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ABSTRACT 

 

To improve and accelerate pilot training, this paper explores the capture of cognitive and psychophysiological states 

using biometric sensors and flight telemetry to drive an intelligent human performance assessment system for adaptive 

learning. Specifically, we explore the neuroscience capabilities that could enable real-time adaptive flight training 

using a variety of data collected from a flight training session. Assessing pilot performance during a training session 

is a capability that can be partially performed by an AI-based algorithm. With technical data gathered during a flight 

manoeuvre, such assessment can provide objectivity during flight training, can be a predictor of future pilot 

performance, and adapt simulation training using a combination of flight telemetry (technical skills) and 

biometric/behavioural data (non-technical skills). Evaluation of non-technical skills remains difficult without the 

support of data analytics and proper visualization tools. Additionally, soft skills are inherently more difficult to grade 

compared to technical performance. An AI engine can provide cues on behaviours and cognitive/psychophysiological 

states that cannot be easily observed by the instructor. We conducted an experiment with 16 novice pilots in a fast-jet 

flight simulator with an e-Series Medallion visual. During the simulated flight, we recorded a wide range of 

neurophysiological including electroencephalogram (EEG), eye-tracking device, and flight telemetry. N-Back, BART 

& IGT cognitive paradigms were used prior to the simulation as a baseline. We present a concept using artificial 

intelligence to improve the cognitive load computing with the constraint of non-intrusiveness of biometric sensors. We 

also present the design of the experiment protocol as a training scenario during initial training. With an increasing 

difficulty scenario, we assessed performance based on criteria and thresholds and we provide results of a performance 

analysis. 
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INTRODUCTION 

 

The objective of this paper is to explore artificial intelligence capability & human factors in the context of pilot training 

in a flight simulation environment by using Electroencephalography (EEG), eye trackers, Facial Emotion recognition, 

and Flight Telemetry data with N-Back, BART & IGT paradigms. Biometrics analytics and data science methodologies 

are used to determine pilot performance & human factors associated with cognitive workload and decisions involving 

risk in a mission rehearsal using a 3D immersive simulation environment. In other words, our objective is to explore 

autonomous artificial intelligence capability that could enable adaptive flight training using a variety of data collected 

from a full-flight simulator and biometric sensors data. An intelligent adaptive flight-training system shall consider the 

human mental state in the learning process of the pilot. A better understanding of cognitive workload, risk-taking 

behaviour, and immersion levels are essential aspect to succeed in the real-time adaptation. 

 

The risk-taking behaviour of the pilot is a flight safety issue considering that the reward effect can incite pilots to make 

riskier decisions. This behaviour is very hard to reproduce during flight simulation and pilots know that they are in a 

simulation, so their risk tolerance is significantly higher. By increasing the immersion level of a training device, we 

hypothesize that we can improve the normalization of the risk-taking behaviour and better train on this aspect during 

mission rehearsal. The visual system of a training device is essential for the immersion level. Consequently, the 

technology level in the human-machine interface can influence the learning effectiveness. The introduction of a new 

immersive device brings the need for understanding key factors that impact human-technology interaction such as 

decision-making, reasoning, memorization, and perception. 

 

One of the research goals is to identify a method that can optimize the cognitive load calculation using non-intrusive 

biometric sensors. Can machine learning be leveraged for model transferability from engineering where intrusive 

sensors can be used, to live operation where intrusive sensors cannot be used because of privacy & logistics reasons? 

Another goal is to explore if flight performance & pilot behaviour are correlated during initial training. In a sequence 

of initial training manoeuvres, we aimed to answer questions such as: What is the variability of cognitive load between 

manoeuvres and pilot profiles?  

 

To ensure that the specific areas of focus and the experiment protocol is influenced by previous research studies, a 

focused literature review is first carried out. We also present the design of the experiment protocol as a training scenario 

during initial training. With an increasing difficulty scenario, we assessed performance based on criteria and thresholds. 

This is followed by low flight altitude manoeuvres involving risk-taking decisions as part of a contest between 

participants. The experiment protocol ends in a 2D/3D AB/Testing during an Air-to-air refuelling manoeuvre to 

observe if there are significant differences in performance with this new technology addition. In section 4, we provide 

results with a performance analysis. In conclusion, we identified potential future research using biometric sensors in 

flight training operations and present the concept of using artificial intelligence to improve the cognitive load 

computing with the constraint of non-intrusiveness of biometric sensors. More in-depth analysis of the risk-taking 

behaviour and a comparative evaluation of the perceived experience of the 3D visual are left for another publication. 
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LITERATURE REVIEW 

 

EEG and eye tracking data are tools used to study and understand the mental state of pilots in aviation as well as the 

processing of visual information. The applicability to the aviation domain as well as the methodology of data collection 

and analysis will be the primary focus of this literature review.  

 

Eye Tracking for Cognitive Workload Estimation  

Pupil size and eye blinking can be used as an index of cognitive workload where a lower eye blink rate is thought to 

indicate a higher workload, a higher eye blink rate may indicate fatigue, and larger pupils may also indicate greater 

cognitive effort or more pleasurable stimuli. Cognitive workload evaluation based on eye tracker data (Marshall, 2002), 

and a patented method and apparatus (Marshall, 2000) are used in the evaluation of cognitive activity in aviation. 

(Cabestrero, Crespo, & Quiros, 2009) also analyzed how pupil diameter can be used to reflect mental effort and 

processing resource allocation when performing a recall task under multiple cognitive load conditions. The pupillary 

diameter increased systematically until the appearance of the small plateau. No reduction in pupil diameter was 

observed when exceeding processing resource limits besides the appearance of the plateau during the last tasks. This 

indicates that participants can continue to actively process even if resources are exceeded.  

 

Scan Pattern With Eye-Tracking Data 

Other important eye tracking metrics include blinks, fixation duration and location, and saccades, the rapid eye 

movements occurring between fixations. A higher number of saccades indicate seeking behaviour. (Škvareková, Iveta 

2020) uses an eye tracker to record eye movements. The article confirms that experienced pilots were able to receive 

information in less time and had higher saccades per minute than inexperienced pilots. (Stephanie Brams et al. 2018) 

examined differences in gaze and visual scanning behaviour between high-performing and low-performing pilots. They 

also provide insight into the underlying processes that may explain perceptual-cognitive expertise under the theory of 

long-term working memory, the information reduction hypothesis, and the holistic model of perception of knowledge. 

The number of downtime and the number of transitions between AOIs differed between high-performing and low-

performing pilots. Poorly performing pilots perform a more exhaustive search and make more transitions between 

extreme areas of interest. Pilots are better able to shift their attention between global and local information processing. 

 

Understanding pilot’s reaction in flight operation using neuroscience 

(Lan, Sourina, Wang, Scherer, & Muller-Putz, 2019) recorded EEG data with 15 subjects using 32 EEG channels. In 

their paper, the authors adopted Differential Entropy (DE) as features for emotion recognition. DE features have been 

extensively used in cited literature studying the application of transfer learning techniques in EEG-based emotion 

recognition. Extending our data sample with emotion will be an addition that will complement well in an intelligent 

adaptive flight training system.  

 

(Binias, Myszor, Palus, & Cyran, 2020) attempted to predict the reaction time to an unexpected event based on the 

brain activity recorded before the event using EEG data. They measured the time lag in the participant's reaction time 

to a visual cue using regression in a flight simulation experiment with autopilot enabled. The prediction algorithms 

used are the least absolute shrinkage operator, Kernel Ridge regression and Radial Basis Support Vector Machine. 

Automated systems placed the pilot in a passive role which introduced an additional challenge should any issues arise 

as the pilot must move into an active role and resolve complex issues. (Binias, Myszor, & Cyran, 2018) dealt with the 

problem of discrimination between brain activity states related to anticipation and reaction to a visual signal and the 

selection of an appropriate classification algorithm for such problems. In this work, an EEG signal processing and 

classifier tuning methodology was proposed with the aim of analyzing data containing brain activity states related to 

an inactive but focused anticipation of a visual signal and a reaction to this signal. Experimental 

electroencephalographic data were acquired using an Emotiv EPOC+ headset. The methodology involved the use of 

different classification algorithms, such as Linear Discriminant Analysis, 𝑘-nearest neighbours, Support Vector 

Machines, Random Forests, and Artificial Neural Networks. The results suggested that the performance of a neural 

network could be significantly better than that of other algorithms and validated by an analysis of variance (ANOVA). 

 

In an investigative article by (Monteiro, Skourup, & Zhang, 2019), an in-depth review of techniques for using EEG to 

assess MF mental fatigue was performed and supported by an overview of the principles of acquisition, interpretation, 

algorithms, and trends. There are subjective ratings based on self-report to assess MF states and include the NASA 

Task Load Index, Karolinska Sleepiness Scale, Epworth Sleepiness Scale, and Chalder Fatigue Scale, but they are 

subject to bias. When evaluating MF sensing, EEG signals are composed of five main frequency bands: delta, theta, 
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alpha, beta, and gamma. The theta (θ) band can be found during drowsiness and sleep in adults. The alpha (α) band 

can be found in adults who are awake, relaxed, or mentally inactive. Frontal θ and occipital α and parietal activity are 

likely to increase as a person becomes fatigued. The beta (β) band signifies tension and anticipation and can be found 

in alert and anxious subjects. The most used preprocessing methods for MF detection using EEG include digital 

filtering, independent component analysis (ICA), and discrete wavelet transform (DWT). Commonly used feature 

extraction methods include power spectral density (PSD), statistics, and entropy measurements. When a person is 

fatigued, a decrease in the level of entropy of their EEG signals can be expected, indicating a decrease and weakening 

of brain synapses. The most used measures of entropy are Sample Entropy (SampEn), Fuzzy Entropy (FuzEn), 

Approximate Entropy (AppEn), and Spectral Entropy (SpecEn). Since the MF state is a constructed process where 

fatigue accumulates over time, a dynamic approach considering the temporal aspect becomes possible with the 

development of models such as LSTM. The article concluded by suggesting a model based on kernel partial least 

squares discrete output linear regression as a good overall option for an FM evaluation system. 

 

Neuroscience for Pilot Workload  

With ECG, Eye Tracker, and EEG complemented by NASA-TLX questionnaires, (Thomas C. Hankins, 1998) 

measured the mental workload of pilots collected during flight scenarios. Combining multiple measures such as 

psychophysiological states and subjective measures can provide a broader picture of the mental state of the pilot. Heart 

rate is useful to measure the flight demand but not on the mental workload. Eye tracker was more powerful for the 

diagnostic task while EEG theta band increased during mental calculation.  

 

Augmented cognition is a form of human-computer interaction in which sensing a user's cognitive state is used to 

invoke system automation on demand. The study by (Nicholas Wilson, 2021) monitored the pilot's in-flight 

physiological state to determine the optimal combination of EEG cues to predict changes in cognitive workload. Data 

collection was executed in a real-world flight environment with scenarios that varied in workload with a group of 

undergraduate aviation students using a single-engine trainer equipped with Garmin G1000 avionics. Some of the 

higher workload flight manoeuvres were executing a missed approach to minima and performing consecutive steep 

turns. Conversely, manoeuvres categorized as low workload included straight and level flight and taxiing in an airport. 

Power spectral density values were calculated and subjected to machine learning methods to distinguish periods of 

high and low workload. The feature extraction step was performed using power spectral analysis. Fast Fourier 

transform (FFT) was used to transform EEG into power spectral density (PSD). The Lasso cross-validation algorithm 

was used to select the most important features. The support vector machine (SVM) algorithm was used as a binary 

classifier for its robust approach to complex pattern recognition, good generalization performance, and efficient 

computational cost.  

 

Neuroscience in flight training 

(Zhang, Chen, & Wu, 2020) compared the pilot's EEG signal at different phases of flight, different weather conditions, 

and different levels of training. The results showed that EEG entropy could be used to assess the pilot training effect. 

The entropy value in windy and rainy conditions was more dispersed, which means that the frontal workload is greater 

than in sunny conditions. According to the cerebral plane, the load on the occipital lobe, part of the parietal lobe and 

the right temporal lobe increased. The increase in the occipital load during the take-off phase comes from the change 

in the exterior view of the cabin. This change will bring higher mental load to the pilots and the difficulty in processing 

information has caused the load on the frontal lobe as the whole processing centre of the brain to fluctuate considerably. 

The student will adapt to this environmental change in the later stages of flight, reducing the load on the temporal lobe. 

Trained pilots demonstrate that regular training increases excitation of the frontal and occipital lobes and as training 

time increases; the average level of entropy approach a fixed value. 

 

The ability to identify the learner's workload is crucial for their implementation of an adaptive training system. The 

study by (Baldwin & Penaranda, 2012) used an artificial neural network (ANN)-based classification algorithm using 

neurophysiological measures requiring effective real-time mental workload classification based on 

electroencephalographic (EEG) activity during the performance of short-period tasks. Classifiers determined the 

workload and the cognitive-emotional response of a learner during training were essential for the implementation of 

adaptive training. With fifteen participants, signals from the EEG and EOG electrooculogram were recorded using a 

40-channel NeuroScan NuAmps amplifier, and a 40-channel QuikCap Ag/AgCl electrode cap. Three different working 

memory tasks, the Reading Span task, the Visuospatial n-back (n-back) task, and the Sternberg Memory Scanning task 

were used. The ANN could distinguish between low and high difficulty levels quite reliably. 
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In their article, (Liu et al., 2019) proposed the use of emotion, workload, and stress recognition algorithms based on 

the use of an EEG, in addition to questionnaires and traditional feedback to study the optimal duration of the training 

of air traffic control officers (ATCOs). A 14-channel Emotiv EEG device was used to monitor the brain states of 

ATCOs as they learn to use a new 3D interface in performing aircraft trajectory operations in different weather and 

terrain conditions in addition to the traditional 2D display. Emotion and workload recognition algorithms from EEG 

signals and a stress recognition algorithm are proposed. It was observed that while emotions did not have a definite 

impact on training duration, workload and stress levels were significantly different between training duration and 

optimal training duration. Correlation analysis indicates that if ATOs have more confidence in a new system, their 

emotion is more positive, and stress and workload are lower when they learn to use this new interface. 

 

METHODOLOGY 

 

Problem Statement 

Observing students and operating the simulator can be complex for the instructor; they may miss some behaviour in 

fast pilot operations during the evaluation of complex manoeuvres. Moreover, trust in the instructors’ evaluation could 

be challenged. The use of an expert is not scalable or cost-effective when assessing non-technical skills. Soft skills are 

not as easily assessed by another human comparatively to technical skills. Without the support of data analytics and 

visualization tools, it will be impossible to identify levels of correlation across the entire rich collection of data and 

parameters available. The understanding of the cognitive load at the microlevel task requires high temporal resolution 

data that electroencephalogram can provide. However, the intrusiveness of the EEG in flight operation is preventing 

the collection of this data.  

 

Experimentation Device 

In our research, we used a fastjet flight simulation device with an immersive visual and flight controls. The 

experimentation occurred in an F16 - Flight Simulator with CAE Medallion MR e-Series visual system that provided 

natural hi-fidelity visual immersion with the objective of reducing eyestrain and fatigue. The prototype simulation 

consisted of a 200° partial sphere screen with a radius of 1m and a height of 1.5m giving a 9,42m viewable surface 

area as shown at Figure 1. The aim of such prototype was to provide Smearing/Motion-Blur reduction from unequalled 

dynamic 120Hz resolution and active eyewear was used for head movement compensation to virtually eliminate 

parallax error and 3D depth perception (Erreur ! Source du renvoi introuvable.). The flight simulator will not have 

motion enable during the experimentation.  

 
Figure 1 - Flight Simulation Visual System, Head tracker and 3D glasses 

 

The flight simulator did not use a motion system during the experimentation and the key recorded flight parameters 

were: Latitude (LAT), Longitude (LONG), Mean Sea Level (MSL), Altitude Above Ground Level (AGL), Calibrated 

Airspeed (CAS), Ground Speed (GSPD), G-Force (GTRK), Heading/Yaw (HDG), Pitch (PITCH), Roll/Banking 

(ROLL), Angle of Attack (AOA), and Engine Thrust (ENG_THRUST). 

 

Sensor’s selection 

The first step of the research was to select the biometric sensors to be used during the execution of the experiment. 

This selection must be able to consider the specific nature of a fastjet flight simulator offering the pilot a 200-degree 

field of view while maintaining data quality for the purpose of calculating cognitive and emotional state, as well as the 

path of gaze on the instruments or Area of Interest (AOI) 
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Figure 2 - Flight Simulation Cockpit and Biometric Sensors 

 

The EEG device is a tool for measuring brain electrical activity and infer mental states such as mood, anxiety, or stress 

as well as cognitive state. We recorded EEG with 32 electrodes at 1000 Hz with BrainAmp amplifiers from Brain 

Product. The EEG signal was recorded using the standard 10–20 montage. The signal was first referenced into Fz and 

then filtered using a 2nd order Butterworth 1-40 Hz bandpass IIR filter and a 60 Hz notch filter. Muscle and eye 

movement related artifacts were removed using blind source separation by independent component analysis. Before 

analysis, EEG signal was downsampled to 500 Hz. The Eye Tracker system is using 5-cameras and a Bar Tracker 

model 5-CAM DX 2.0 MP Smart Eye Pro with IR mini flashes 60Hz. Data Collected are Fixation/Dwell time, Blinks, 

Pupil diameter, Saccades and Intersection names with a 3D world model composed of Area of Interest (AOI) of the 

instrument panel. 

 
Figure 3 Smart Eye Pro dx camera + IR and Smart Eye Aurora system (Bar tracker) 

 

The bar tracker has 2 built-in cameras and 2 infrared illuminators. The system can obtain more precise metrics for 

instrument checks with the 5-camera system and was suitable for the context of a wide range FOV.  The definition of 

the world is composed of Area of Interests (AOIs) corresponding to the specific cockpit instrument area, which is done 

using a laser and a laser chessboard to calculate the world coordinates using various geometric shapes to design the 

3D world. The device is able to obtain the metric to about 150 cm around the subject. However, if the subject is seeing 

a point beyond, the system does not detect properly the world intersection, or it might have interference. The gaze 

calibration is performed with every subject using the device. If a gaze calibration is not performed, the results may 

have a variation between 3 and 7 degrees with respect to the point to which the subject is looking at.  

 

Experimentation Protocol 

The experimental protocol was designed in a mirror fashion composed of two artificial and controlled tasks and then, 

valid ecological flying tasks. The first experimental task was a synthetic n-back task (Susanne M Jaeggi, 2010), which 

is known to gradually manipulate mental workload. The corresponding simulator task was a sequence of maneuvers 

designed to incrementally increase the mental workload of the pilot through maneuver difficulty. The second 

experimental task was a BART, created to manipulate risk-taking behaviors. The corresponding task was a risk-taking 

free-flying task during which the participant had to fly near mountains and valleys. The artificial tasks were 

implemented using the software package E-Prime 3.0 from Psychology Software Tools and performed before the two 

ecologically valid flying task. Sixteen participants recruited from a Flight Training Company with a beginner profile 

or first step in piloting were favoured in order to promote the collection of data in cognitive overload. All human 

subjects have signed a consent form to participate in this experiment. As shown in Figure 4, the simulation tasks are 

divided in three categories, the initial training manoeuvres, the low flight altitude task and the Air-to-Air refueling 

with a MRTT Tanker. 
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Figure 4 - Flight Simulation Tasks Sequence 

 

The human testing activities will consist of simulated real-world scenarios in various controlled setting environments. 

 
Figure 5 - Experimentation Protocol Diagram 

 

Initial manoeuvre with increasing difficulty 

The first phase of the experiment consists of flying “twisler”. It consists of a few little simple manoeuvres, which 

requires looking at various flight parameters such as banking, pitch, altitude, and speed. This phase is inline with the 

technical test done on the A310 simulator where a pilot was coached by an instructor to execute a few simple 

manoeuvres in an initial training context. Manoeuvres corresponded to a variation of 4 parameters: speed, altitude, 

heading, and banking. After a free flight to familiarize with flight control and the aircraft reaction, we started the 

exercise with an aircraft stabilization manoeuvre. The following 4 manoeuvres consisted of changing one of the flight 

parameters in isolation, one at a time. The following 4 manoeuvres consisted of the same principle but varying two 

parameters simultaneously. The following two manoeuvres varied 3 and then 4 parameters simultaneously to complete 

this exercise phase with a vertical loop before stabilizing the aircraft. There are three blocks of flight manoeuvres 

shown as low, moderate, and high mental load. Each manoeuvre was associated with appropriate flight actions and led 

by a flight instructor, who recorded each participant's performance and signalled the end of each manoeuvre as a 

synchronization marker between the data. The assessment was made by an instructor that evaluated the participants 

after the execution of each maneuver. The factor for assessment was time, fluid stabilization, slope of the change, and 

compliancy to the threshold. We used a tolerance for the various flight parameters as followed: Altitude: 100 ft, Knots: 

5 ft, Deg. Heading: 5 deg, Deg. and Banking: 5 deg 
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Low flight altitude for Risk-Taking Behaviour 

To assess risky behaviours, we performed a computerized decision-making and risk-taking activity followed by a 

simulated flight activity involving a risk-taking task. The first task, two experimental computerized risk-reward risk-

taking tasks were performed, an Iowa game task (Antoine Bechara, 1994) and a Balloon Analog Risk Task (BART) 

(Lejuez, 2002). The second phase involved risk taking. Where a participant was asked to sustain an altitude above 

ground at various thresholds, where each threshold paid points to a leaderboard. The objective was to incite pilots to 

manage risk and their strategy in order to gain points.  In a simulation through the British Columbia Rockies Mountains, 

we asked the participate to choose a mountain or a valley that may create a multiplier factor of: Valley = x1, Small 

Mountain = 2x, Big Mountain= x3 with the above point distribution per altitude level 0-250 ft = 100 pts, 251-500 ft = 

50 pts, 501 – 1000ft = 25 pts, Crash or >1000 ft = 0 pts. Participants got 3 trials to accumulate points and we gave a 

TLX questionnaire after the third trial. 

 

2D/3D AB Testing during Air-to-Air Refuelling Manoeuvre 

In the third phase, half of the participants started with 2D visual display then switched to 3D, another half started with 

3D then finished with 2D. We were inspired by (Wen-Chin Li, 2014) where the scenario was an air-to-air task in a jet 

fighter simulator studying eye movement. We asked participants to execute a Mission rehearsal of an air-to-air 

refuelling. We assessed the performance based on time to reach the in-flight refueling pole (boom) of the MRTT 

Tanker and the stability of the flight while keeping the boom in range. We gave a TLX questionnaire after each trial. 

 

Data Analysis Methodology 

In this section, we will present the methodology of the analysis of the performance data for this experiment. Our goal 

was to develop an autonomous method to score or grade each pilot’s performance through various flight manoeuvres 

based on their telemetry data. Our prediction would be as the manoeuvre’s difficulty increases; the performance of the 

pilots would decrease. In relationship to the telemetry data, we also want to analyze and correlate the results of the 

eye-tracking data using an ANOVA test. It is important to note that all participants were anonymous for the experiment 

and analysis to be objective. Successful training of supervised machine-learning approaches for classification required 

objective ground truth to provide annotated examples of the classification target. In the case of the research, we used 

two deep learning models, a fully convolutional neural network (FCN and a residual network (ResNet) to estimate 

mental workload.  

 

Data Description 

There were three data sources taken from this experiment, Smarteye’s eye Tracker, Brain Vision’s EEG, and Objective 

Assessment. Smarteye log files are generated from the videos captured by the Smarteye camera system. There is one 

log file per participant.  The log files contain tab-separated entries. The number of rows in each log file is the frame 

numbers captured by the Smarteye camera. Each log file has 485 columns. The log files can be loaded as a data frame 

in pandas (a 2D data structure), which could be very useful for various analytics tasks. Each time stamp is 16.7 ms 

with a frequency of 60 HZ. Objective Assessment was a measure of the telemetry data from the flight manoeuvres 

performed. The measurement of the objective assessment was on different parameters that include Altitude, Banking, 

Heading, Speed, and Pitch. The objective assessment of the experiment was based on the exceedance occurrences, 

standard deviation, and time. Each time stamp is 240ms. We used two deep learning models, a fully convolutional 

neural network (FCN and a residual network (ResNet) to estimate mental workload. EEG data was exported as CSV 

files that include FCN & RESNET methods. 

 

Performance assessment method 

Objective assessment was based on the telemetry data of each pilot and the following factors: Exceedance occurrences, 

Standard Deviation and Time of flight. The objective score was scored from 0-4 and was averaged based on the 3 

factors above. The Standard Deviation factor is scored based on the standard deviation of each parameter: Altitude, 

Banking, Heading, Speed and Pitch. Each manoeuvre differed from one another, since some of them had one, two, or 

all parameters. The pilot’s standard deviation for a given manoeuvre was in comparison to the preset tolerance each 

manoeuvre had for each parameter (Altitude, Banking, Heading, Speed & Pitch). Time was to be scored based on the 

difference the pilot took on each manoeuvre in comparisons to the time of tolerance for the specific manoeuvre. The 

time tolerance was preset based on the mean time it took for all participants to finish the given manoeuvre. Time score 

was also scored from 0-4. The Exceedance occurrence factor is based on how consistent the pilot would stay within 

the tolerance of each manoeuvre and its parameters. The factor was measured on how much time of the entire 

manoeuvre did the pilot spend outside of the tolerance. It was also scored from 0-4. 
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Hypothesis test method 

One-way ANOVA test was performed to compare the means of multiple grouped sets of data.    

Null hypothesis: Groups means are equal (no variation in means of groups) 

 H0: μ1=μ2=…= μp        

      p-value< 0.05 

Alternative hypothesis: At least, one group mean is different from other groups 

 H1: All μ are not equal        

    p-value> 0.05 

 

After finding the p-value, a post hoc comparison was made using a Tukey honestly significantly differenced (HSD) 

test to know which group was significantly different from each other.  The ANOVA test assumption was primarily 

checked by using the Shapiro-Wilk test that analyzed the normal distribution of the residuals. Depending on whether 

the results were drawn from normal distribution or not, a Bartlett’s test was used to check the homogeneity of the 

variances to see that it was normally distributed and Levene’s test when not normally distributed.  

Null hypothesis: Group variances are equal (no difference in variance of groups) 

 H0: σ1
2 = σ2

2 = σ3
2  

      p-value< 0.05 

Alternative hypothesis: At least, one group variance is different from other groups 

 H1: All σ are not equal        

    p-value> 0.05 

 

AOI and Workload Correlation method Using the Gaze Tracking method 

A one-way ANOVA test was performed to compare the means of 3 AOI grouped sets (Not looking, slightly looking, 

Looking a good amount) of data in comparison to each flight parameter (Altitude, Banking, Heading, Speed & Pitch). 

ANOVA test was done 5 times in total, split up by manoeuvres that flight parameter mattered. A one-way ANOVA 

test was to be performed twice for the workload (fixation & saccade). The means of 3 different groups for the objective 

and subjective scores were compared to the fixation and saccade. The objective and subjective scores were split into: 

Bad (Score under 2),  Average (Score between 2-3), Good (Score between 3-4) 

 

RESULTS 

 

Flight Profiles 

With the 5 parameters studied as time series per task (Altitude, Speed, Heading, Pitch, Banking). Figure 6 is an example 

of a flight profile for the altitude change task. We can see different profiles with good/bad stabilization, some short/long 

manoeuvre time, and multiple peaks prior to the targeted altitude prescribed by the training scenario. 

 

 
Figure 6 - Flight profile - Altitude change task 

 

The Table 1 presents the result of tested accuracy and device specifications using a variety of candidates prior to the 

experimentation.  
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Table 1 - Eye Tracker Accuracy Assessment and Specifications of Smart Eye’s eye tracker 

  Gaze Tracking (Able 

to track gaze) (1) 

Gaze tracking - Calibration 

results (Deviation/Accuracy) 

Head tracking, (Able to 

track head) (3)(4)(5) 

Head Tracking, Field 

of vision (Range) (2) 

5-Cam Bar Tracker 5-Cam Bar Tracker 5-Cam Bar Tracker 5-Cam Bar Tracker 

No glasses 99% 90% 
1.5° deviation, 

0.8° accuracy 

0.2° deviation, 

0.6° accuracy 
> 97% > 97% > 180° 90° – 130° 

Wearing 

glasses 
80% 70% 

3.5° deviation, 

2.5° accuracy 

2.7° deviation, 

3.2° accuracy 
> 97% > 97% > 180° 90° – 110° 

Long hair 99% 90% 
1.3° deviation, 

0.9° accuracy 

0.7° deviation, 

1.3° accuracy 
> 90% > 90% > 180° 90° – 130° 

Helmet 99% 90% 
1.1° deviation, 

0.2° accuracy 

0.6° deviation, 

0.2° accuracy 
> 90%  > 90% 90° – 150° 90° – 110° 

Communication 

device 
90% 90% 

1.9° deviation, 

2.7° accuracy 

0.5° deviation, 

0.8° accuracy 
> 90%  > 90% 90° – 150° 90° – 110° 

Covering ears 90% 90% 
1.5° deviation, 

2.4° accuracy 

0.3° deviation, 

0.8° accuracy 
> 90%  > 90% 90° – 110° 90° – 110° 

Facial hair 90% 90% 
1.8° deviation, 

2.6° accuracy 

0.4° deviation, 

0.7° accuracy 
> 97% > 97% 90° – 150° 90° – 130° 

Make-up 99% 90% N/A N/A > 97% > 97% > 180° 90° – 130° 

Covering 

mouth 
90% 90% 

N/A N/A 
> 90%  > 90%  > 180° 90° – 130° 

(1) The use of multiple cameras compensates both eyes and a unified gaze direction is streamed, (2) The metric of the 

5-Cam according to the position of the cameras, (3) Affected by the field of vision and the angle between the subject 

and the camera, (4) Affected by covering facial features, (5) This result can improve creating a manual profile for the 

subject 

 

Performance Assessment Analysis 

The Figure 7 represents the average of objective and subjective scores for the entire experiment for each participant. 

There is a discrepancy between the objective and subjective scoring. The subjective scoring can be influenced by the 

emotional aspect of the person scoring the participants. However, with the objective scoring, everything is rational, 

and feelings are not a factor when giving a score. Figure 7 also presents each manoeuvre graphed with the comparison 

of the objective and subjective scores. As the manoeuvres increase in difficulty, the objective scores start to decrease 

which goes along with the initial hypothesis.  

 

 
Figure 7 - Grades per participants and per manoeuvres 

AOI Correlation results 

An ANOVA was done to analyze the correlation between the eye tracking of the participants and their performance 

with the objective score. From the results below, it was concluded that the hypothesis of manoeuvres that altitude, 

pitch, and speed factored in, the more time the participants/pilot looked at the gauges for those parameters, the better 

their objective score would be. The results, however, differed for the speed and heading parameter where a p-value 

above 0.05 was seen.  
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Workload Analysis 

Two end-to-end deep learning models were trained to learn features and mental workload levels based on the EEG 

signal recorded during the n-back tasks. Two models, an FCN (91% accuracy) and a ResNet (92% accuracy) algorithms 

trained on the task data provided us a good mental workload level estimation. The models were trained to discriminate 

mental workload level from the cleaned signal data. Sanitary checks of the models were performed for their 

physiological plausibility. The results matched expectations: an increase of manoeuvre complexity led to an increase 

of high mental workload classifications, and a decrease of maneuver performance. There is also a close link between 

the pilot's mental workload and eye movements, if a pilot does not have optimum conditions, eye movement changes. 

We define the two parameters as saccades and fixation. The saccade is defined as the rapid movement of the eyes 

between two fixations. Fixation is defined as a condition in which an individual visually collects and interprets 

information available in the range of the eye over a period of time. 

 

In an article from the 9th International Conference on Air Transport "Number of Saccade & Fixation Durations as 

Indicators of Pilot Workload". They measured the effects of mental stress caused by a lack of training and flight 

experience. They’ve concluded that with a higher saccade per minute, experienced pilots were able to receive 

information in less time. A shorter stay on flight instruments allowed more experienced pilots to scan other areas of 

interest. They also had more time to detect any errors and then start the correction. To compare our results with the 

research paper, we’ve used an ANOVA test to validate the performance assessment in relationship to the Saccade & 

Fixation of each pilot. The hypothesis was done four times, twice each for saccade and fixation using both objective 

and subjective scores. The scores were divided into 3 categories of bad, average, and good.  

 
 

Test Objective Score P-Value Subjective Score P-Value Result 

Saccade 0.0002 0.48 Reject, means are different. 
Major Correlation between 
"Good" and other scores. Fixation 4.9E-9 0.1 

 

The results of the ANOVA test further validates the research previously done. Both the Saccade and Fixation p-values 

were under 0.05 by a significant amount showing that the means of the different groups of the objective score have a 

major correlation between each other. With a higher saccade per time frame, the pilots achieved a higher objective 

score. However, the same cannot be said using the subjective score, further proving the objective scoring scheme is 

more accurate and should be utilized more than the subjective score. For further validation, we have also graphed the 

ratio of fixation over saccades in comparison to the assessment score per manoeuvre to give a more robust level of 

attention to the pilots. Pilots who achieve a higher score tend to have a lower ratio of fixation per saccade. Incorrect 

scanning patterns from the pilots could lead to information overload and staying longer on a flight instrument. The 

difference between these numbers of fixation per saccade for pilots is mainly because successful pilots were able to 

receive information in a shorter time and continued with the scanning technique of instruments.  
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CONCLUSION 

 

The objective of this study was to explore artificial intelligence capability & human factors during initial flight training 

session. Those insights contribute to explore how we can enhance the instructor's awareness of the cognitive workload, 

and scan student’s pattern. As an eventual capacity of an intelligent adaptive flight training system, the session can be 

tailored to maximize the students in real time. We also aimed to develop a conceptual method by using artificial 

intelligence to keep the strength of an EEG device in the engineering phase and prevent the addition of intrusive sensors 

during real flight training operations. For this we used biometric sensors in a simulator training session and explored 

how we could use data science on a number of training manoeuvres that could be used to assess pilot performance 

during initial training tasks, risk-taking behaviour tasks and air-to-air refueling tasks within a new human interfaces 

machine technology to improve training programs and immersive systems. As expected, we found that as manoeuvre 

complexity increased, workload and perceived mental workload measured by NASA-TLX also increases. We also 

found that correlation exists between the scanning pattern and the flight performance. This indicates to us that biometry 

sensors can bring a new kind of insight towards objective measurement in the assessment of the human performance 

in the flight operation. 

 

For future work, we consider going further in the cognitive workload estimation methodology. We would like to 

identify and compare multiple algorithms that are able to classify and predict cognitive load, flight performance, and 

risk-taking behaviour. We would like to address questions such as: How can we predict the outcome (technical/non-

technical) of a manoeuvre on biometric & flight telemetry data?  Does cognitive load risk-taking behavior is affected 

by the cognitive load? What is the correlation between flight performance with telemetry and psychophysiological 

state? How can we detect and predict flight performance based on the cognitive load index? The dataset we accumulate 

can be used in future analysis around risk-taking behaviour at low altitude manoeuvre. The results of formal data 

analysis using anticipated statistical methods would provide insight into participants' risk behaviours and the level of 

cognitive workload required when taking risks. This study will aim to analyze the human factors associated with risky 

behaviours using the characteristics of central and autonomic nervous system activity and answer questions such as: 

What is the neurophysiological state involves risk-taking behaviour. What is the performance impact for the various 

risk behaviors? We will also propose to use machine-learning methods to build a risk classification model using other 

flight simulation models to valid portability of machine learning algorithms for pilot performance & behaviour. 

Analysis using biometric sensors to assess initial training and risk-taking behaviour of novice pilots. Which machine 

learning algorithms are more suitable to apply risk-taking behaviour classification and prediction?  

 

To contribute to flight safety, those capabilities can be matured up with an R&D project into a business-centric 

initiative. Using a real Crew Resource Management (CRM) training session on a large number of experienced pilots, 

we will explore how we can augment the technical readiness level of neuroscience capability. We will consider 

operating emergency manoeuvres in a flight-training session commercial aircraft simulator in a flight-training centre 

using non-intrusive biometric sensors and certified flight instructor. We will show a method to evaluate perceived 

experience using self-reported data with the 2D vs. 3D visual system as an A/B testing results. We will also test the 

usage of artificial intelligence to provide an optimization of the cognitive load index measured by eye tracker and 

pupillometry. By using supervised machine learning with pupillometry as a feature and EEG cognitive load index as 

the target label, we can provide a machine-learning model that is deployable without the intrusion of an EEG in flight 

operation, as presented by the Figure 8 

 

 
Figure 8 - Cognitive Load Optimization with EEG label in machine learning process 



 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2023 

2023 Paper No. 23412 Page 13 of 13 

ACKNOWLEDGEMENTS 

 

Acknowledgements to Andrea Lodi, Research Director from Polytechnique de Montréal, Patricia Gilbert, Marc St-

Hilaire, Andrew Fernie, Ginet Andreina Calderon Perez Philippe Perey from CAE Inc. and Alexander Karan, 

Nicolay Nonchev from HEC-Tech3lab  

 

 

REFERENCES  

Antoine Bechara, A. R. D., Hanna Damasio, Steven W.Anderson. (1994). Insensitivity to future consequences 

following damage to human prefrontal cortex. Cognition,, 50(1-3).  

Baldwin, C. L., & Penaranda, B. N. (2012). Adaptive training using an artificial neural network and EEG metrics for 

within- and cross-task workload classification. NeuroImage, 59(1), 48-56. 

doi:10.1016/j.neuroimage.2011.07.047 

Binias, B., Myszor, D., & Cyran, K. A. (2018). A Machine Learning Approach to the Detection of Pilot's Reaction to 

Unexpected Events Based on EEG Signals. Comput Intell Neurosci, 2018, 2703513. 

doi:10.1155/2018/2703513 

Binias, B., Myszor, D., Palus, H., & Cyran, K. A. (2020). Prediction of Pilot's Reaction Time Based on EEG Signals. 

Front Neuroinform, 14, 6. doi:10.3389/fninf.2020.00006 

Cabestrero, R., Crespo, A., & Quiros, P. (2009). Pupillary dilation as an index of task demands. Percept Mot Skills, 

109(3), 664-678. doi:10.2466/pms.109.3.664-678 

Lan, Z., Sourina, O., Wang, L., Scherer, R., & Muller-Putz, G. R. (2019). Domain Adaptation Techniques for EEG-

Based Emotion Recognition: A Comparative Study on Two Public Datasets. IEEE Transactions on Cognitive 

and Developmental Systems, 11(1), 85-94. doi:10.1109/tcds.2018.2826840 

Lejuez, C. W., Read, J. P., Kahler, C. W., Richards, J. B., Ramsey, S. E., Stuart, G. L., ... & Brown, R. A. (2002). 

Evaluation of a behavioral measure of risk taking: The Balloon Analogue Risk Task (BART). Journal of 

Experimental Psychology: Applied, 8(2).  

Liu, Y., Lan, Z., Traspsilawati, F., Sourina, O., Chen, C.-H., & Muller-Wittig, W. (2019). EEG-Based Human Factors 

Evaluation of Air Traffic Control Operators (ATCOs) for Optimal Training. Paper presented at the 2019 

International Conference on Cyberworlds (CW).  

Marshall, S. P. (2000). 6090051. U. S. Patent. 

Marshall, S. P. (2002). The Index of Cognitive Activity Measuring Cognitive Workload. Paper presented at the IEEE 7' 

Human Factors Meeting, Scottsdale Arizona.  

Monteiro, T. G., Skourup, C., & Zhang, H. (2019). Using EEG for Mental Fatigue Assessment: A Comprehensive 

Look Into the Current State of the Art. IEEE Transactions on Human-Machine Systems, 49(6), 599-610. 

doi:10.1109/thms.2019.2938156 

Nicholas Wilson, H. T. G., Jessica VanBree, Bradley Hoffman, Kouhyar Tavakolian. (2021). Identifying Opportunities 

for Augmented Cognition During Live Flight Scenario An Analysis of Pilot Mental Workload Using EEG. 

Paper presented at the International Symposium on Aviation Psychology.  

Susanne M Jaeggi, M. B., Walter J Perrig, Beat Meier. (2010). The concurrent validity of the N-back task as a working 

memory measure. PubMed, 18(4).  

Thomas C. Hankins, G. F. W. (1998). A comparison of heart rate, eye activity, EEG and subjective measures of pilot 

mental workload during flight. Aviation Space and Environmental Medicine.  

Wen-Chin Li, C.-s. Y., Lon-Wen Li, Matthew Greaves. (2014). Pilots Eye Movement Patterns during Performing Air-

to-Air Mission. Paper presented at the Proceedings of 31st European Association for Aviation Psychology 

Conference.  

Zhang, F., Chen, D., & Wu, D. (2020). Analysis of Pilot’s Training Effect Based on EEG Signal. Paper presented at 

the 2020 IEEE 2nd International Conference on Civil Aviation Safety and Information Technology 

(ICCASIT.  

 


