechanisms necessary for developing more comprehensive predictive analytics. By addressing these limitations, the
DHS can harness the power of big data and ML to support mission-critical operations. Doing so allows the ML models
discussed above to be integrated in real time into DEOs’ decision-making processes to swiftly classify flights, establish
suspect flight profiles, and assess the risk they pose to national security.

Models Used

To assist DEOs with making quicker and better-informed threat classification and landing location decisions, two
types of ML models were implemented: classification models and a deep learning model. These models were created
by training on historical data of flights entering U.S. airspace. Classification models were used to predict the (a) level
of risk a flight poses to the nation, (b) type of mission it is on, and (c) possible landing area. The classification models
used for this research included decision trees, Naive Bayes, logistic regression, support vector machines (SVM), MLP
classification, and adaptive boosting. All these models were well suited for use cases a, b, and c, respectively. After
the models were trained, we compared the accuracy of each and then selected the top performer using a predefined set
of criteria. Each of our models, a, b, and c, could have a different ML model technique based on their performance for
the particular need. After the classification model deems a flight a high enough risk to require interdiction, the deep
learning model will determine the potential landing area by predicting coordinates along with the surrounding area of
uncertainty that could then be used to pick out the most likely airstrip destination.

METHOD
Model Development

The predictive models were developed using six-steps that follow a similar approach to those performed in previous
studies (e.g., Wei et al., 2019): (1) Data capture, (2) Extract, Transform, Load Phase (ETL) and Feature Engineering,
(3) Feature Selection, (4) Building and training models, (5) Selecting the best models, and (6) Deploying the models.

Step 1: Capture Data:

Collecting and capturing data in a secure manner is a crucial foundational step in the process of building a reliable
and effective model. It involves gathering the necessary data from various sources and helping to ensure its integrity,
quality, and confidentiality. For this study, Amazon Web Services (AWS) GovCloud was used to capture and
consolidate government data of historical flights of interest collected by radar detection. AWS GovCloud is a
specialized cloud computing environment designed to meet specific regulatory requirements and security standards
for government agencies and other highly regulated industries. AWS GovCloud helps ensure the data collection
process adheres to the stringent security measures and compliance standards necessary to handle sensitive
information.

Step 2: ETL and Feature Engineering:
The next step is the ETL phase and feature engineering. To achieve this, a custom automated ETL pipeline was
developed to streamline the collection, processing, and transformation of the data.

The pipeline retrieves the relevant data from AWS GovCloud and then cleans the data by handling missing values,
outliers, and inconsistencies. Additionally, data normalization, standardization, and scaling techniques are applied to
bring the data to a common scale or range, enabling fair comparisons between different features.

Feature engineering was then performed to create enhanced training features not available in the raw data with high
predictive value. This allowed for the creation of model training data that has greater predictive value than the sum
of its parts and the ability to uncover latent patterns and capture complex relationships that may not be readily
apparent in the raw data alone. By enriching the training data with these valuable features, it enhanced the modeling
process and enabled the models to make more accurate predictions.

Step 3: Feature Selection
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After the data was prepared and new features were created, feature selection was performed. Feature selection is a
technique used to identify the most relevant features or variables from a dataset that contributes significantly to the
variability of the target variable. It helps in reducing dimensionality by selecting a subset of features that have a
strong association with the target variable and discarding those features that are irrelevant or redundant. In doing so,
it enhances model performance, reduces computational complexity, and improves interpretability.

For this study, Analysis of Variance (ANOVA) and Spearman were engaged to perform feature selection. ANOVA
can be used when both the target variable and the features are numeric, to assess the relationship between the target
variable and each individual feature. It examines whether the variation in the target variable can be explained by the
variability in the numeric features. Since not all our features are numeric, one-hot encoding was required in the ETL
pipeline to transform any categorical features into numeric. Once that was complete, ANOVA was used to calculate
the F statistic and associated p-value to determine the statistical significance of the relationship between the target
variable and the features.

Whereas ANOVA performs well for linear relationships, Spearman performs well for nonlinear and nonnormally
distributed data and is therefore a good comparison for our models. To perform this analysis, Spearman uses
statistical measures to assess the strength and direction of the monotonic relationship between two variables. It is
therefore able to compare the target variable to each feature and determine those most strongly associated with each
other.

Both feature selection processes were performed in this study. After collecting the features that met a given
threshold and comparing the performance of both, the better performing features were identified.

Step 4: Building the Predictive Threat Models:
The PTM models were split into two parts: classification and deep learning.

Classification Models

Classification models provide valuable insights by categorizing data into distinct classes or categories (Nikam, 2015).
The primary objective of classification models is to identify patterns and relationships within datasets, enabling the
prediction of class labels for unlabeled instances based on their features. The power of classification models lies in
their ability to convert raw data into actionable insights. These models enable decision makers to understand and
interpret large volumes of information, leading to informed decision making and improved outcomes (James et al.,
2013). Classification models are commonly used for multiple forms of analysis such as email spam detection where
it is used to classify an email as either “Spam” or “Not Spam.”

As discussed previously, the classification models used for this study predict the risk level of a flight, the particular
mission it is on, and bucketed values for latitude and longitude. The risk classification involves binary categorization
into high or low risk, while the mission classification aims to identify the purpose of the flight. The bucketed latitude
and longitude values provide a range for each coordinate, so rather than predicting 31.54° latitude, it would predict
30-32° degrees, for example.

ML classification models have proven superior performance compared with traditional statistical methods. Previous
studies have identified Naive Bayes, logistic regression, SVMs, adaptive boosting, and random forest as some of the
best-performing models for classification problems (Chilyabanyama, et al. 2022), along with MLPs. All of these
models are described in Table 1.

Table 1. Classification Models

Model Type Description

Naive Bayes is advantageous due to its lack of presumptions about relationships among data
Naive Bayes | elements (Domingos & Pazzani, 1997). Bayesian modeling is part of a class of modeling
methodologies called adaptive systems that are continuing to learn to improve decision making.
Organically built data-driven models offer much greater chance of success because this approach
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minimizes the expert’s subjectivity of preconceived notions about how the variables relate and
impact each other.

Logistic Logistic Regression is a commonly used method for binary classification, estimating the
Regression probability of the outcome based on input variables.

SVM creates a linear model to separate data into classes using a line or hyperplane in a high-

SVM . .
dimensional space.
Random Random forest constructs multiple decision trees through bagging, reducing variance and
Forest improving prediction accuracy.
Adaptive Boosting is developed for problems that require binary classification and can be used to
. improve the efficiency of decision trees. It iteratively builds weak classifiers or decision stumps
Adaptive . . o .
. and weights them based on their performance to create a stronger overall classifier. Adaptive
Boosting Lo .
Boosting is generally considered to be more accurate than random forest but can also be more
sensitive to overfitting. It does well for imbalanced data which can occur for our use case.
MLP Classification is a type of neural network model that consists of multiple layers of
interconnected nodes, enabling it to learn complex patterns and relationships in data. MLPs are
MLP particularly effective in solving classification problems where the relationships between input

features and output classes are nonlinear. They have the ability to capture intricate decision
boundaries and can handle a wide range of input data types, making them a powerful tool for
various applications such as image recognition, natural language processing, and pattern
recognition.

Classification

By comparing the results of multiple models, researchers and practitioners can make informed decisions and ensure
the deployment of the most effective predictive model. For this reason, we use all models listed in Table 1 and select
the best performing for deployment.

Deep Learning Models

Although classification models perform well for binary target variables such as risk (High, Low) and categorical data
such as the bucketed latitude, they cannot predict the exact coordinates at which a flight would land. For this, a deep
learning model was used. Deep learning models recently gained prominence due to their ability to automatically learn
hierarchical representations of data through multiple layers of interconnected neurons. This hierarchical representation
enables the models to capture intricate and nonlinear relationships that may be challenging to capture using traditional
ML techniques (LeCun et al., 2015). Deep learning models have achieved groundbreaking results across various
domains, including computer vision (Krizhevsky et al., 2012), natural language processing (Mikolov et al., 2013),
recommendation systems (He et al., 2017), and time series analysis (Lipton et al., 2015).

Deep learning models can also generalize well to unseen data. By scanning large amounts of training data and
employing techniques such as regularization and dropout, deep learning models can effectively combat overfitting,
leading to improved generalization performance (Goodfellow et al., 2016). This is especially valuable when the
availability of extensive labeled data is limited, as deep learning models can learn meaningful representations through
the inherent structure of the data.

Furthermore, deep learning models can use parallel computing architectures, such as graphics processing units (GPU)
and specialized hardware like tensor processing units (TPU), to accelerate model training and prediction. The
computational efficiency and scalability of deep learning models enable the processing of large datasets and the
deployment of models in real-time applications (Abadi et al., 2016).
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The application of deep learning models for similar purposes has been explored in previous studies. Liu et al. (2017)
presented a deep learning approach for airline arrival time prediction, demonstrating superior prediction accuracy
compared with traditional models.

The deep learning model used for this study incorporates various processors for tasks such as imputation, one-hot
encoding, data cleaning, and principal component analysis (PCA). The inclusion of a residual block allowed
information to flow from the first layer to the last, facilitating more efficient learning. PyTorch’s nn library, coupled
with rectified linear units, was used to compile the model sequentially. The training data was then processed through
the pipeline to create the model, which was subsequently used to process all relevant data.

In addition to the feature selection process in step 3, the deep learning model applies PCA to reduce the dimensionality
of the dataset. PCA is a technique that creates new uncorrelated variables, maximizing variance and improving
interpretability while minimizing information loss. By incorporating these techniques, we aim to enhance the
efficiency and accuracy of the deep learning model in determining the landing coordinates for flights.

Step 5: Select the Best Models:

Validation in predictive modeling can be challenging when dealing with distributions rather than point estimates as
predicted results. Additionally, the presence of multiple potential outcomes and mission suggestions further
complicates the validation process. To address this, cross-validation has been widely used as a standard method to
obtain unbiased estimates of a model’s goodness of fit (Buda et al., 2018). By comparing various learning strategies,
including different combinations of algorithms, fitting techniques, and parameters, researchers can select the best
model for the latest dataset based on transparent and quantifiable metrics.

The weighted Fi-score is then used to determine which model performed the best out of those listed in Table 1 for
risk and mission. The Fi-score is a metric that combines both precision (measures the ability of a model to correctly
identify only the truly positive instances among all instances predicted as positive) and recall (sensitivity: measures
the ability of a model to correctly identify all positive instances from the total actual positive instances in the
dataset), equally into a single metric. By combining the two metrics, it provides a balanced metric of both precision
and recall, which performs well with our imbalanced data. Imbalanced data is data in which there is a significant
difference in the number of instances between classes (values of variables we are trying to predict) such as many
more High than Low risk flights. Utilizing the weighted F1-score further helps with handling the imbalanced data. It
is calculated by taking the average between recall and precision for each class and assigning a weight based on the
frequency of the class. A higher weight is given to a less frequent value, therefore ensuring equal importance is
given to all classes. Doing so avoids being overly biased to a majority class.

To determine the performance of the bucketed latitude and bucketed longitude models, weighted accuracy was used.
The accuracy shows how often the predictions were correct, meaning if the actual latitude is 3.4° and the model
predicted the plane to land in the 2-4° box, this was considered a correct prediction. Accuracy represents model
performance better, especially due to this data being less imbalanced, and allows for it to be compared to the deep
model performance.

The deep model predicted both the latitude and longitude and provided the actual coordinates. To select the best
deep learning model, the distance loss was used, which is a form of the mean squared error (MSE). The formula
used to calculate it is shown in equation (1).

Distance loss = avg(square(latitude prediction - actual latitude))
+ avg(square(longitude prediction - actual longitude) (1)

This formula was used to calculate the distance between each of the longitude and latitude predictions from their
actual value. Using distance loss allowed the model with the closest predictions to the actual to be selected.
Therefore, the smaller the distance loss, the better the model. To then compare the deep model performance to the
latitude and longitude bucketed models, a separate metric was created for each to determine the accuracy within 2°.
By doing so, the deep model performance could be compared to the latitude and longitude bucketed models,
respectively. The deep model predicted a separate latitude and longitude, rounded each prediction into a 2° bucket,
and then determined if that bucket included the correct prediction.
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Step 6: Deploying the Models:

The highly customizable ML training pipeline described above is aimed at creating a hunger games system for training,
validating, and selecting the best-performing predictive models. The next step is deploying the selected models via a
CI/CD pipeline. This pipeline was designed to ingest, process, and run predictions on millions of records in real time
and send operators critical decision-making/supporting information from the predictive model.

The pipeline developed for deployment is an open source, automated, predictive modeling pipeline that trains,
optimizes, validates, containerizes, and selects the best performing models for operational testing and deployment in
support. The pipeline was developed and deployed in an open-source event-driven microservices architecture for quick
and recurrent operational implementation of the containerized predictive models so that they are scalable, portable,
highly available, and secure.

RESULTS

Due to our results being law enforcement sensitive, we are only able to share the results from training on sanitized
data. The models performed similarly in comparison with each other when using actual data, but the values themselves
are different.

Six different classification models (adaptive boosting [ada], random forest [rf], logistic regression [Ir], Naive Bayes
[bayes], SVM [svm], and MLP [nn]) were run for the risk, mission, and the bucketed landing location latitude and
longitude values. Various parameters were attempted for each to find the optimal model performance. Feature
selection was used as discussed previously to include Spearman and ANOVA. Different thresholds were then used to
determine the level of correlation needed for a feature to be included. For example, the model risk_Spearman_0.6
used a Spearman correlation to find all features that had a correlation coefficient, r, of 0.6. The runs performed were
each a combination of the following:

- Spearman correlation with a threshold of 0.9, 0.06, 0.3, and 0.1

- ANOVA correlation with a threshold of 0.95, 0.9, 0.6, 0.3, and 0.1

- All features
These combinations were then each run for the six classifiers, resulting in 60 runs total.
Note: ANOVA included 0.95 but Spearman did not as we found that high of a threshold for Spearman eliminated
almost all features from being selected. It was therefore determined this would not be an applicable method to use.

Table 2 looks into the performance of the binary classification risk model and shows the top 10 runs. The top
performing model was the MLP with a weighted F; score of 86.73%. This model was then selected and deployed to
predict the outcome risk levels, High or Low, which informs DEOs whether they should pursue a flight and coordinate
with local enforcements for their interdiction. As the models continue to operationalize, performance is expected to
increase resulting in a better high-value target hit rate after their implementation.

Table 2. Risk Model Runs

Model Classifier Weighted Weig_h_ted Weighted
F1i-Score Precision Accuracy
risk_Spearman_0.6 | nn 86.73% 86.50% 87.36%
risk_ ANOVA 0.3 Ir 84.95% 85.67% 86.81%
risk_Spearman_0.6 | ada 84.87% 84.64% 85.16%
risk_Spearman_0.9 | nn 84.34% 84.18% 85.71%
risk_Spearman_0.1 | Ir 84.16% 84.26% 84.07%
risk_Spearman_0.3 | bayes 83.89% 83.58% 85.16%
risk_Spearman_0.3 | rf 83.81% 87.22% 86.81%
risk_Spearman_0.9 | Ir 83.72% 83.28% 84.62%
risk_Spearman_0.9 | bayes 83.72% 83.28% 84.62%
risk_Spearman_0.6 | bayes 83.72% 83.28% 84.62%
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For nonbinary classification target variables, SVM was the top-performing model, as shown in Table 3, with a
weighted Fi-score of 53.32%. This model was then selected and deployed to provide DEOs with additional
information on the type of mission flights the monitored aircraft are on, therefore providing additional information on

whether they should interdict the plane.

Table 3. Mission Model Runs

Model Classifier Weighted Weigh_ted Weighted
Fi-score Precision Recall
mission_Spearman_0.3 svm 53.32% 54.25% 47.46%
mission_Spearman_0.3 Ir 50.54% 50.43% 46.89%
mission_Spearman_0.6 ada 48.95% 38.01% 27.47%
mission_Spearman_0.6 nn 48.61% 35.67% 40.11%
mission_Spearman_0.6 rf 48.47% 38.59% 33.52%
mission_Spearman_0.6 Ir 48.19% 36.04% 26.92%
mission_Spearman_0.6 bayes 48.12% 1.21% 8.79%
mission_Spearman_0.1 svm 48.06% 31.79% 28.02%
mission_Spearman_0.1 ada 47.57% 38.58% 27.47%
mission_Spearman_0.1 nn 47.55% 8.16% 28.57%

Predicting the landing location proved to be more challenging. Table 4 shows the results for the bucketed latitude
model where the weighted accuracy was used to find the performance of the model in predicting the flight within a 2°
latitude range. Adaptive boosting was the top performing model, correctly predicting the latitude bucket 48.59% of

the time.

Table 4. Classification Latitude Model

Model Classifier Weighted Weigh_ted Weighted
Accuracy Precision Fi-score
lat2_ ANOVA_0.3 ada 48.59% 55.53% 46.67%
lat2_ ANOVA 0.3 Ir 47.46% 48.06% 45.35%
lat2. ANOVA 0.3 bayes 46.89% 50.23% 44.78%
lat2_ ANOVA 0.1 rf 46.33% 52.88% 44.73%
lat2. ANOVA 0.1 bayes 46.33% 51.80% 43.53%
lat2_ ANOVA 0.3 rf 46.33% 48.87% 44.27%
lat2_ ANOVA 0.3 bayes 46.33% 54.78% 44.44%
lat2_ ANOVA 0.6 rf 46.33% 48.73% 44.26%
lat2_ ANOVA 0.6 bayes 45.76% 46.94% 43.71%
lat2_ ANOVA 0.9 rf 45.76% 53.09% 44.27%

Table 5 shows the results for the bucketed longitude model where the accuracy was used to find the performance of
the model in predicting the flight within a 2° longitude range. Random forest was the top performing model predicting

the correct longitude bucket 48.02% of the time.

Table 5. Classification Longitude Model

Model Classifier Weighted Weig_h_ted Weighted
Accuracy Precision Fi-score
lon2_Spearman_0.3 rf 48.02% 52.82% 46.56%
lon2_Spearman_0.6 Ir 45.20% 50.84% 44.28%
lon2_Spearman_0.9 rf 44.07% 46.44% 43.16%
lon2_Spearman_0.1 rf 44.07% 45.17% 40.90%
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lon2_Spearman_0.6 ada 43.50% 47.58% 43.25%
lon2 _Spearman_0.95 rf 43.50% 50.03% 42.73%
lon2 _Spearman_0.3 rf 43.50% 50.99% 42.47%
lon2 _Spearman_0.3 Ir 42.94% 49.59% 42.87%
lon2_ANOVA _0.95 Ir 42.94% 49.59% 42.87%
lon2_All_Fields rf 42.94% 46.52% 40.13%

Table 6 displays the deep learning model results, which show the performance of the model in predicting the actual
coordinates of the flight. The distance loss was used to determine the best performing model. Multiple parameters
were tested to compare the model performance including the train_test split function, which determines the
percentage of data to train on, validate on, and test on. 80/15/5, 90/5/5, and 95/3/2 were all tested and are represented
in the table as80_15 5,90 5 5, and 95_3 2. Additionally, the batch sizes of 128 and 256 were compared. The batch
size represents the number of data samples processed for each step during each epoch-iteration of the datasets while
the model is learning and updating. Based on the results, 80_15 5 b128, performed best, which represents 80% given
to training, 15% given to validating, and 5% of the data set aside for testing, with a batch size of 128.

Table 6. Deep Learning Latitude and Longitude Models

Deep Model Run Distance Loss
80_15 5 b128 46.20
95 3 2 h128 46.77
95_3 2 h256 48.86
90 5 5 bh128 50.46
80_15 5 b256 62.96
90_5 5 _h256 64.93

When comparing the performance of the deep learning model to predict the landing location of flights with the other
bucketed methods, the accuracy of each was compared. Table 7 compares the best performing model from Table 4 to
the best performing model in Table 6 by looking at their accuracy to predict flight landing locations within 2° latitude
buckets. It then also compares the best performing model from Table 5 to the best performing model in Table 6 by
looking at their accuracy to predict flight landing locations within 2° longitude buckets. The table below shows the
deep model outperformed the latitude bucketed model 56% to 48.59%. For longitude, the two models performed
nearly identically. We therefore deployed the deep learning model as it predicted as well as or better than the
classification models were able to do while providing more specific coordinates on the flight’s final destination.

Table 7. Landing Location Prediction Comparison

Model 2° Latitude Accuracy | 2° Longitude Accuracy | 2° Latitude and
Longitude Box

80_15_5 b128 deep_model | 56% 48% 33%

lat2_ ANOVA 0.3 48.59% Not applicable (NA) NA

lon2_Spearman_0.3 NA 48.02 NA

IMPACT, BENEFITS, AND OTHER APPLICATIONS

Predictive analytics play a crucial role in supporting faster and better data-driven decisions across the DHS enterprise.
By transcending agency boundaries, these analytics enable operators and leadership to proactively mitigate threats to
the homeland across all domains. The predictive threat models discussed above are a great use case of this. With the
success of the risk classification models, DEOs can focus their attention on flights that pose a threat to our nation with
a high level of certainty. They can then pair that knowledge with the mission model to have an idea of the type of
behavior a flight will perform, giving them additional insights into the level of attention the flight needs. Pairing the
models results with their own expertise gives DEOs the information they need to classify a flight as a threat to our
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nation. Once this is determined, the deep learning model’s location prediction provides them with a better idea of
where this flight is going to land, allowing them a head start to coordinate interdicting it with law enforcement.

Though there is room for improvement for each model, they perform at a high enough level to provide additional
information that leads to improved operations by fostering more efficient, proactive, and data-driven decision-making
processes. This improvement is significant regardless of an individual’s experience or the availability of local technical
or human resources. By implementing the vendor-agnostic open-source solutions described in this paper, the barriers
to development are lowered, allowing for seamless cross-systems integration. Furthermore, these open-source tools
enable clients to harness the latest, most advanced, and secure technologies available.

The research also aims to bring the full MLOps lifecycle to the DHS, with the potential for rapid expansion into other
mission areas and domains within the DHS enterprise. This comprehensive approach enables the predictive modeling
pipeline to be low maintenance, highly scalable, flexible, and always available. Continuous integration practices
guarantee that all aspects of the pipeline incorporate the latest evidence-driven and battle-tested methodologies.
Moreover, these practices help ensure that the pipeline remains secure and free from threats posed by bad actors and
common software development issues.

DISCUSSION

The predictions are currently being implemented into the DEOs’ decision-making process. It is too early to determine
the changes in performance, but the ability to apply modern ML algorithms as discussed in this paper will become a
crucial component in helping enforcement officers detect suspect aircraft behavior and mitigate risk in and around
U.S. airspace, whether using the models discussed in this study or others. The architecture of more advanced
applications of ML, such as the deep learning models, is very flexible, lending to highly customizable models. This
by consequence adds to the challenge of achieving model optimality for niche problems. However, this is also a benefit
of these models—the ability to continuously execute various combinations of hyperparameters, regularization
techniques, activation functions, and more to reach optimality. Because of this flexibility, the models can be adjusted
to solve other use cases.

Other ML models such as Long Short-Term Memory (LSTM) could be a good method to try in the future as they
perform well for time series data such as that which is collected on each flight. After determining the impact of the
models created in this study for DEOSs in practice, a follow-on study could involve comparing the performance of
DEOs in predicting the landing location of a flight using the methods described above with those predicted by a trained
LSTM model. In fact, we have begun developing such an LSTM model, which we believe could eventually be used
or even paired with the current deep learning model to achieve significantly improved results.
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