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ABSTRACT 

 

Advances in artificial intelligence (AI) such as natural language processing (NLP) and reinforcement learning (RL) 

are enabling breakthrough advancements in immersive flight training for both instructor-led and self-paced training, 

as exemplified by immersive Mixed Reality (MR)/Virtual Reality (VR) devices. 

 

Introduction of MR/VR features will likely require dialog management and command and control capability in a self-

paced training context. Adding an NLP-based cognitive agent acting as a virtual instructor and co-pilot provides the 

required immersion level to broaden the spectrum of self-paced training during the pilot’s learning journey. Pilots 

receive instant feedback on their performance, explanations of the communication procedures, and progress tracking 

as they develop their skills.  

 

Accent-tolerant advances in speech interaction are used to recognize radio transmissions from the ownship using NLP 

on a flight training knowledge base. Conversation agents increase student immersion and offer more realistic 

workloads by fully automating the air traffic control (ATC) function, freeing up the instructor to focus more on core 

observation and training performance, and allowing more automated flying without an instructor for MR/VR 

simulation training. 

 

The complexity of real-world ATC communications, such as conditional clearances and instructions that include “give 

way,” can only be simulated when the ownship is fully embedded with other traffic. An AI ATC module leverages a 

collaborative multi-agent framework to manage air traffic during real-time MR/VR flight simulation in a synthetic 

urban environment scenario. 

 

This paper will explore issues around robustness in reinforcement learning and evolutionary optimization problems, 

alongside new results in collaborative multi-agent systems. These outputs will provide further results in nonlinear 

function approximation (e.g., deep neural networks) and optimization methods in stochastic environments. The paper 

will also study human factors during immersive MR training of emergency scenarios with an AI agent integrated into 

an electric Vertical Takeoff and Landing aircraft (eVTOL) flight training simulation and operation platform.  
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INTRODUCTION 

 

Electric Vertical Takeoff and Landing vehicles (eVTOLs) have real potential to shape the future of Advanced Air 

Mobility (AAM), one in which these small and non-polluting aircraft revolutionize Urban Air Mobility (UAM) and 

Regional Air Mobility (RAM) transportation. While the future may see eVTOLs controlled from a distance through a 

Remotely Piloted Aircraft System (RPAS) (De Lellis et al., 2019) or Uncrewed Aircraft System (UAS) (Jeffrey 

Homola, 2016), on-board single pilot operation is expected to be the norm for several years. According to (Uri Pelli, 

2020), AAM will increase existing pilot demand up to an additional 60,000 by 2028. Fast-tracking the training of the 

future pilots needed to operate eVTOLs is crucial, as is putting in place the cockpit automation required to limit 

workload while ensuring the safety of autonomous flight. 

 

According to the EASA Artificial Intelligence Roadmap 2.0.(EASA, 2023a), industrial actors expect the first crew 

assistance/augmentation developments over a 2022-2025 time frame. Automation will ramp up to single pilot 

operations through human-machine collaboration from 2025 to 2030, culminating in remotely operated flights with 

human supervision or fully autonomous flights foreseen arriving after 2035.  

 

NASA (Charles T. Howell, 2019) and the Federal Aviation Administration (FAA) are working together to perform 

research on UAM technologies. Under the Flight Demonstration Capabilities (FDC) Project, which supports the use 

of Autonomous Flight Safety Systems (AFSS), UAM Testbed Flight Research Aircraft will be used in the development 

and testing of automation, sense and avoid, air traffic control (ATC), aeronautics, energy storage and other related 

technologies. The UAM Testbed Research Aircraft, a Cessna LC40, is equipped with computers, sensors and software 

to serve during planned UAM research projects. Experiments on air traffic sense and avoid, automatic ground collision 

avoidance systems and Automatic Voice Recognition and Response System are planned to be executed. The goal of 

this last experiment is to automatically recognize ATC voice commands and generate automatic aircraft response. 

 

Security, Safety and Regulation in Urban Air Mobility 

 

UAM introduces new types of aircraft and operations that require appropriate regulations and certification processes 

and the implementation of security and safety measures. eVTOLs providing air taxi service must meet strict safety 

standards involving rigorous certification processes. Ensuring the safety and reliability of UAM operations is essential 

for acceptance by regulators and the public. UAM operations have the potential to introduce additional noise and 

environmental challenges that require the development of quieter aircraft, the optimization of flight paths and the 

transition to sustainable energy sources. 

 

For this purpose, (Md. Shirajum Munir, 2023) propose a cyber-physical safety analyzer framework driven by artificial 

intelligence (AI). The framework uses AI algorithms, including a decision tree, random forests, logistic regression, 

K-nearest neighbors (KNN) and long short-term memory (LSTM), to predict and detect cyber jamming and spoofing 

attacks through a Received Signal Strength Indicator (RSSI), remote RSSI and voltage fluctuations. The developed 

framework of the AI algorithm then analyzes the conditional dependencies based on the Pearson’s correlation 

coefficient identify the cause of potential attacks based . The experiment results show the efficacy of the proposed 

framework at around 99.9% accuracy for jamming and spoofing detection using a decision tree, random forests and 

KNN, while efficiently finding the root cause of the attack. 
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Urban Air Mobility Operations 

UAM faces several infrastructure challenges for air travel in urban areas, including the establishment of intelligent air 

traffic management (ATM) systems, vertiports and charging stations, and their integration with existing transport 

networks. Traditional ATC systems are not designed to handle the density and dynamics of UAM operations. With 

effective management of air traffic in urban areas a major challenge, the development of robust UAM ATM systems 

is crucial, they have a large benefit of leveraging machine learning for incident risk predictions (Xiaoge Zhang, 2019). 

The paper of (Brock Lascara, 2019) explores these challenges and presents operational concepts for integrating highly 

automated UAM operations into the FAA’s National Airspace System. The proposed framework can serve as a starting 

point for concept evaluations of an Airspace Integration Framework and is articulated around Augmented Visual 

Flight Rules, Dynamic Delegated Corridors, Automated Decision Support Services and Performance-Based 

Operations. Their research questions include impacts to air traffic managers controlling that airspace; impacts to other 

visual flight rules traffic in that airspace and other instrument flight rules traffic in the vicinity; decision support 

capabilities for ATC, UTM and operators; and procedural changes/additions needed to enable operations. 

 

The NASA Operational Concept of (George Price, 2020) describes a community vision of the projected evolution of 

urban air service, with vehicles capable of carrying one or more passengers. The paper identified the challenges and 

gaps that must be addressed to enable the UAM vision. To categorize these challenges and their dependencies, the 

authors developed a framework comprising five pillars: Vehicle Development & Production, Individual Vehicle 

Management & Operations, Airspace System Design & Implementation, Airspace & Fleet Operations Management 

and Community Integration. The OpsCon envisions eVTOL aircraft in operation, from vertiports to ATM concepts 

and collision avoidance systems, that assure safe and efficient operation within the airspace. 

 

Air Traffic Management in the Context of Urban Air Mobility 

Decision support systems for UAM operations will need to leverage and exchange information with existing and 

conventional ATC services. A high level of automation support has been increasingly adopted to support tactical 

deconfliction tasks in UAM (Shulu Chen, 2023). ATM systems must be highly automated and intelligent. A highly 

automated Urban traffic management (UTM) system based on AI will need to address issues related to the 

explainability of intelligent algorithms in environments where human operators are involved in safety-critical 

decisions.  

 

The research paper by (Yibing Xie, 2020) investigates the adoption of ATM AI for incidents and accident risk 

prediction through the XGBoost algorithm. The study focuses on explaining the trained AI model and the predicted 

results. Moreover, considerations are made on the most promising strategies to strengthen the trust between the ATC 

and the system through the redesign of the interface of Human-Machine Interaction. With the increasing role of AI, 

the complexity of machine learning (ML) “black boxes” has been increasing, which then raises the need for greater 

transparency through an Explainable AI (XAI). The research introduces the aviation incident and accident prediction 

model adopting the XGBoost algorithm, which is part of the ATM/UTM Decision Support System (DSS). The 

research aims to improve the development of an ATM/UTM application by using AI algorithms, exploring the 

explanation methods of the results given by the model with Explainable AI (XAI) and using SHapley Additive 

exPlanations as the post-explanation method to achieve the trustworthiness and reliability of the AI system. Ensemble 

learning including boosting (XGBoost), bagging and stacking are used to build predictive and explanatory models 

using the XAI method for model transparency and post-hoc explainability. 

 

UAM Flight Training and Intelligent Human-Machine Interface 

According to CAE research (CAE, 2021), UAM will create additional demand for pilots, who will need additional 

skill sets to operate in the new challenging UAM traffic environment. Modern learning techniques include adaptive 

learning with self-paced student-centric training programs using immersive training technologies. Augmented 

Reality (AR), Virtual Reality (VR) and Mixed Reality (MR) are incorporated into the initial training program to 

ramp up pilot qualification to meet demand while maintaining a low carbon footprint and improving training cost 

efficiency. 

 

In UAM applications, additional physiological sensors can be leveraged to improve Human-Machine Interface (HMI) 

efficiency with technology such as voice recognition and biometric sensors. These sensors are used to analyze cockpit 

communications, track visual scan patterns and measure the pilot's cognitive load. Machine-based 

monitoring/enhancement helps prevent cognitive overload when increasing the level of autonomy in decision support 

systems to avoid problems, such as trust and loss of situational awareness in HMIs. 
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Research Objectives 

This paper will study the efficiency of immersive MR training during emergency scenarios with an AI agent integrated 

into an eVTOL flight training simulation. The eVTOL Cognitive Agent is an AI-powered conversation agent that can 

help a pilot train on an eVTOL aircraft simulator without the need for a dedicated instructor. We aim to provide AI 

performance metrics on which to evaluate a Natural Language Understanding (NLU) Dialog Manager with a real-

time gateway to flight simulations.  

 

Intelligent agent dialog from the MR flight simulation will be integrated into collaborative multi-agent reinforcement 

learning for AI ATC traffic routing during eVTOL emergency landing scenarios. The paper also explores issues 

around robustness in reinforcement learning and evolutionary optimization problems, alongside new results in 

collaborative multi-agent systems. These outputs will provide further results in nonlinear function approximation (e.g., 

deep neural networks) and optimization methods in stochastic environments. The objectives are to: 

• Enable student pilots to interact with an urban environment populated by other eVTOL aircraft that 

depict realistic behaviors and interactions. 

• Implement an intelligent ATC entity with which both human pilot and autonomous aircraft interact to 

request clearances and routing. 

• Showcase these systems in an emergency landing training scenario requiring unplanned synchronization 

between the human pilot, ATC and the autonomous aircraft. 

 

The simulation training models a multi-agent system, including the Air Traffic Controller and eVTOL pilots 

(autonomous or human). This multi-agent system was implemented with the following objectives: 

• Ability to train using reinforcement learning with the intent of injecting human demonstration or 

feedback for fine-tuning. 

• Ability to operate in a simulation suitable for pilot training. 

• Explore issues such as robustness in reinforcement learning and evolutionary optimization problems, 

alongside new results in collaborative multi-agent systems. 

 

Additional objectives were to begin work toward complying with the recently published EASA guidelines. The EASA 

Concept Paper for Machine Learning (EASA, 2023b) for Level 1 Artificial Intelligence (assisting humans) and Level 

2 Artificial Intelligence (human-machine collaboration) aims to proactively address forthcoming EASA guidelines 

and safety standards pertaining to ML applications with safety implications. The paper provides guidance to applicants 

who are incorporating AI/ML technologies into systems designed for safety or environmental purposes. 

 

The EASA guidelines cover the following building blocks that lead to Trustworthy AI: 

● AI Trustworthiness Analysis 

● AI Assurance 

● Human Factors for AI 

● AI Safety Risk Mitigation  

 

 

 

METHODOLOGY 

 

The Mixed Reality Flight Training Device 

The MR training device is an affordable, visually immersive flight simulation designed to deliver a realistic and 

interactive virtual environment. The device offers hardware flight controls and a simplified vehicle operation cockpit 

representative of eVTOL aircraft. The device features a high-fidelity optical head-mounted display, model JVC S1, 

as shown in Figure 1.  The Generic eVTOL Simulation runs on a virtualized on-premise computing environment with 

immersive systems such as: Seat Vibration, 3D Sound, and Short-Stroke Motion. The cloud computing platform is 

used for data and ML engineering. The flight simulation is monitored and controlled by a remote Instructor Operator 

Station (IOS), while flight telemetry is collected for simulation playback and analytics. 
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Figure 1 – JVC S1 high-fidelity optical  head-mounted display on a motion device with flight control and cockpit replica 

Experimentation Design 

The eVTOL Cognitive Assistant powered by AI is parametrized to support conversation that can help pilot training 

on an eVTOL aircraft simulator, as shown by Figure 2. The ATC scenario is deployed in a synthetic environment. 

The Open Geospatial Consortium common database (OGC CDB) interacts with Computer Generated Forces (CGF) 

systems that can interface with integrated, human-in-the-loop simulators interoperable with different open standard 

High-Level Architecture communication protocols in federated exercises between multiple entities. Collaborative 

multi-agent reinforcement learning, interacting with a gateway to the simulation, executes AI Air Traffic Controller 

traffic routing during eVTOL emergency landing scenarios with intelligent agent dialog. Figures 2 and 3 illustrate the 

major components of the systems and their interconnections with each other and with the simulation services, using a 

mix of proprietary and industry-standard interchange protocols.  

 

 
Figure 2 – Cognitive Assistant High-Level Architecture 

 
Figure 3 – Simulated ATC High-Level Architecture 

https://www.cae.com/defense-security/what-we-do/training-systems/open-geospatial-consortium-common-database-ogc-cdb/
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The Cognitive Agent 

The Cognitive Agent serves as the front end to the student, as the entity with which the student can converse and utter 

requests or ask questions and receive answers. In practice, the Agent’s capabilities can be attributed to these distinct 

roles: Virtual Instructor, Virtual Co-pilot and Simulated Air Traffic Controller. For each role, a dedicated logic module 

uses various levels of sophistication, from expert systems to carefully orchestrated AI models, to interface with the 

front-end layer that supplies the voices. All is coordinated to provide the student a cohesive conversation experience. 

 

Voices 

While each role serves a purpose, it made sense to combine the roles of Virtual Instructor and Virtual Co-pilot into a 

single persona with a given voice, identified by the call sign Cassie. The Simulated Air Traffic Controller, a role 

located at a virtual fixed location outside the aircraft, was assigned a persona and voice with the informal call sign, 

Bob. The creation of these two distinct personas/voices helps the user distinguish with whom they are interacting.  

 

Role: Virtual Instructor 

The Cognitive Agent takes on tasks an instructor would typically perform, which can be further split into two roles: 

Virtual Coach and Flight Training Assistant. The Virtual Coach supplies expert guidance and insight to the student, 

including providing live feedback and session briefing/debriefing. The Flight Training Assistant can interact with the 

simulator itself to control the training session by interfacing with the remote IOS to: 

● Load lesson plans. 

● Toggle the simulation freeze. 

● Reposition the simulator to a requested location. 

 

Role: Virtual Co-pilot 

As a stepping-stone between two-pilot and single-pilot operation, the Cognitive Agent has the ability to act as a Virtual 

Co-pilot. This role interfaces directly with the aircraft system to further automate cockpit operations and reduce the 

load on the pilot. Capabilities are diverse and can include: 

● Operating aircraft functions (control the landing gear, air conditioning, light, etc.). 

● Running through checklists. 

● Monitoring flight operations. 

● Assisting with navigation. 

● Communicating with the ATC on behalf of the pilot. 

 

Role: Simulated Air Traffic Controller 

The Cognitive Agent also provides the voice of the Simulated Air Traffic Controller, and the conversation system 

actually supports discussion between the Virtual Assistant and Simulated Air Traffic Controller personas. 

Role capabilities focus on managing traffic within a simulated area in complex scenarios, including: 

● Monitoring air traffic. 

● Dispatching and rerouting aircraft. 

● Managing emergency situations. 

● Communicating with the student and with the other simulated pilots, for realistic radio chatter. 

 

 

Artificial Intelligence 

There are two AI/ML components in the eVTOL cognitive agent application: AI Speech service and Rasa Open 

Source. AI Speech service provides cloud-based, ready-to-use speech-to-text and text-to-speech capabilities where 

minimum model fine-tuning is required. The speech-to-text capability enables real-time transcription of audio streams 

into text. The baseline speech-to-text model has been trained with Microsoft-owned data, which can identify generic, 

day-to-day language. Our custom speech-to-text model is built upon this baseline with enhancements on ATC special 

terms and phrases. The text-to-speech capability converts text into humanlike, synthesized speech. The baseline text-

to-speech model is used, and there is no model customization.  

 

Natural Language Processing 

The central component of the eVTOL Cognitive Assistant application is the Natural Language Processing (NLP) 

capability powered by the Rasa Open Source framework. Rasa is an AI platform that provides the building blocks to 

create the virtual assistant, with modules performing the NLU and connecting to other services, such as the simulation 

services presented by the architecture of Figure 3. 
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The NLU processing of Rasa is customized via training data in the form of text files that define intents and stories. 

Each of the possible commands and questions the chatbot can recognize is an intent, whereas stories are used to define 

the possible flow of a conversation and the applicability of the intents at any given moment. Multiple versions of 

utterances are supplied for each intent, with the possibility to include parameters that will be isolated. For instance, 

both “reposition to ten thousand feet” and “please repos to ten k” will be classified as a “reposition” intent with a 

parameter of “10,000 ft” for use in the subsequent logic.  

 

Thus, each message incoming, as text, is processed by a sequence of components. It is analyzed in the context of the 

stories and mapped to a valid intent, if any. Additional custom modules handle the appropriate response and/or 

interactions with other services. In the case of a request to reposition, the system may reply with an acknowledgement, 

followed by a signal to request the simulation to perform the reposition then an additional vocal notification when the 

process is completed.  

 

Collaborative Multi-Agent Reinforcement Learning 

The target domain and use case is modelled as a multi-agent system (MAS), as shown in Figure 4. Two types of agents 

were identified: 

• Air Traffic Controllers, in charge of analyzing the airspace, and communicating with the eVTOL to dispatch 

commands, issue altitude clearances, and identify heading and routing patterns. This agent is also in charge 

of helping maintain aircraft separation. 

• eVTOL pilots handling communication with the Air Traffic Controller and steering their eVTOL to follow 

the flight plan. Two versions of the eVTOL pilots were developed: autonomous and “piloted.” The 
autonomous pilot manages the structured communication with the Air Traffic Controller and updates local 

waypoints to be followed by the simulated eVTOL entities. The “piloted” version replicates the human pilot 

in ownship and relies on the Cognitive Assistant to act as the translation interface in the structured 

communication with the Air Traffic Controller and the voice communication with the Virtual Co-pilot. 

 

The target simulation presents a scenario with airport and urban vertiport environment interactions. In the initial 

scenario, an airport to urban vertiport route, a malfunction forces the pilot to interact with Air Traffic Controller for 

an emergency landing at vertiport. Aerial Traffic reacts to ownship and ATC dispatches command, behaving in a non-

deterministic, scenario-style fashion. 

 
Figure 4 – Multi-agent modeling (orange identifies the agents implemented as Cogment actors, green identifies 

components belonging to the other systems) and component communication (blue for structured message communication, 

pink for airspace states, green and purple for waypoints) 

To implement, train and operate this MAS, we used Cogment (Sai Krishna Gottipati, 2021), a platform designed to 

build, train and operate AI agents in simulated or real environments shared with humans. In particular, we explored 

how Reinforcement Learning (RL) can be leveraged to train this collaborative MAS. The results of these experiments 

are presented in the Result section. 
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Figure 4 illustrates and identifies the different components of the software architecture: 

• Blue identifies the base Cogment components — the orchestrator, trial datastore and model registry.  

o The orchestrator is responsible for the execution of trials over actors and environments. 

o The trial datastore listens for the data generated by the trial, e.g., the trajectories of the different 

actors and environments. It stores this data and makes it available for AI training or other purposes 

online or offline. 

o The model registry hosts trained models and makes them available to actors. 

• Orange identifies components implemented using the Cogment software development kits include the actors 

in charge of taking action from received observations; the environment that applies the actions and generates 

situational observations; and the runners, which execute on-demand trials for interactive operations of the 

platform (i.e., a pilot playing a scenario) and batch queries to train AI models. Those components 

communicate with the Cogment components using Cogment’s gRPC API. We discuss the different actors 

envisioned RESULTS section. 

• Green identifies the simulation gateway, a set of HTTP servers able to control the simulation, the Computer 

Generated Forces and the Cognitive Assistant as described in the Experimentation Design section. 

 

Cogment relies on the formalism of actor classes derived from Markov Decision Processes. Each class is defined by 

observation and action spaces (i.e., what it perceives of the environment and what actions it can perform in the 

environment). Agent modelling is mapped into two Cogment actor classes: 

• Aircraft pilot actors represent the decision-making of eVTOL aircraft. Their observation space includes other 

eVTOL aircraft in their perception range and messages sent to them by the Air Traffic Controller. Their 

action space includes local waypoints and communication with ATC (in particular, flight plan updates).  

• Air Traffic Controller actors represents ATC decision-making. Their observation space includes the state of 

the airspace they are responsible for and communication with aircraft. Their action space includes 

communicating with the aircraft. 

 
Figure 5 – Cogment-based micro-service architecture 

Class defines what each actor can do; implementation defines how the actor performs the action. Cogment enables 

multiple implementations of each actor to coexist transparently. For the aircraft pilot actors, we have two 

implementations: 

• The ownship, which is operated by human trainees interactively, does not generate waypoints, as the 

human pilots already have control over the aircraft outside of Cogment. 

• A doctrine-based scripted behavior. 
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Trained implementations of the aircraft pilot actors, using Deep Reinforcement Learning (DRL), were considered but 

were not implemented as part of this work because sufficient perceived diversity, realism and reactivity were achieved 

by training the Air Traffic Controller, which is the focus of the following section. 

 

For the Air Traffic Controller actor, we implemented a hybrid approach leveraging a RL-trained agent, observation 

preprocessing and heuristic implementation of high-level tasks. This approach is shown in Figure 5. The first part of 

the actor implementation addresses reception of inbound messages from the eVTOLs and the update of the airspace 

to the latest known state of each eVTOL, including:  

• Current location. 

• Final destination. 

• Current route.  

• Latest takeoff, landing or routing request.  

• Incident declaration.  

 

This list of eVTOL states was used as an observation for the RL-trained agent. The output action space includes a 

combination of identifying the eVTOL and the task to be performed: “Handle Incident,” “Handle Routing,” “Authorize 

Takeoff,” “Authorize Landing” or “No Action.” A downstream process was then applied. “Handle Incident” assigns 

the nearest vertiport for an emergency landing to the eVTOL and updates the final destination of the other eVTOLs 

navigating toward the same vertiport. The “Handle Routing” process computes a new route toward the final 

destination. Other processes were simply about sending the right message to the eVTOL pilot actor. 

 

This architecture makes the role of the RL agent about prioritizing which action to take, while leaving the execution 

of the action to a heuristic process. Our RL agent training uses the Advantage Actor Critic (A2C) 

algorithm(Volodymyr Mnih, 2016) which we selected for its simplicity and stability. The A2C algorithm combines 

the advantages of both policy-based and value-based methods. In A2C, an actor network learns to choose actions 

based on observed states, while a critic network estimates the expected rewards or values of those states. The actor 

receives feedback from the critic in the form of advantages, which indicate how much better or worse the chosen 

action was compared to the expected value. This feedback helps the actor update policy, while the critic network 

updates value estimates based on the temporal difference error between predicted and actual rewards. By iteratively 

improving both the policy and value estimates, A2C enables more stable and efficient learning in RL tasks.  

 
Figure 6 - Internal architecture of the Air Traffic Controller Actor leveraging A2C 

We divided the A2C network into three smaller units. The first network processes features from the scene, such as the 

number of parking spots left in each vertiport, eVTOL routes, etc. The second network deals with the state of the 

communication channel, whereas the third process the eVTOLs locations, requests, intra-eVTOL distances among 

some other eVTOL states.  

 

The overarching A2C network concatenates the processed vectors from each of the individual networks to be mapped 

to the action space. This network architecture is dependent on the number of considered eVTOLs, destination 

vertiports and route waypoints. However, these numbers should be considered as upper bound, as the agent is usable 

with fewer eVTOLs, vertiports or waypoints by zeroing the matching input values and ignoring the matching output 

values. 
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Figure 7 - ATC A2C network architecture 

It is important to note that neither the network nor the pre- and post-process design or configuration consider whether 

the flight dynamics of specific aircraft or the environment. The only assumption is that all the aircraft types are 

equivalent, as the actor does not have any way of telling them apart. The Air Traffic Controller actor was trained by 

running a campaign of Cogment trials as a “Training Runner,” as described in Figure 7. Each trial was configured 

with a randomized list of eVTOL having randomized destinations, with the trial ending when all eVTOLs reached 

their respective destinations. The reward function was designed to heavily penalize collision and separation break to 

encourage the safety of the eVTOL flights. Trial length also carried a penalty to encourage the Air Traffic Controller 

to help eVTOLs reach their destination and thus end the trial as quickly as possible: 

 

Events Reward/Penalty 

Collision between eVTOLs -2 

Intra-eVTOL Distance <= 50 m -1 

Every Step -0.05 

 

Implementation of EASA AI Guidelines 

The Virtual Instructor, Virtual Co-pilot and Simulated Air Traffic Controller were designed with safety in mind, the 

objective to facilitate self-paced training to achieve the goals of training pilots faster and better than before. This goal 

is accomplished by leveraging AI/ML technologies and EASA AI guidelines to provide a framework that ensures the 

technologies themselves are reliable and trustworthy. As such, many of these guidelines have been incorporated in the 

development pipeline of the solution. Examples include: 

● Identifying the level of the AI application, its capabilities and its users. 

● Ensuring that procedures avoid causing bias in the trained models. 

● Assessing the risk of deskilling the users and mitigating it appropriately. 

● Ensuring the correct data is collected, managed, processed, labeled, and used to train models. 

● Documenting the solution. 

● Ensuring appropriate configuration management of the solution.  

 

 

RESULTS 

 

Model training results are currently logged and recorded in the DevOps pipeline. We evaluate the NLU component 

using cross-validation. Cross-validation automatically creates multiple train/test splits and averages evaluation results 

on each train/test split. Intent recognition performance metrics and confusion matrix is shown in the figure below: 
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Figure 8 - Intent Recognition/Entity Extraction & Confusion Matrix 

MARL Evaluation Metrics for ML Performance Monitoring 

Experiments were conducted to evaluate the realism of the resulting air traffic behavior both qualitatively, in the real-

time simulation environment, and quantitatively using domain metrics. The Air Traffic Controller was benchmarked 

against a greedy heuristic policy (first request-first service) baseline on a few scenarios with the number of eVTOLs, 

vertiports and waypoints varying between 1 and 10.  The figure below shows the increase in the AI Air Traffic 

Controller’s expected total rewards +/- 3 standard deviations with gains achieved through repeated experience across 

scenarios. One full training run lasted about 4 hours on a workstation with an Intel i9-9900K with 8 physical cores 

and 32 GB of RAM. No graphics processing unit was used for this experiment. 

 
Figure 9 – Rewards evolution during the Air Traffic Controller actor training 

 

Figure 10 – Safety metrics evolution during the Air Traffic Controller actor training 

The trained AI Air Traffic Controller’s policy turns out to be a safer ride as compared to that of the heuristic 

counterpart. The number of collisions in a scenario directed by the AI Air Traffic Controller remains practically non-

existent, with a drastic fall in the number of close encounters between eVTOLs (i.e., intra-eVTOL distance) as well. 

In comparison to the Heuristic Air Traffic Controller, the safety outcomes are considerably better.  
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Figure 11 –AI Air Traffic Controller actor learns over time to prioritize safety 

Since the trained AI Air Traffic Controller agent learns to maximize safety, proximity between eVTOLs is 

considerably greater during trials as compared to the eVTOLs directed by the Heuristic Air Traffic Controller. 

However, this causes the eVTOLs to take longer to complete their trips. These results show that the AI Air Traffic 

Controller was able to consider the safety objectives expressed as part of the reward function while fulfilling the 

assigned mission. Qualitatively, we could observe that the main difference between the greedy heuristic behavior and 

the trained one is that the latter tends to delay takeoff requests. This means the AI Air Traffic Controller was able to 

learn to anticipate conditions causing closing close encounters, in particular the traffic density around vertiports, and 

adapt behavior accordingly. We implemented the behavior of this multi-agent system using a hybrid approach that 

combined carefully crafted, but ultimately simple, heuristic processes involving the eVTOL pilot actors and the pre- 

and post-processing of the AI Air Traffic Controller actor. Conversely, we limited DRL for task priority. We 

demonstrated that, by encoding safety rules in the reward function, we could obtain high-fidelity behavior. Other 

desirable aspects could be considered by combining relevant metrics with the reward function. Furthermore, this 

approach is adaptable to new scenarios and, more importantly in the early day of the eVTOL industry, new aircraft 

dynamics through the retraining of the policy. 

 

Capability Analysis on the Implementation of EASA AI/ML Guidelines 

Engineering processes are now equipped with human factor evidence in a framework aligned with ethical standards. 

We discovered that the W-model (EASA, 2023b) of learning quality assurance allows traceability both in the 

engineering and training phases. This gives us the ability to analyze the human factors involved in the pilot's learning 

process with a higher level of trust in a human-machine-teaming context. The framework offers us a better ability to 

analyze immersive and conversational person-machine interfaces in the operation of eVTOL in an urban environment. 

 

CONCLUSION 

 

The objective of AAM activity is to transport passengers efficiently and safely in an urban environment, offering new 

challenges to pilots and traffic management systems. There is a need to develop technology to create a feasible, 

operable AAM transport system for autonomous or semi-autonomous vehicles using AI. MR flight training devices 

with artificial capability provide high-fidelity simulations to train individuals with the appropriate level of immersion 

and realism of a complex scene involving air traffic management operations in a synthetic urban environment. This 

can be leveraged to ramp up pilot qualification to meet demand, contributing a low carbon footprint and improving 

training cost efficiency. 

 

As future work, we aim to address challenges in behavior realism of the Cognitive Agent by enhancing the natural 

behavior features. Speech should align speed, volume, tone, and formulation with the pilot mindset and the context. 

The level of realism and quality of results will depend on the availability of source data. We suggest procuring 

authorized video of exemplary co-pilot and coaching behaviors, as well as written requirements/expectations from 

subject matter experts. Emotional intelligence behavior can modify the Agent's own speech and intervention based on 

various criteria, such as the pilot’s state of mind and criticality of the situation, which are factors in the ability to 

accurately replicate stress normally expressed by a co-pilot in an emergency scenario. We also plan to consider the 

capability of making mistakes and the capability to configure the stress level set by default, scripted or based on 

context. We will also study the impact of trustworthiness between the human and the Cognitive Agent during flight 
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training. We will try to identify the differences in pilot perceptions of trustworthiness, affinity, and preferences in a 

highly visually and audibly realistic Cognitive Agent. A severe uncanny valley effect may negatively impact training 

and perceived trustworthiness of the Cognitive Agent. Knowledge extraction and modeling for Cognitive Agents and 

question answering using NLP will be considered as next steps to convert the raw flight manual or other aviation 

standard and procedures into the AI solution. We will identify a scalable format and structure for such a knowledge 

base and ingest historical and generated data set using a large language model (LLM). 
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