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ABSTRACT

A novel schedule forecasting methodology (Nostradamus Objective) was developed to predict schedule risk of a
unique, large-scale acquisition program that is characterized as low volume, highly complex, new product
development (NPD) effort at its early stages. The goal was to produce objective evidence-based product-delivery
schedule forecasts with high precision. Nostradamus was designed to model a manufacturer’s accuracy in projecting
it’s product components completion dates of a recently-delivered unit (i.e., “past information”), and combining it with
“current information” to make accurate/objective delivery date forecasts for subsequent units currently being
manufactured. The approach, while does not use a Bayesian formulation, has a Bayesian-like strategy. The past
information used conforms with the “reference class concept” described by Nobel Prize winning work of Daniel
Kahneman and coworkers and possesses the highest similarity to products being manufactured. Additionally, the
algorithm ranks a list of components that significantly affect product delivery dates. Hence, targeted measures can be
taken to favorably affect the product delivery dates and reduce the overall project schedule risk. The product’s major
components, and associated estimated completion dates (ECDs), which are defined, determined, and provided by the
manufacturer, constitute the current information. The current information and manufacturer’s estimated product
delivery date, collectively define the Line-of-Balance (LOB), which is provided at each Program Management
Review. The “Accuracy Level” probability distribution function of the ECDs is defined and calculated for a most
recently delivered product and utilized in a subsequent Monte Carlo simulation with the current information, to
generate a product delivery failure probability (DFP). This DFP was used to generate the Nostradamus Objective’s
forecast of product delivery date at any probability level. Results of the tests indicated that, over a 2.5 year project
duration, Nostradamus Objective achieved a time-averaged forecast imprecision value of -3%, as compared to 143%
by the manufacturer, thereby providing reliable, precise, and consistent schedule assessments from which program
risks can be identified and mitigated.
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INTRODUCTION

Project cost overruns are closely linked to schedule delays for major defense acquisition programs. The Government
Accountability Office (GAO) previously found that manufacturing/integration and testing phases are most at risk of
incurring cost and schedule growth. As of June 2022, NASA’s portfolio of major projects experienced cost and
schedule overruns while more projects were added. Out of 21 major projects in the development phase of NASA’s
acquisition process, 15 were responsible for a cumulative cost overrun of approximately $12 billion and cumulative
schedule delays of 28 years. But just three projects—the James Webb Space Telescope, Space Launch System, and
Orion—are responsible for more than three-quarters of the cost growth and almost half of the delays, see Russell, et
al. (2022).

Based on an exploratory case study from one of the largest manufacturing plans of a global company, Koteshwar
(2017) listed nine key challenges in the management of new product introduction projects: (1) designing/identifying
the right resources (identifying the time for the right resources), (2) time-readiness and schedule, (3) stage-gate
administration, (4) old ways of working, (5) poor communication and time-sharing, (6) missing learning opportunities
(lack of action to spread the lesson, hence avoiding the same mistake), (7) defining business case, (8) poor coordination
and alignment between different sub-projects, and (9) more projects with less competences. In an audit report, NASA
identified the following challenges to meeting cost and schedule goals (see, Martin et al. (2012)): a culture of optimism
estimating ability to overcome risks inherent in delivering projects within available funding constraints, technical
complexity inherent in most projects, project managers’ struggle to execute projects in the face of unstable funding,
decrease in the number of small projects where aspiring managers can gain hands-on experience, and concerns
regarding the decline in number of personnel with new product development experience and whether NASA can
continue attracting technical talent. In complex new product introduction projects, there are larger levels of variations
in scope, engineering, and late-stage changes that lead to late product deliveries. Additionally, with the involvement
of a multitude of domestic and international suppliers, it is challenging to ensure that they work together to meet the
pre-planned time schedule. Moreover, it is difficult to plan a specific target date for an entire program schedule
involving multiple projects, investments, and suppliers. Indeed, a delay in equipment delivery from one supplier can
affect the entire schedule for product delivery by the manufacturer. Finally, as noted by Javedi et al. (2013), there are
challenges specific to a low-volume production system, such as: knowledge transfer from the sub-projects into
manufacturing/production, development of the work instructions, the need for a higher level of training for the
operators and production system design, and the required tailoring of new products to the existing production systems.
All of the aforementioned factors make schedule forecasting for low-volume highly-complex new product
development a challenging endeavor.

On-schedule availability of highly-reliable and complex new products (such as a gas turbine aircraft engine, space
station, rocket engine, etc.) is quintessential for executing a program within cost and schedule constraints.
Specifically, availability of key technical hardware is dependent on successful qualification and acceptance tests
following product delivery by the primary manufacturing contractor, an event that commonly experiences schedule
delays, but is difficult to predict or project. Recognition of the short-comings of existing schedule forecasting
methodologies, prompted the investigation, development, and innovation of more objective approaches. Availability
of such new powerful tools, further empowers customers or users of these tools, specifically the US Government
(USG), with capabilities for future project schedule management in its acquisition programs. Therefore, objective
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estimates of the product delivery date and the subsequent required-tests completion date are of paramount
importance.

The team members took two completely different approaches, addressing the challenging problem of schedule
forecasting at two different manufacturing and testing phases of a new and highly complex product. Forecasting for
testing phase will be submitted at a later NDIA conference. This is because of major differences in the nature of the
tasks and processes involved in these two phases, which led to different schedule forecasting methodologies, using
different principles, logical, analytic, and computational tools. In the following, only the manufacturing phase
schedule forecasting is discussed.

BACKGROUND

In this section we concisely review relevant and required features of schedule forecasting methodology to generate
objective project duration forecasts that minimizes or eliminates possible biases. The novel Nostradamus forecasting
methodology described here contains all of the important features. This section should also facilitate an understanding,
appreciation, and recognition of important features in the Nostradamus Objective forecasting approach (hereafter
referred to Nostradamus). To the best of our knowledge, this is the first time that such a unique approach has been
proposed and implemented in literature.

In project management, cost and resource distribution is influenced by project duration. We make distinction between
the planning or decision-making phase and the actual implementation phase of a project. However, in both cases, an
objective evidence-based forecast of the project duration is of paramount importance. During the planning stage of a
project, the main interest is often on cost-benefit analysis. This is specifically a helpful tool in public investment policy
and planning. During the implementation phase, one is interested in the project’s progress, as compared to what was
planned, cost overrun, and identification of possible measures to compensate for any delays in project completion
date.

Unfortunately, as documented by Flyvbjerg and Bester (2021) and Flyvbjerg (2006), cost-benefit analysis, if not
practiced carefully, is of less value because of psychological and political biases in its process that account for
inaccuracies observed in forecasting. The psychological source of forecast inaccuracy stems from “optimism bias”, a
cognitive predisposition found with most people to judge future events in a more positive manner than is warranted
by actual experience. Explanation of inaccuracy in terms of optimism bias has been developed by the work of Daniel
Kahneman, see Kahneman (1994), Kahneman and Tversky (1979a, 1979b) and Lovallo and Kahneman (2003). They
found that human judgement is generally optimistic because of “overconfidence” and “insufficient regard to
distributional information.” Hence, people will underestimate the project costs, completion times, and risks of planned
actions, whereas they will overestimate the benefits of the same actions. Such behavior termed the “planning fallacy”
and is reasoned that it originates from people or forecasters who take an “inside view” by focusing on the constituents
of the specific planned actions or tasks rather than on the outcomes of similar actions or tasks that have already been
completed. The latter source of forecast inaccuracy comes from strategic misrepresentation.

To compensate for the type of cognitive biases that Kahneman and Tversky found on decision making under
uncertainty (which won Kahneman the 2002 Nobel Prize in economics), the “reference class forecasting (RCF)”
approach was developed. They show that RCF can bypass human bias, including the ones mentioned earlier. In
experimental research performed, RCF has been demonstrated to be more accurate than conventional forecasting
methods. The study demonstrated that errors of judgement are often systematic and predictable than being random,
suggesting bias rather than confusion. Interestingly, such errors in judgment are shared by both laymen and experts
alike and that errors remain compelling even when the actor or forecaster is fully aware of their nature.

Traditionally, project managers focus on the specifics of the considered project (e.g., particular actions, tasks/subtasks)
to produce estimations, as they attempt to forecast uncertain events that would influence the future course of the
project. Such an “inside view” forecasting approach is based on human judgment. RCF, however, takes an “outside
view” on planned actions. The outside view on a given project is based on knowledge about actual performance in a
reference class of comparable projects. Therefore, RCF does not try to forecast the specific uncertain events that will
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affect the particular project, but instead places the project in a statistical distribution of outcomes from a “class of
reference projects.”

Batselier and Vanhoucke (2016) compared the project duration forecasting performance of RCF with those by
baseline estimate, task-duration-based classical Monte Carlo (MC) simulation (Gantt chart with symmetrical and
asymmetrical triangular probability distribution for action or task durations), and Earned Value Method (EVM) for
real-life construction projects. The study found that RCF was the most user-friendly because it does not require
detailed information (such as distributional data on task/subtasks durations for MC simulation) or extensive
calculations (such as periodical forecast updates for EVM). Although RCF produces pre-project forecasts that remain
constant throughout project execution (just like baseline estimates and Monte Carlo simulation), it surpasses all the
traditional techniques in terms of accuracy, stability, and timeliness. The dominance of RCF in accuracy is especially
remarkable, considering that the competing EVM technique offers forecasts that are updated at tracking points during
the project progress. Furthermore, the strong performance of RCF occurs for both cost and time forecasting in nearly
equal measure. The key point to emphasize for the RCF approach is that a reference class (for schedule & cost
forecasting) should consists of projects that are sufficiently similar to the considered project in order to attain the
required level of accuracy in the forecasts.

The novel Nostradamus forecasting approach, while completely different than RCF (in formulation and execution
details), maintains and implements key concept that a reference class as similar as possible to the project at hand, is
to be used in some form, if an objective and accurate project duration is critical and required.

The Nostradamus forecasting methodology was developed in response to the realization that the existing conventional
forecasting approaches were ill-equipped to be applied to low-volume, highly-complex new product development
efforts practiced under USG acquisition process. The term “complex or complexity” is used in the sense defined by
William and Hillson (2002). The William-Hillson’s model of complexity is an extension of the Baccarini’s model, in
which uncertainty was added to two complexity dimensions, see Baccarini (1996). The two dimensions by Baccarini
are the number of elements and the interdependencies of these elements. In essence, they attribute the increasing
complexity of a given project to two compounding causes: the relationship between product complexity and project
complexity, and the length of the project.

In addition to the complex nature of the product and project, an important feature of the scenario considers the fact
that the forecasting of the project duration was to be accomplished for a new product that has never been built in USA.
Hence, a significant departure from past experiences caused high uncertainty in so many processes, such as design,
analysis, and particularly manufacturing. The following work focuses on forecasting the time duration needed for
manufacturing and delivery of the first few units of a new product. It should be made clear that this method considers
manufacturing and delivery of each unit of product as a single project for which product delivery-date forecasting is
required. Additionally, the experimental data was limited to three identical product units, each at different stages of
manufacturing, such that some or all learnings from a predecessor unit were transferred to subsequent units (learning
curve effect). As explained later, Nostradamus does take into account such a manufacturing process improvement in
its forecasting approach.

ACCURACY-LEVEL (AL) FORECASTING CONCEPT

In this work, the terms “task” and “component” are synonymous and refer to major tasks and major component,
however, the word “major” is often omitted. A major “task” is defined as a set of all “activities” required to
manufacture a major “component.” Therefore, once a major task is successfully completed, an associated major
component is manufactured. For example, a compressor-turbine unit is a major component for a turbocharged
automotive engine, while nuts and bolts are not considered as major components. Here, a component can be a hardware
or a software needed to control one or more hardware items. Nevertheless, these major components (or major tasks)
are entirely defined by the primary manufacturer. A “product” is defined as an assembly of major components. The
term “task” is more general, in a sense that its accomplishment may lead to a hardware, a software, or simply a service.
The end of a project is determined at the time when all of the pre-defined major tasks are completed, and the final
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hardware, software or service is delivered. In what is presented here, a limited quantity of units of the same new
products are being manufactured with different manufacturer-estimated delivery dates distributed into the future. The
objective is to forecast delivery dates for each of these products.

Nostradamus uses two important pieces of information to forecast the product delivery date by the “primary
manufacturer” (hereafter referred to as “manufacturer”). The first is the “performance” on a recently-delivered product
(referred to as “source product”). Here, the “performance” is assessed and quantified by determining “accuracy level
(AL)” the manufacturer was able to achieve in estimating the completion dates of different components of the product
in question. Note that the methodology uses the essence of the “reference class™ concept, and its validity is justified,
because the information used by Nostradamus is as close as one can possibly reach to this concept. It should be clear
that the Nostradamus forecasting methodology works for the second new product delivered by the manufacturer and
beyond, relying on an performance assessment from a most recently delivered product. However, this limitation can,
to a large extent, be addressed through use of a reference class product delivered in the past (not the same product),
although for a completely new and complex product of the type, the efficacy of this approach was not investigated
here. Further studies are examining this case and will be published.

The second important piece of information Nostradamus uses to provide product delivery date forecasting is the
“current information” from a not-yet-delivered product (referred to as “forecast product™) for which delivery forecast
is needed. To understand how this is achieved, the term “line of balance (LOB)” as used in this work is introduced.
The LOB consists of a list of major components or tasks of a product, along with the associated estimated completion
dates (ECDs), and expected product delivery date. The LOB is provided by the manufacturer and updated at every
periodically-held (2 to 4 weeks) Program Manufacturing Review (PMR) meeting. There is no need to specify any
interdependencies between these components or tasks, as it is assumed that schedule interdependencies between major
components are taken into account by the manufacturer and reflected in the ECDs. Nostradamus only requires dates
the manufacturer thinks or estimates each of the

The ACCUFaCV-LEVd Definition components would be completed. Updated
manufacturing schedules (ex. LOB, IMS) are
SCENARIO AFTER A PRODUCT IS DELIVERED often part of the contractual agreement between
Product Product the USG and the manufacturer, and are
Manufacturing ) i Manufacturing required, if Nostradamus is to be used. It is
Estimated Completion Actual Completion
Start Date Date (ECD,) for Task# 5 Date assumed that at any PMR date, and to the best
by Ma““?;:;'e’(fmm = of their knowledge, the manufacturer’s
\v §: engineers and project managers considered all
Actual H H H
eetimated Number of é 3 §= Comcpll:eation relevant a_lspects of engineering, m_ar\ufacturlng,
D_?éi; EO(TP'ete S g | Date for Task# 5 and available resources pertaining to the
as rom H . . . - -
manufacturer’s LOB) § % g ! project, in their published estimated component
g H (or task) completion dates. This is reasonable,
| 8! as manufacturers, especially those involved in
P e medium/large scale projects, have vested
“PMR10” represents : interest in such a practice and estimates needed
thegate at which the Days Actaally | for their own internal project management
10 PMR was held Took for Task 5 purposes.

In summary, Nostradamus uses  schedule
Accuracy Level of Task# 5 = Eg/ (Days Actually Took for Task# 5) information from a completed unit to forecast
the product delivery dates of subsequent units
Figure 1. Shows an example as to how the Accuracy Level of an  using analysis of periodically released LOBs
estimated completion date (ECD) for task #5 (or component #5),  that contain a comprehensive list of major
can be computed after when the product manufacturing is  components/tasks. This concept appears
completed and it is delivered. The ECD is assessed by the  similar to the Bayesian approach, where prior
manufacturer and, in this example, given on the 10th PMR. The information is used along with new information
logic applies to all other task ECDs provided in the LOB  to provide a posterior knowledge. However,
spreadsheet.
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details of the Nostradamus’ approach, are quite different than the Bayesian approach.

The Nostradamus forecasting approach is based on the concept of “Accuracy Level (AL)” of the product
manufacturer’s task or component estimated completion date (ECD). The AL is defined as the number of days
estimated by the manufacturer to complete a given task (Ei) divided by the “actual number of days” it took to complete
this same task (ECD; — PMR;_Date). Note that this “actual number of days” is known by the time a product is
completed and delivered. The AL values are often presented as percentages in which AL values less than, equal to, or
greater than 100% indicate that the task completed later than, exactly on, or earlier than planned, respectively.

For a clarifying example, let us assume that a manufacturer is working on the very first product. At its 10" PMR event
held on 1/10/2011, the manufacturer provided an updated LOB spreadsheet file consisting of 40 components, assembly
of which constitutes a completed and deliverable product (see Fig. 1). On this LOB, one reads that the component #5
(or task #5) will be completed on 5/20/2011, as displayed in Fig. 1. On this PMR date of 1/10/2011, it is unknown
how accurate this manufacturer’s estimate is. However, the “accuracy level” can be calculated once this first product
is delivered. Let us further assume that the completed product is delivered on 12/20/2011, but component #5 was
completed earlier on 8/15/2011. Therefore, the “accuracy level” of the manufacturer’s ECD for component #5, as
stated on the PMR date of 1/10/2011, is equal to (number of days from 1/10/2011 to 5/20/2011) divided by the actual
duration to complete (number of days from 1/10/2011 to 8/15/2011) resulting in an = AL = 130/217 = 0.599 (or
59.9%) for this single ECD pertaining to the component #5. Figure 1 explains how the AL is calculated after a product
is delivered.

In general, at “jth” PMR for a given product presented on PMR;_Date, the following relationships hold for any task
#i (or component #i):

E; = ECD; - PMR;_Date 1)
AL = E;/ (ACD; — PMR;_Date) )

Where, E; (i.c., “E for task #i”) is expressed in “number of days” between the two dates, ECD; (Estimated Completion
Date for task #i) and PMR;_Date, AL; is the Accuracy Level for task #i (or component #i) at PMR;, and ACD; is the
date when task #i was actually completed. The term (ACD; — PMR;_Date) is the “number of days it actually took for
task #i to be completed,” which is only known when this task is actually completed.

As an example, a project which held 15 monthly PMR events for a product consisting of 40 components, will result
in a maximum of 40x15 = 600 AL values once the product is completed and delivered. This dataset should be sufficient
to construct a well-behaved probability histogram (PH) of the calculated AL values to determine the mean and standard
Probability Fistogram (PF] deviation. The mean
value of this PH is an
assessment  of an
average accuracy or
precision of  the
manufacturer’s  own
forecasting
methodology used in

The Accuracy-Level Definition

SCENARIO AFTER A PRODUCT IS DELIVERED

Product Product )
Manufacturing Manufacturing
Start Date Estimated Completion | Actual Completion

Date (ECD;) for Task# 5 Date

Probability Histogram
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L0B) i

)
o
=1

12/20/2011

Actual
Completion
Date for Task# 5

Estimated Numberof &
Days to complete
Task# 5 (from
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g; ! Find a Statistical Best-Fit PDF to the PH determ | n | ng the task
i S of the Accuracy Level which was R
i TIME determined in previous step Forecasting a ECDs. The |Og|C
“PMR10” represents f | (Date) Range of Actual . .
the Date at which the i i Completion described here remains
10t PMR was held Days Actually p
Took for Task# s\ Dates for each the same once a
Task (or . .
I Accuracy Level of Taski# 5 = Eg/ (Days Actually Took for Taski 5) I Component) of a prOdUCt is del |Vered,
Product Under whether it is the first or
Manufacturing )
the tenth unit. Once a

product is delivered,
Nostradamus  applies
the best statistical

Figure 2. Describes steps needed to construct a statistical best-fit PDF function to the
raw-date accuracy-level probability histogram (PH) from the LOB information of a
recently-delivered product.
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curve fit to the accuracy level PH in order to generate a Probability Distribution Function (PDF). This PDF is an
analytic function that is subsequently used for computer Monte Carlo (MC) simulations. The PDF of the AL values,
extracted from the LOB data of a recently-delivered product, is then used by Nostradamus (see Fig. 2) for simulation
and schedule forecasting of subsequent products that are under manufacturing and not yet delivered. (See the
algorithm and computational method section).

When a delivered product’s PDF is used for simulation and forecasting, this product is referred to as “source product.”
The product for which a schedule forecast is desired, is called the “forecast product.” It should be evident that this
“forecast product” is under manufacturing and not yet delivered. If an accuracy-level PDF, constructed from the LOB
information of a “source product” A, is used to provide a schedule forecast for a not-yet-delivered “forecast product”
B, it is symbolically represented as “A - B.”

UNDERLYING ASSUMPTIONS

As indicated earlier, the Nostradamus algorithm requires a best-fit PDF of the accuracy level constructed from the
LOB data of a source product to provide schedule forecasts for all forecast products. There are three critical
assumptions that should be kept in mind when utilizing the Nostradamus schedule forecasting approach:

1. Major components listed in the LOB spreadsheet are independent of each other; or if not, they are treated as
independent because the ECDs for tasks are determined by a coordinated team of engineering,
manufacturing, and project management experts who are cognizant of all inter-component dependencies
(i.e., provide-need requirements) and use the manufacturer’s own scheduling tools/system to generate these
component ECDs. Therefore, schedule impacts of any dependencies or linkages between such components
have already been incorporated in the manufacturer-assessed ECDs, and is inherently reflected in the LOB.

2. The Accuracy Level (AL) Probability Distribution Function (PDF) for a source product and its associated
statistical parameters are largely applicable to all product units currently under manufacturing. The PDF
derived from a source product is assumed to define and represent the underlying accuracy with which the
manufacturer provides forecasts of the ECDs for any not-yet-delivered product.

3. The underlying probability distribution of the manufacturer’s own forecasting accuracy for generating the
ECDs pertaining to a given forecast product, is expected to improve during its manufacturing due to the
“learning curve” effect. However, Nostradamus uses a fixed accuracy-level PDF (derived from the “source
product”) for schedule forecasting of a forecast product. This is justified, because impacts of any “learning
curve” during the manufacturing of a given product are assumed as reflected in the manufacturer’s updated
LOB data disseminated at each subsequent PMR.

ALGORITHM AND COMPUTATIONAL METHOD

Once the probability histogram (PH) of the accuracy level is determined from the LOB of a source product, the
Nostradamus algorithm applies a curve-fit using a suitable analytic probability distribution function (PDF) commonly
used in statistics. The “Maximum Likelihood” approach is applied to the accuracy-level raw data from which the PH
was constructed, see Montgomery and Runger (2003). Steps in this process are depicted in Fig. 2. While several
different analytical PDFs were tested, it was found that the Gamma function best conformed to the dataset. Note that
the Gamma function value of zero is meaningful when its independent variable (i.e., accuracy-level) approaches zero.
Additionally, the Gamma function is only defined for zero and positive variable values, which is consistent with the
fact that “negative” accuracy level values are neither defined, nor meaningful. Recall that the accuracy level range
is from O to greater than100%.

Once the best-fit Gamma PDF parameters are determined from the LOB data of a source product, it is used for a
Monte Carlo (MC) simulation. Figure 3 shows how the statistical best-fit PDF is used to produce 3,000 randomly-
generated accuracy level values for each task (or component) of the forecast product, for which schedule forecasting
is needed. In this figure, the comments below the “accuracy level formula” are for when a source product LOB
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information is used to determine the statistical best-fit PDF. Once the PDF and associated parameters are determined,
the comments above the “accuracy level formula” explain how this PDF is used to produce 3,000 randomly-generated
accuracy level values (MC simulation) for each task “i”. This is done to calculate 3,000 corresponding “forecasts” of
the actual completion date for each task “i” of a forecast product (Fig. 3). Essentially, a single ECD; (and its
corresponding E; — see, for example, Es in Fig. 1) which the manufacturer provides for a task “i” at a given PMR, is
“revised/corrected” by the algorithm, 3,000 times to generate 3,000 “forecasts” of the actual completion date for this
specific task. For each task “i” (or component “i”), a probability histogram can be constructed, using these 3,000
“forecasts,” from which the Nostradamus’ forecast completion dates at the 5% and 95% cumulative probabilities
(Confidence levels) are determined. These same steps are repeated for each task (or component) listed in the LOB
from each PMR.

Figure 4 illustrates the Nostradamus

[Known] [Calculated]
e 3,000 Randomly- [known] 3,000 Forecasts of the schedule forecasting logic flow
. »~ generated Accuracy ~ From LOB after Actual Completion Date . .

Appled to Level (AL,,, k-1to  eachPMR for each Taskt “F" (ACD, ., required to generate the delivery date
Currently Under 3,000) for each Task “i” k=1 to 3,000 from 3,000 forecast for a forecast product from a
Manufacturing using Truncated PrEviouSly Randomty specified PMR date. For each task

for Which Statistical Best-Fit PDF generated Accuracy Level ccoas ooy
Schedule i” (or component “i”) of a forecast
Forecasting is product, the algorithm randomly
Needed
eece generates 3,000 AL values (ALix ,
\_ -
k=1 from which
Formula > I Accuracy Level of Task# “i” = Ei / (Days Actually Took for Task# “i”) I « to 3:,000)’ 0 ¢ 370,00
) | — forecasts” of the actual completion
date (ACDix , k=1 to 3,000) are
Froma [Calculated] [Known] Known] calculated using MC simulation (see
Recently- _/ From which a PDF of From LOB (known for all tasks for comments above the AL “formula”
delivered Accuracy Level is (All Ei are kvown.when ) 3 . . . - . .
Product Constructedj the product is delivered)  the Recently-Delivered in Fig. 3). This simulation is based
e Product) on a truncated best-fit PDF of the
accuracy level values (see Fig. 4(a)).
< Details on proper selections of
truncation  cutoff values (i.e.,
Lo Limit and Hi_Limit) are

discussed later in the calibration and
anchoring section. From these 3,000
data, a probability histogram of the
Nostradamus’  “forecast” of the
ACDi is built for each task “i”, (Fig.
4(b) shows this probability histogram for task “i”’). From this Fig. 4(b), two forecasts of the task completion dates at
the 5% and 90% cumulative probability values are determined for task “i”. Once these two Nostradamus’ forecast
dates are determined for task “i”, they are connected by a vertical segment of line, as depicted in the Fig. 4(c). These
steps are repeated for all other tasks in a software loop to complete the left-middle graph. The Fig. 4(c) simultaneously
shows the Nostradamus’ forecast ranges (i.e., dates from 5% to 90% cumulative probability values) for all the tasks
(or components) of the product which is currently under manufacturing. Additionally, this same graph displays the
PMR date (dashed horizontal line) and the manufacturer’s expected product delivery date (solid green horizontal line)
given at this PMR date. Moreover, the ECDs for all tasks given by the manufacturer (as hollow rectangular symbols)
are shown for this same PMR event. The graph in Fig. 4(c) is important, because it provides a visual snapshot in time
of the manufacturer’s estimates and results of the Nostradamus forecast for a not-yet-delivered product at a given
PMR date.

Figure 3. Depiction of how the statistical best-fit PDF, determined from
LOB of a source product, is used to produce 3,000 randomly-generated
accuracy level values (ALix, k=1 to 3,000) for each task “i”” (or component
“i”") of a forecast product, for which schedule forecasting is needed.

11330}
1

The last step in the Nostradamus’ schedule forecasting logic flow diagram is the construction of the product Delivery
Failure Probability (DFP) as a function of time (i.e., date) measured from the PMR date. The DFP is determined
because the project risk of not being completed by the manufacturer’s projected delivery date is directly proportional
to the “failure” probability. The DFP is a curve that ranges from 100% failure to deliver to 0% failure to deliver. The
Fig. 4(d) shows an example of the DFP curve. For example, the DFP value at a 01/20/2012 date (see the pink
horizontal line in Fig. 4(c) and pink vertical line in the DFP graphs shown in Fig. 4(d)), is determined by the number
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of cases, out of 3,000 MC simulations, where at least one task’s forecasted delivery date exceeds this 01/20/2012 date.
Once the DFP curve is determined, the date at any DFP value can be ascertained. Additionally, the interim data matrix
used by the algorithm to construct this DFP curve is further analyzed to quantify and rank the contribution of each
task towards the product delivery failure probability value. Knowing this, programmatic measures can be taken to
favorably affect the product delivery dates and reduce the schedule risk.

CALIBRATION AND ANCHORING PROCEDURE

The Nostradamus schedule forecasting algorithm requires calibration and anchoring to a reference and relevant dataset
from a source product before it is able to provide acceptable and objective forecasts for forecast products on the same
manufacturing line. Once a completed product is delivered by the manufacturer, ECDs at every PMR event pertaining
to this source product are known. Additionally, because this product is already delivered, the actual completion date
of each task (or component) of the product and when the completed product was delivered are known.

Nostradamus Forecasting Logic Flow Diagram

Use ECDs from the LOB disseminated at a PM R; date for
a product currently under manufacturing to calculate
the Es for all Tasks/Components.

“Forecast” Product

\ 4

Calibration/Anchoring Step a, B are Gamma Function parameters
Find parameters (a, B) of the Use (a, B, Lo_limit & Divide E; for each Task “i”
atzﬁ ?;}‘;5 Analyze the LOB Statistical Best-Fit Gamma Hi_limit) of this of this not-yet-delivered Once the Plot DFP curve
(fora Data to construct function and then determine the “Truncated Best-Fit” product by these 3,000 ;"ﬂ 5 Farcuate Find forecast
recently- MLVE' Lo_limit and Hi_limit, to _> Gamma function to randomly-generated one | Delivery-Failure _» dates at 10%,
delivered (AL) Histogram construct a “Truncated Best-Fit” randomly generate 3,000 Accuracy Level (AL) values g Probability (DFP) 50%, and 95%
product) PDF curve. (This PDF is used for Acc:r;cykl.ltle‘:/'el values for for Task “i". DFP values.
eacl ask "iv.

MC simulation). Select a set of
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| — — -] Probability for MC simulation purposes.
1 Histogram

Parameters: a, B, Lo_Limit, and Hi_Limit
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1
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for 59
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! for each Task “i” 1 line for Task “i"
I
1
1
' |
" v
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ata PMR date of 04-21-2011
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Figure 4. Shows the Nostradamus’ logic flow diagram indicating major inputs and outputs. First, a statistical
best-fit PDF to the Accuracy Level (AL) is determined for a recently-delivered product, shown in 4(a). For each
task (or component) of a product currently under manufacturing, the program generates 3,000 “forecasts” of the
actual completion date from which a probability histogram is built, see 4(b), and the dates at 5% and 90%
cumulative probability values are identified and plotted (see vertical segments of line in 4(c)). Finally, a product
Delivery Failure Probability (DFP) is constructed in 4(d).

As indicated before, a statistical best-fit Gamma function is used for the MC simulation. However, in practice, this
Gamma PDF is truncated to reflect realistic forecasts. For example, an accuracy level value of 5% implies that the
estimated number of days needed to complete a task (“E”) was under estimated by a factor of 20 (see the formula in
Fig. 3) thereby indicating that if the manufacturer estimated that this task would take 3 months to be completed, the
forecasted actual duration to complete this task would be 60 months. This forecast is an unrealistic assessment.
Hence, a Lo_Limit value (i.e., the lower cutoff for the truncated PDF) should be higher than 5%, (Fig. 4(a)). As shown
in Fig 4(a), low and high limit cutoffs were incorporated to truncate the full Gamma function, that is, the Lo_Limit
and Hi_Limit values. It is worth emphasizing that the accuracy level of 100% means that the manufacturer correctly
estimated completion date for this task. while an accuracy level value >100% is plausible and implies that the
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manufacturer completed the task earlier than estimated. This scenario is realistic and has been observed in this
analysis.

Note that the calibration process and the forecast outcomes are more sensitive to selection of the Lo_Limit value rather
than the Hi_Limit. The Hi_limit value also needs some fine tuning. In practice, however, a Hi-Limit value of 150%
was adequate for all cases investigated here and appeared realistic from actual data analysis.

The calibration process begins by the construction of a best-fit Gamma PDF to the accuracy level probability
histogram of the source product. Using the best-fit Gamma PDF, it is pretended as if this source product is not
delivered and attempts are made to construct a delivery failure probability (DFP) graph for each of the PMR events
held for this specific product. This calibration/anchoring step follows the same logic shown in Fig. 4, but replaces the
“forecast product” with the same source product. For a given fixed Lo_limit value, the product-delivery forecast date
at a DFP=50% is determined for all of the PMR events pertaining to this same delivered source product. For each of
these forecast dates, which is associated to a specific PMR event, a “forecast imprecision” is defined. A product’s
delivery-date forecast imprecision at a given PMR is the difference in number of days between the forecasted delivery
date and the known actual product delivery date, expressed as a percentage of the number of days from that same
PMR event to the actual product delivery date. The imprecision value indicates how close or far (in percentages) a
forecast date was to the actual product delivery date. It should be evident that the product delivery-date forecast
imprecision can only be calculated when a product is completed and its actual delivery date is known. Once the
forecast imprecision is calculated for the 50% DFP date for all PMR events, a “time-averaged forecast imprecision”
is computed. Note that this time-averaged forecast imprecision value is determined at the previously-given fixed
Lo_Limit value. The primary goal of the calibration and anchoring procedure is to find an optimum Lo_Limit value
that produces a “time-averaged forecast imprecision” of equal to zero.

Once the optimum Lo-Limit value is determined in the calibration process, along with its associated Hi_Limit, the
MC simulations for each forecast product which is currently under manufacturing are conducted. This is done by
generating 3,000 randomly-generated numbers from the previously-determined statistical best fit Gamma PDF, but
only accepting numbers in between the pre-determined Lo-Limit and Hi_Limit values.

TEST RESULTS AND DISCUSSIONS

The Nostradamus forecasting concept described here has been tested extensively using realistic data from past USG
acquisition programs. In this section, typical results observed in our tests are presented and discussed. The results
presented here utilize LOB data from the third already-delivered product (called “A” i.e. source product) to calibrate
the PDF parameters, which is subsequently used in the MC simulation to provide delivery date forecasts for the
fourth product (named “B” i.e. forecast product) at each of its respective PMR dates. It is important to indicate that
when these forecasts were made, product B was not yet delivered. Conclusions reached here are also similar for any
relevant product pair (e.g., 1 manufactured product, as a source product, and 2" one, as a forecast product, etc).

Figure 5 is the Historical Forecast Curves (HFCs), and shows the results of the product-delivery forecasts (DFP =
10%, 50%, 95%) for product B from LOB data from each PMR. For comparison purposes, Fig. 5 also shows the
manufacturer’s estimated delivery date for the same product B (Blue line). Each symbol on these curves is a product-
delivery forecast made at a given PMR date, either by Nostradamus (three forecast dates at 10%, purple; 50%, yellow;
and 95%, red DFP values) or by the manufacture (a single blue forecast date). The two solid green lines represent
product B’s actual delivery date, which was known only when it was actually delivered. The number of days from
the first PMR shown in Fig. 5 to the actual product delivery date was about 873 days. A 45-degree line is also shown
as a visual reference line. A linear fit to the manufacturer’s HFC (Blue) (not shown) confirmed that the project
progression was at an average slope of less than 45 degrees. The three HFCs derived by the Nostradamus algorithm
converge to a point towards the end of the project, which appears to be on the 45-degree line. In fact, it can be reasoned
that all four HFCs must converge to a point on the 45-degree line, despite the fact that no PMR was held past the last
one shown in Fig. 5. However, it is assumed that the manufacturer continued holding PMRs and the last PMR was
on the day when product B was actually delivered. On this date, the manufacturer’s forecasted delivery date would
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have been reported the same as the PMR date, corresponding to a point on the 45-degree line. This point is the actual
delivery date of the product B under investigation.

At first glance, all three Nostradamus HFCs in Fig. 5 provide delivery-date forecasts that are much closer to the actual
delivery when compared to the manufacturer’s forecasts. However, the most important observation is that the 50%
DFP forecast date hovers around and closely follows the actual product-delivery date as shown by the green horizontal
line (Fig. 5). Considering the manner in which the calibration/anchoring was conducted, the date at the 50% DFP
value is Nostradamus’ nominal delivery-date forecast with variations within the bounds defined by dates at 10% and
95% DFP values.

Figure 6 depicts the delivery-date
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Figure 5. Shows the Nostradamus’ product-delivery Historical Forecast
Curves (HCFs) at three DFP values of 10%, 50%, and 95% for the “forecast Nostradamus’ product-delivery
product B.” A single product-delivery HFC by the manufacturer for this nominal forecast closely hovers
same product is also shown. The recently-delivered “source product” in this around zero throughout the
case was named “A” and the “forecast product” was “B”. All delivery-date duration of the project. These
forecasts are made when this product (i.e., “B”) was not yet delivered. results validate the calibration and

anchoring process, and exhibit an
accurate forecast capability 873 days ahead of the project end date and before the product was delivered (i.e., at the
beginning of the project).

comparison, the imprecision for

The maximum, average, and minimum imprecision values for Nostradamus’ forecast during the entire project period
were -29%, -3%, and 16%, respectively, whereas those by the manufacturer registered at 222%, 143%, and 32%
values. The promising and impressive forecasting performance of the Nostradamus should be apparent.

It is important to note that for forecasting delivery-dates of any on-going project, Nostradamus does not require the
dates when tasks (or components) started. All that is needed, are the manufacturer-provided estimated completion
dates for these tasks. Although biases exist (such as overconfidence, anchoring, strategic optimism, and availability,
(see Kahneman and Tversky (1979a)), Nostradamus compensates using the actual performance on a most-recently-
delivered source product. Also, requiring the manufacturer to disseminate its best estimates of task (or component)
completion dates in each PMR, not only substantially reduces forecasting complexity, but also provides an incentive
for offering its best forecasting efforts in order to minimize manufacturer’s reputational risk. If a new unexpected
technical issue arises after a PMR date that causes a substantial schedule delay, the Nostradamus algorithm will utilize
updated information that the manufacturer incorporates in the next LOB that takes into account the technical issue’s

12
I/ITSEC 2023 Paper No. 23364 Page 12 of 14



2023 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

schedule impact (Assumption #1).

. Imprecision of Product Delivery Forecasts Og;’::::;”;z:x:sjslery .|nd.eed, this B.ayesian-like approach
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s B 4 oOO ® Imprecision (+: SOXDFP using the  past _e.stablllsh_ed
E %;g * L L 2::3;3:;;ae'ry°]e"vefw % | performance and_ combmmg |_t with
g i . _A=>BLo_limit=25 any newly-provided information to
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g ;‘é "W  pctunt product Delivery to the adaptable and agi_le nature of
4 Date the algorithm.  Additionally, no
information regarding the inter-task

ONIR Date at Which Forecasts Are Made dependencies or linkages (or inter-

activity dependencies/linkages
within a task) are needed
(assumption #1) because their
impacts are captured in the task
ECDs provided by the
manufacturer. This is in stark
contrast to forecasting methodologies requiring Gantt charts with begin-end dates and inter-task relationships to
function. When compared to other statistically-based approaches, the use of the most recent performance information
substantially reduces complexity in the forecasting methodology proposed here.  Lastly, and most notably,
Nostradamus can be used at any time within a progressing project regardless of the project/product type.

Figure 6. Shows the imprecision of the forecasted product delivery dates for
Nostradamus and the primary manufacturer. Zero imprecision value implies
100% accurate forecast. All delivery date forecasts are made when this
product was not yet delivered. Imprecisions are then calculated when the
product is completed and delivered at the end of its project.

CONCLUSIONS

A novel accuracy-level LOB-based schedule forecasting methodology (Nostradamus Objective) is proposed for low-
volume highly-complex new product development. While Nostradamus is expected to work reliably and objectively
for any product manufacturing (or project management) effort, it is especially shown valuable and useful for new
product development (NPD) and during the early stage of the project when uncertainties are high. During this early
stage, one or a very few product units are delivered (defining the “past or most recent performance”), but forecasts
are highly needed for all not-yet-delivered products using LOB data from recurring PMRs (i.e., “current information™).
The Nostradamus logic conforms with the “reference class concept” described by the Nobel Prize laureate Daniel
Kahneman and coworkers, and is able to reliably and accurately forecast project completion dates of products on the
same manufacturing line. Additionally, the Nostradamus software program ranks a list of top components (or project
tasks) of the product that heavily affect the delivery date or delivery delays. To the best of our knowledge, this is the
first time in literature that the LOB data is used for schedule forecasting in such a unique approach described here.

The raw data analyzed here is extracted from actual new product development in the context of US Government
acquisition process. The algorithm was entirely developed in-house as no such commercially-developed program was
available or able to provide reliable forecasts. The algorithm has gone through extensive verification and validation
testing to build confidence on its implementation and results. Typical forecasting results are presented here, where a
full LOB data from a recently-delivered product “A” is used to construct a probability distribution function (PDF) of
the “accuracy level” values. This PDF is then used to perform MC simulations and produce 3,000 possible delivery
date forecasts for each component of a forecast product “B”. Once the product “B” is later delivered, forecast
imprecisions are calculated to see how close the Nostradamus forecasts were to the actual delivery date of product
“B,” and compared them with those calculated for the manufacturer’s forecasts.

Results of these tests indicated that, over the project duration, a time-averaged forecast imprecision value of -3% was
achieved using Nostradamus, as compared to 143% by the manufacturer. The imprecision of Nostradamus’ product-
delivery forecast, remained near zero even from the beginning of the project (nearly 2.5 years ahead of project
completion date). The maximum, average, and minimum imprecision values for Nostradamus’ forecasts during the
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entire project period were -29%, -3%, and 16%, whereas those by the manufacturer registered at 222%, 143%, and
32%. The promising and impressively-high forecasting performance and accuracy of Nostradamus Objective will
continue contributing to high-visibility programs with strict cost and schedule constraints pertinent to delivering
needed capabilities to the USG.

ACKNOWLEDGEMENT

The authors would like to acknowledge the support of the following organizations: US Air Force (for original
authorization and support of the work), ManTech International, and Axient (both, for support of this activity). In
addition, we are grateful for continuous support and encouragements by Maj. Marissa Reabe and Capt. Peter Cho from
US Space Force. Mr. Michael Sanders from ManTech is specifically thanked for his support and marketing, leading
to a recommendation for this conference publication.

REFERENCES

Batselier, J. and Vanhoucke, M., 2016. Practical application and empirical evaluation of reference class forecasting
for project management, Project Management Journal, Vol 47, No 5, 35-51.

Baccarini, D., 1996. The concept of project complexity—a review, International Journal of Project Management, vol.
14, no. 4, pp. 201-204.

Flyvbjerg, B. and Bester, D. W., 2021. The cost-benefit fallacy: why cost-benefit analysis is broken and how to fix it,
Journal of Benefit-Cost Analysis, October, pp. 1-25.

Flyvbjerg, B., 2006. From Nobel Prize to project management: getting risks right, Project Management Journal, vol
37, no 3, 2006, pp.5-15.

Javadi, S., Bruch, J., Bellgran, M., and Hallemark, P. (2013), Challenges in the industrialization process of low volume
production systems, 11th Int. Conference on Manufacturing Research, Cranfield University.

Koteshwar, C., 2017. Challenges in managing new product introduction projects: an explorative case study. 21
International Conference on Engineering Design, ICED17, 21-25 August.

Kahneman, D., 1994. New challenges to the rationality assumption. Journal of Institutional and Theoretical
Economics, 150, pp 18-36 .

Kahneman, D. and Tversky, A., 1979a. Prospect theory: An analysis of decisions under risk, Econometrica, 47, pp
313-327.

Kahneman, D. and Tversky, A., 1979b. Intuitive Prediction: Biases and Corrective Procedures, Management Science,
vol 12, pp 313-327.

Martin, K. P., et al., 2012. NASA’s challenges to meetings cost, schedule, and performance goals, Report No. 1G-12-
21 (assignment No. A-11-009-00), Sept 27, 2012.

Lovallo, Dan and Kahneman, D., 2003. Delusions of Success: How Optimism Undermines Executives' Decisions,
Harvard Business Review, July, pp 56-63.

Montgomary, D., C. and Runger, G. D., 2003. Applied Statistics and probability for engineers, 3ed Edition, John
Wiley & Sons, Inc.

Russell, W. W., et al., 2022. United States Government Accountability Office (GAQ) Assessment of major projects,
Report No. GAO-22-105212.

Williams, T. and Hillson, D., 2002. Editorial-PMI Europe 2001, International Journal of Project Management, vol.
20, no. 3, pp. 183-184.

14
I/ITSEC 2023 Paper No. 23364 Page 14 of 14



