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ABSTRACT 

The US Government Accounting Office (GAO) has recommended actions to the US Department of Defense (DoD) 

services to improve their management and oversight of DoD’s virtual training programs (GAO, 2017): 
 

1. Specify requirements for virtual training devices (VTD) to include:  
a. time available to train with the devices. 

b. intended usage rates to achieve proficiency standards.  
 

2. Enable usage data to be collected and analyzed after VTD fielding to:  

a. determine the effective use of the device. 

b. systematically inform future virtual training programs. 

 
These recommended actions suggest changes in VTD requirement statements, design, engineering, and testing for all 

future (even existing) DoD virtual training programs, especially those that will integrate with new learning systems 

such as the Army’s Synthetic Training Environment (Stone A, 2017).  

 
The GAO recommendations align with work of an Institute of Electrical and Electronics Engineers (IEEE) consortium1 

to establish Learning Engineering as a professional practice. Learning Engineering is a set of interdisciplinary team-

based processes and practices that includes applying modern learning sciences, human-centered systems engineering, 

and data-informed decision making to the engineering of learning solutions and, with regard to future military VTDs, 

can result in better learning outcomes as part of a larger learning ecosystem.  
 
An objective proposed by this paper is to integrate Learning Engineering with other DoD-sponsored initiatives such 

as the Total Learning Architecture (TLA), including a set of core data standards from the IEEE Learning Technology 

Standards Committee (LTSC)2 portfolio.  These standards apply directly to DoD military-service acquisition, 

management and maintenance of VTDs or any other type training system. The DoD TLA and related LTSC standards 

support learning engineering, recommended data collection and analysis requirements, as well as the data-informed 

decision-making of future VTD requirements. 
 
This paper offers a framework for incorporating the processes and practices of learning engineering with data 

standards to inform VTD design requirements, selection, and specifications. 
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INTRODUCTION 

In 2017, the US Government Accountability Office (GAO) made recommendations to the Department of Defense 

(DoD) services that they “improve the management and oversight of their virtual training device (VTD) programs… 

to more efficiently and effectively acquire and integrate virtual devices into operational training…” (GAO, 2017).  The 

recommended actions included: (1) documenting requirements that include the training tasks and objectives a future 

VTD will help service-members develop proficiency in;  (2) develop capability to collect VTD usage data and 

analyzing it to determine the training time needed to be allocated, and usage rate expected to occur, to effectively 

build proficiency in the targeted tasks and objectives with a VTD; and (3) creating policies that define a consistent 

process on how to analyze and evaluate how effective a VTD is at training targeted task proficiency after its initial 

fielding - that can inform future VTD engineering improvements or selections. 
 
A VTD is defined here-in as any technology that synthetically simulates or stimulates a person’s or sensor’s perceived 

information that would be used while performing an occupational task while conducting operational training.  This 

includes large-scale platform or combat system virtual simulators/simulators, PC based virtual “games for training” 

type software, and cell-phone, head-worn or other forms of mixed-reality devices. 
 
Many of the GAO recommendations being asked for are consistent with common systemic models of engineering 

training solutions and strategies. Today with the integration of adaptive learning systems, supported by modern 

learning science informed content, and the power of artificial intelligence (that requires continuous data to improve), 

as well as developing technologies to capture many forms of real-time learner cognitive, psychomotor and affective 

data, a new systemic model of defining VTD requirements and conducting its engineering design, testing and life-

cycle management is needed.  This new model should include more specific learning outcomes, iterative formative 

tests using learner-centered methods and practices, and a data-informed post-fielding life-cycle management process 

that systemically informs future VTD requirements and/or selection specifications. 

DISCUSSION 

The GAO recommended actions to reinforce a principle for any form of learning technology, whether for the military, 

government or industry: it is less about tools, devices, or specific content themselves, and more about the degree of 

learning and experience the technology produces. This is part of a Learner-Centered Design concept (Soloway, E., 

Guzdial, M., & Hay, K.E., 1994). No doubt it can be challenging to manage the technical engineering requirements 

of learning technology, while maintaining a clear focus on the priority objective of achieving needed learning 

outcomes.  Therefore, it is important that a process of engineering VTD subsystems be integrated with the process of 

designing, and enabling the production of meaningful data produced by the VTD subsystems during a learning 

experience. In this way, a learning engineering-based team can work together to make decisions on the best technical 

trade-offs, while ensuring the final system designed features fully leverage the science of human learning and 

performance enhancement. 
 
For example, as represented in Figure 1, engineers must understand that human learning is not an instantaneous 

transaction that creates learning because of a feature they design work alone but because it creates learning over time, 

within an experience (Kolb, 1984), and the context and focus the experience provides. At the same time, learning 

science tells us that all humans learn at a normalized rate; what makes the difference noted between people who seem 
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to learn at different rates isn’t because of system features, innate ability or disability but the number of learning 

opportunities or experiences one person can accumulate, and the quality of those experiences (e.g., fidelity matching,  

differences in contexts, difficulty matching, etc…), compared to others (Koedinger, K, et.al., 2023).  At the same time, 

no technology can rush learning; it simply takes time and experience to elevate an individual or team to whatever 

standard of competence a branch of military service requires, for a given occupational task. This is especially true in 

the occupation of warfighting, which isn’t learned well in controlled static environments. Context when learning also 

must be matched to the environment it will later be recalled and applied (transferred) in (Murnane K, et.al., 1999) – 

i.e., volatile, violent, complex and dynamic real warfighting environments.  In addition, learning science has shown 

us long ago that human knowledge and skill naturally atrophies over time, thus requiring continuous “maintenance” 

through experiences, just like any other material system does (Ebbinghaus,1885).  This is because human learning 

requires new proteins to be synthesized constantly in the brain by use and recall activities (Glasgow, S.D., et.al. 2023). 

 

 
Figure 1. Typical Human Learning Loss / Retention and Competence Development  

 
Because humans learn in these ways, the requirements, the engineering, the testing and the use of a VTDs after initial 

fielding, as recommended by the GAO, should adopt these human learning principles in order to maximize return-on-

investment, while managing a VTDs ability to integrate and “keep up” with changing ecosystem capabilities, doctrine, new 

operational environments, and today’s evolving near-peer competitors.  In short, the methods used for VTD learning must 

continuously evolve with the learning science it employs, the needs of the learner, and the information, tools, 

procedures and environments learners must ultimately perform within. 

METHODS 

We suggest a new systemic engineering model is needed to address the GAO recommended actions noted above, and 

the integration of VTDs into new virtual training and data management technologies.  Two key enterprises are 

suggested to incorporate these changes of existing DoD VTD training programs: 

 

1. IEEE sponsored and multi-disciplinary informed Learning Engineering processes and practices, and  
2. Data standards, architectures, levels, and reporting standards initiated and specified by the DoD. 

 

IEEE Learning Engineering 
 

Learning Engineering provides a system-of-systems approach to the design and data-driven iterative optimization of 

learning and training solutions, and provides a super-positional perspective during the component development of any 

learning experience. As such it increases the methodological rigor of learning experience design by holistically 

integrating human-centered design, data instrumentation, engineering mindsets and concepts, and the learning 
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sciences to support the planning, execution and evaluation of the primary goal of any training device program: 

achieving specifically-targeted human performance objectives (Goodell, J., Kessler, A., & Schatz, S., 2023). This 

includes working with and helping to inform multiple other occupational disciplines required to develop VTDs within 

the advanced and complex modern learning ecosystems, such as currently being developed in the U.S. Army’s 

synthetic learning environment (STE) program (Stone A, 2021). 
 
Learning Engineering is a concept that was first suggested in the 1950’s (Charters, 1951) and again in the 1960’s 

(Simon, 1967), and has evolved into a burgeoning area of technical and methodological expertise supported through 

open practices of professional community building, and the development of professional competencies.  This venture 

is being orchestrated through the IEEE Industry Consortium (IC) on Learning Engineering (ICICLE), a consortium 

sponsored by the IEEE Learning Technology Standards Committee. The processes and practices being investigated 

and developed by ICICLE stakeholders address findings, best practices, and data-driven advances developed across 

multiple disciplines over the past decade (IEEE, 2023). These Learning Engineering methods are leveraged and 

practiced within and across various industry and academic organizations – including recently in the research and 

development of the US Army’s Synthetic Training Environment Experiential Learning for Readiness (STEEL-R) 

Science and Technology project (Blake-Plock, S, Owens, K., Goodell, J, 2023; Goldberg, B., Owens, K., Gupton, K., 

et.al, 2021).  
 
Learning Engineering is “a process and interdisciplinary practice that applies the learning sciences using human-

centered engineering design methodologies and data-informed decision making to support learners and their 

development” (Goodell, J., Kolodner, J., 2023). In practice, this includes the systematic application of evidence-based 

principles and methods from multiple discipline areas including educational technology engineering, the latest 

neuroscience and learning science, and includes practices from data-science, computer-science and even creative arts 

to create engaging and effective learning strategies and experiences to overcome difficulties and challenges of learners 

as they learn, as well as using data-informed analysis to better understand teams and learners, and their needs for 

learning and improving performance, as well as making engineering decisions on features and capabilities.  The 

overall systemic model is shown in Figure 2. 
 

 
Figure 2. The learning engineering process adapted from iFEST poster  

(Goodell, J., Kessler, A., & Schatz, S., 2022) and (Schatz, S., & Goodell, J., 2022). 
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Learning Engineering strategies are varied and can be applied to take on challenges such as that of the GAO 

recommendations. As applied to the improvement of task objectives and learning outcomes as relate to VTD, these 

strategies can include: 

 
● Applying learning sciences. Design and test VTDs based on the scientific principles of how people learn 

(Goodell, J., Kolodner, J., & Kessler, A., 2023). For example, some studies have shown that more costly and 

higher production value learning modalities can be less effective than lower cost options (Saxberg, B., 2018). 

Test unknowns using iterative experimentation and data-informed decision-making. 
● Using human-centered design. Engage learners early and often in the process to test assumptions related to 

GAO recommendations such as time available to train with the devices and viability of estimated usage rates and 

durations to achieve proficiency standards. Human-centered design typically involves understanding learner 

variability, developing personas to refer back to during design, making ideas concrete with prototypes, and testing 

ideas iteratively with representatives of the learner population. (Thai, K. P., Craig, S. D., Goodell, J., et.al, 2022). 
● Applying engineering principles and methodologies. Employ a system-of-systems perspective during VTD 

component development. Consider factors other than the device. Consider how other subsystems and supersystem 

factors such as learner schedules will impact outcomes such as times required to achieve proficiency. Use early 

VTD fielding experiments for collection and analysis of data to understand weaknesses in the current approach, 

detect boundaries of effective use of the device (Barr, A., Dargue, B., Goodell, J., et.al, 2023). This supports the 

GAO recommendations to inform future virtual training programs, device maintenance, and future device 

improvements. 
● Employing data instrumentation and analytics at all stages of the learning engineering process. Design and 

develop data pipelines while developing the VTD and use those data for adaptive feedback to learners, to inform 

the training command, and to inform the learning engineering team for iterative improvement of the VTD 

(Czerwinski, E., Goodell, J., Ritter, S., et.al, 2023). Analyze data from rapid-cycle A/B testing to inform design 

decisions (Barrett, M., Czerwinski, E., Goodell, J., et.al, 2023). 
● Learning engineering strategies may have broader implications as to how VTDs are procured and developed 

(Hernandez, M., Blake-Plock, S., Owens, K., et.al; Blake-Plock, S., Owens, K., Goodell, J., 2023). For example, 

the learning engineering process calls for a rapid-cycle iterative, data-driven approach. The GAO 

recommendations also suggest a more iterative and data-informed approach to R&D in which one iteration of a 

VTD or program can systematically inform future virtual training programs. Rather than a single long-term project 

budgeted for a single release of a VTD, a learning engineering approach would budget and plan for a gated 

sequence of releases, beginning with low technology prototypes tested with end-users and leading to iterative 

releases that field test the device with increasingly added proficiency standards coverage and tuning. 
 

Data Standards 

 

As the military services and the general public are experiencing the many real episodes of combat from the war in 

Ukraine on a daily basis from the ubiquitous sources of raw data available in the battlefield, it provides a perfect 

example of how modern data collection capabilities can not only inform the general public in near real-time of the 

state of war but produce evidence to engineers, tacticians and performers of the effectiveness of systems, tactics, 

techniques and features previously designed.  In short, data can be considered the “new ammunition” of warfare, and 

is as valuable as the material capabilities a new VTD provides in operational training.  Today the practice of capturing, 

saving and analyzing longitudinal learner data is not well established in doctrine or practiced in the military services. 

However, programs like STE, and projects like STEEL-R, are requiring new doctrine and data strategies that future 

VTDs will need to integrate with and adopt.  However, what will be needed are standards so that all data provided 

from built-in VTD learner sensors, learning tracking methods, and formats can be stored, shared, analyzed and used 

for the various insights it can provide VTD management such as usage rate and time, as well as to define what specific 

tasks and performance standards the VTD best supports from its measures. 

 
The maturation of Learning Engineering within the IEEE has matched parallel developments in the maturation of the 

Total Learning Architecture (TLA) within the DoD and the maturation of the IEEE Learning Technology Standards 

Committee (LTSC) data standards that support the TLA. This threefold alignment of methodology, architecture, and 

technology standards is at the core of the new paradigm available to VTD. The core standards activities within the 
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LTSC – covering metadata, activity, competencies, and summative records – are at the center of an ecosystem of 

interconnected software technologies that include the: 
 
● Enterprise Course Catalog (ECC) – which in a modern extended learning environment can be thought of as a 

repository and index of available learning experiences. 
● Experience Index (XI) – a learning experience metadata repository governed by IEEE P2881. 
● Experience Design Tool (XDT) – a learning experience scenario builder that shares data within the experience 

application program interface (xAPI) modality. 
● Learning Record Providers (LRP) – data sources that emit event-based activity data in the xAPI format and which 

can leverage xAPI Profiles as models. 
● Noisy LRS – a Learning Record Store nearest to a data source where the primary function is to validate the data 

as conformant to IEEE 9274.1.1. 
● LRSPipe – which is a data forwarder-filter governed by xAPI Profiles as defined by IEEE P9274.2. 
● Transactional LRS – which validates filtered xAPI data and ensures that it is made available to downstream TLA 

business systems. 
● Competency Assertion – which aligns to the shareable competency definitions concepts represented by IEEE 

1484.20.3. 
● Reporting – which can take the form of native xAPI Learning Record Consumers or commercial off-the-shelf 

(COTS) business intelligence platforms fed data from the TLA databases. 
● Learner API – which is currently in development as the communication capability sitting between the 

transactional layer of the TLA and the summative layer: whereas LRSPipe exclusively sends data between LRSs 

to manage the data flow and business-readiness of event-based activity data (on the right side of the chart below), 

the Learner API (on the left side of the chart) communicates with systems both within and without the TLA to 

update the state of the learner in the summative sense of records, competency levels, and credentials. 
● Enterprise Learner Record Repository (ELRR) – which is defined by the data model of IEEE P2997 and which 

stores the roll up of enterprise data about the learner both as derived from the learning activity generated within 

the TLA and by human capital and other systems integrated with the Learner Profile database. 
● Business Systems – that use the data flow of the TLA in part or whole to accomplish a variety of tasks ranging 

from readiness assessment to workforce and mission human resource planning. 
 
This triad of methodology, architecture, and technology standards should be central to the modernization of VTD and 

the assurance of alignment between data-instrumented technical capability and data-driven learning outcomes. Table 

1 below presents the STEEL-R use case to illustrate how material requirements and corresponding learning experience 

requirements can be supported through this standards-based data architecture and can therefore support key phases of 

the VTD lifecycle process. 
 

Table 1. Connections between material and learning experience requirements in US Army STEEL-R project. 

 

Requirement Type 

Design 

Methodology Platform Capabilities Standards 

Material / Technical TRL 5-6 GOTS 

R&D + COTS; 

Agile 

methodology 

AWS cloud 

architecture w/ XDT, 

LRS, LRSPipe, 

CaSS, Data Vis 

General technical approach: Standards-

based scenario design, data capture, 

business filtering, competency assertion, 

and reporting 

IEEE 1278.2 DIS, 

IEEE 1516 HLA, 

IEEE 1484.20.3 

Learning Experience 

(LX) 

Competency-

based 

Experiential 

Learning 

STEEL-R learning 

science and 

capability set 

Specific LX-required approach: Data 

flow governed by xAPI Profiles with 

standardized metadata to provide 

standardized evidence to the competency 

assertion system 

IEEE 9274.1.1 

xAPI, IEEE 

P9274.2, IEEE 

P2881 LOM/XI, 

IEEE 1484.20.2 

RECOMMENDATIONS 
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Requirement writers and managers of the military service’s VTD programs can neither manage nor monitor their 

programs sufficiently if they don’t have the right systemic processes, and teams of people with the right mix of 

competencies.  In addition, VTD programs need data-informed performance criteria to defend design decisions and 

specifications regarding learning-related features. The requirement writers and device engineers of VTD programs 

need the right tools and techniques in order to evaluate their designs and to collect continuous empirical data during 

the device’s life-cycle.  Finally, without such data, it is extremely challenging to inform the user with doctrine on how 

to best employ a VTD because without data, they simply cannot understand how often and how long they need to 

employ the VTD to achieve the learning objectives and performance standards they’re designed to help achieve. 
 
To provide a decision-aid to DoD programs or proponent-offices on what processes of Learning Engineering and data 

standards to incorporate into VTD engineering, management and oversight, Table 1 below provides a matrix of key 

Learning Engineering process areas and degrees of incorporation from a non-learning engineering process to one that 

is fully incorporating the learning engineering process.  Note that not all these processes-areas and levels need to be 

adopted holistically or uniformly but, in any combination; they are intended to work systemically together.  Once a 

working VTD is developed and tested or fielded, data must then be collected and analyzed to determine if the 

engineered VTD supports the learning and proficiency standards required by the service, and its usage specifications 

to achieve those standards. 
 
Table 2. Learning Engineering Capability Maturity Model 

 

Process Area Level-0 Level-1 Level-2 Level-3 

Team 

Teams are formed 

into primary and 

alternate roles, 
with regular 

scrums and 

meetings, and a 
common 

understanding of 

what min 
performance and 

learning solution 

outcome is 
required. 

Teams are formed ad-hoc 

within a outside 

organization without given 
specific roles and no 

regular collaboration 

scrums to work with each 
other's capabilities and 

solutions. No common 

vision of what minimum 
performance or final 

learning solution outcomes 

need to be. 

Teams are formed from 

initial challenge data 

collection and analysis.  
Are assigned and fall into 

specific roles.  Still don’t 

collaborate and scrum 
regularly or as much as 

they should.  May or may 

not have a common vision 
of minimum performance 

or learning solution 

outcome.  

Teams are formed and 

mature into consistent roles 

based on best talents.  
Always have a consistent 

vision of min performance 

and learning solution 
outcome with data support.  

Meet regularly (scrum) to 

look at test data, see 
progress of others, and 

iterate with work by other 

team-roles’ 
effort/solutions.  

Teams are formed and are 

smaller because each 

member can perform more 
than one role.  Always have 

a consistent vision of min 

performance and learning 
solution outcome with data 

support.  Meet regularly 

(scrum) to look at test data, 
see progress, iterate with 

work by other team-roles’ 

effort/solutions. 

Team members 
take initiative as 

needed, 

communicate 
regularly, and are 

cross-trained for 

shared 
understanding and 

collaboration.  

Team members have 
limited or no knowledge of 

the other team roles’ 

domains of knowledge, 
vocabularies and skill-sets. 

Don’t take initiative.  

Little to no collaboration 
or cross-support. 

Team members have some 
awareness of what other 

team roles bring to the 

learning engineering 
process.  Take some 

initiative to support but 

don’t collaborate, share 
information. 

Team members have 
received some training in 

other roles’ knowledge, 

skills and attitudes.  Take 
initiative.   Endeavor to 

directly support other roles 

and communicate/. 

All team members are 
competent in each learning 

engineering team-role and 

can anticipate or support 
other team roles’ directly or 

indirectly.  Take initiative to 

ask other roles if support is 
needed, share information, 

and communicate regularly. 

Process 

The learning 
engineering 

process is used 

A waterfall and non-
iterative process is used. 

Another process is used 
that lacks some elements 

of the learning engineering 

process, e.g., challenge-
centric, iteration, human-

centered, data 

instrumentation, data 
analytics. 

The learning engineering 
process is used without full 

fidelity or limited by 

constraints of the enterprise 
policy structure.  

The learning engineering 
process is used with full 

fidelity and is fully 

supported by the enterprise 
policy, e.g., budgets for 

maintenance and continuous 

improvement.  
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Iterations 
appropriate for the 

challenge 

No iteration (one and 
done) 

At-least one iteration of 
improvement after initially 

implemented. 

Multiple data-informed 

iteration(s) of 

improvement after initially 

implemented.  

A process of continuous 

improvement (informed by 

learner experience data) 

continues for the life of the 
product.  

Applies the Learning Sciences 

All team members 

have basic 
knowledge of 

learning science 

with at least one 
team member 

serving as an 

expert on the 
learning sciences 

and best practices. 

No one on the team has a 

basic understanding of key 
learning sciences concepts.  

Principles or methods used 

are based on “faux 
science” - lore of how 

people learn best not 

supported by empirical 
science.  Management 

direction is provided 

without learning science 
expertise being consulted 

or considered 

One or some team 

members have some basic 
knowledge of learning 

sciences concepts but not 

expert-level competence. 

At least one member has 

expert-competence in 
learning sciences and best 

practices.  Not always 

consulted in all key design 
decisions or applied 

research methods 

appropriate to the context 
of the learning challenge.  

All team members have 

working knowledge of key 
learning sciences concepts. 

At least one team member is 

a learning sciences subject 
matter expert.  Is consulted 

in all key decisions and 

testing, and employs applied 
research methods 

appropriate to the context of 

the learning challenge. 
 

Using Human-Centered Design Process 

Understanding 

learner and their 
use of learning 

solutions 

variability (use of 
personas and user 

journeys) 

Solutions are developed 

without consideration of 
targeted learner persona or 

learner population, and use 

variability (e.g., prior 
training, environment and 

technology available and 
learning-related constraints 

and advantages. 

Solutions are developed 

with a general idea of the 
target learner but not the 

contextual use of a 

solution in a user journey 
nor are solutions compared 

to iterative target learner 
or refined by the target 

learner feedback or use 

data… 

Solutions are developed 

with a persona and user 
journey but solutions are 

not then compared to this 

profile or tested or refined 
by real user test data…  

Learner personas and user 

journeys are used to guide 
design, and compare to and 

update based on new data 

results. Solutions are 
adapted to scaffold and 

make accessible to learner 
variability. 

User-test 

prototypes with 
learners in 

iterative cycles 

that produces data 
to analyze and 

improving the 

released product 

Few team members use a 

static “waterfall” ADDIE 
process of analyzing, then 

designing, then 

developing, then 
implementing, then 

evaluating the solutions 

based on initial 
requirements. 

Team works more through 

different ADDIE stages at 
same time, across roles 

and lanes, with prototype 

learning solutions, then 
tests and iterates in each 

team lane 

Team works more through 

different ADDIE stages at 
same time, across roles and 

lanes, with prototype 

learning solutions then tests 
and iterates as a team… 

Team works more through 

different ADDIE stages at 
same time, across roles and 

lanes, with prototype 

learning solutions then tests 
and iterates with a target 

learner from the target 

population. 

Using System Engineering Design Principles 

System-of-systems 

perspective 
Team domains/roles focus 

only on assigned specific 
solutions or components of 

the overall learning 

solution design without 
consulting others.  No 

preliminary analysis or 

prototyping done to show 
what areas are needed to 

be solved first and how. 

Team domains/roles work 

from each other’s ideas but 
don’t understand the 

“bigger picture” of the 

overall vision or don’t 
understand other assigned 

component-solutions 

enough to work toward 
that larger vision/solution. 

Team roles all understand 

larger overall solution 
vision, and the component 

parts required of the 

architecture or curriculum 
but don’t produce common 

interfaces or standards to 

integrate each solution 

Team roles all understand 

larger overall solution 
vision, and the component 

parts required of the 

architecture or curriculum, 
and use common interfaces 

or standards to integrate 

each solution components 

VTD as a closed-

loop control 
system 

No data is collected and 

analyzed from iterative 
prototype testing, or used 

to give team members 

feedback or to adjust and 
optimize current solution 

designs and development. 

Data collected during 

iterative VTD testing with 
target learners not 

regularly briefed or not 

used by team members to 
adjust and optimize current 

solution designs and 

development.  

Data collected during 

iterative VTD testing with 
target learners, and 

regularly briefed.  Team 

members do adjust and 
optimize current solutions 

but the process does not 

continue after the initial 

Data collected during 

iterative VTD testing with 
target learners, and regularly 

briefed.  Team members do 

adjust and optimize current 
solutions and this data 

collection process continues 
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solution is delivered to 
learners.  

after the initial solution is 
delivered to learners.  

Consider outlier 
data, conditions 

and failure 

workarounds 

Team screens or throws 
out single-point outlier 

data or conditions as 

statistical anomalies that 
will not impact core 

solutions. 

Team saves and looks at 
data and considerations 

more longitudinally and 

latitudinally but screens or 
dismisses without thinking 

about impact to learning if 

they happen during use. 

Team saves and looks at 
data more longitudinally 

and latitudinally, saves 

outlier data for revealing 
possible impacts to learning 

but doesn’t build in 

alternative or back-up 
learning options. 

Team uses outlier data to 
detect failure modes and 

produce back-up or 

alternative learning features 
to circumvent these failures, 

and produce future solution 

improvements.  

Data Informed Decision-Making 

Instrumented 

learning 
experiences and 

environments. 

The training device is not 

instrumented to collect 
learner experience data. 

Team designs 

instrumentation that relies 
on limited proprietary 

“readers” or special-access 

/ licensed software (e.g., 
software development kit) 

to access. The log data is 

not useful for analyzing 
the learning analytics that 

could be used to inform 

iterative improvement of 
the solution. 

Team develops 

instrumentation using 
standard protocols (e.g., 

xAPI) and open-access 

well-defined access points. 
Data captured is limited in 

insightful sources, 

extensible access sources.  
Creates data output feature 

(e.g., after action review 

tool” that isn’t related to all 
min performance or 

learning outcomes, and/or 

only captures activity 
launch and completion 

events. 

Team develops scalable 

instrumentation API that 
uses standard open-source 

protocols (e.g., xAPI) and 

can be expanded to capture 
more insightful sources that 

can be translated to 

assessing any min 
performance or learning 

event outcomes 

Appropriate 

analytics at 

various stages of 
the learning 

engineering 

process. 

The learning solution is 

developed based on 

subjective assumptions 
that are not supported by 

empirical data analytics of 

targeted users, 

environments and context. 

Initial learning solution 

design is based on data 

from existing legacy 
solutions that clearly 

reveals gaps in minimum 

performance standards or 

learning outcomes 

(criteria) and/or data 

sources to determine those 
standards and criteria. 

Learning solutions are 

based on empirical data 

(from R&D or other 
projects) collected from 

legacy solutions that reveal 

new learning solutions to 

achieve required standards 

and learning outcomes.  

Not continued after the 
solution is delivered. 

Learning solutions are based 

on empirical data (from 

R&D or other projects) 
collected from legacy 

solutions that reveal new 

learning solutions to achieve 

required standards and 

learning outcomes.  data 

collection and improvement 
continue after the solution is 

delivered to target learners. 

CONCLUSION 

While reportedly the DoD services have made progress in the noted GAO recommended actions since 2017, it is 

suggested they may still need evolve, especially with the advent of a recent growing professional discipline focused 

exclusively on the domain of optimizing experiences, content and technology for human learning and performance – 

i.e., Learning Engineering – and new DoD data requirements, technologies, standards.  This paper has provided some 

discussion on why VTD features need to be specified and designed from the latest information provided from learning 

science.  We have also endeavored to provide rational explanations as to why the learning engineering and data 

standardization enterprises have direct application to support military service VTD production, as defined in the cited 

GAO recommendations.  Finally, this paper provides specific recommendations directly to the program leadership 

and life-cycle management of VTD programs.  As always, more research, discussion and collaboration will likely be 

needed to ensure these recommendations are refined to address each military service’s unique problem space. 
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