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ABSTRACT 

A novel schedule forecasting methodology (Nostradamus Objective) was developed to predict schedule risk of a 

unique, large-scale acquisition program that is characterized as low volume, highly complex, new product 

development (NPD) effort at its early stages.  The goal was to produce objective evidence-based product-delivery 

schedule forecasts with high precision.  Nostradamus was designed to model a manufacturer’s accuracy in projecting 

it’s product components completion dates of a recently-delivered unit (i.e., “past information”), and combining it with 

“current information” to make accurate/objective delivery date forecasts for subsequent units currently being 

manufactured. The approach, while does not use a Bayesian formulation, has a Bayesian-like strategy. The past 

information used conforms with the “reference class concept” described by Nobel Prize winning work of Daniel 

Kahneman and coworkers and possesses the highest similarity to products being manufactured. Additionally, the 

algorithm ranks a list of components that significantly affect product delivery dates. Hence, targeted measures can be 

taken to favorably affect the product delivery dates and reduce the overall project schedule risk.  The product’s major 

components, and associated estimated completion dates (ECDs), which are defined, determined, and provided by the 

manufacturer, constitute the current information. The current information and manufacturer’s estimated product 

delivery date, collectively define the Line-of-Balance (LOB), which is provided at each Program Management 

Review.  The “Accuracy Level” probability distribution function of the ECDs is defined and calculated for a most 

recently delivered product and utilized in a subsequent Monte Carlo simulation with the current information, to 

generate a product delivery failure probability (DFP). This DFP was used to generate the Nostradamus Objective’s 

forecast of product delivery date at any probability level.  Results of the tests indicated that, over a 2.5 year project 

duration, Nostradamus  Objective achieved a time-averaged forecast imprecision value of -3%, as compared to 143% 

by the manufacturer, thereby providing reliable, precise, and consistent schedule assessments from which program 

risks can be identified and mitigated.  
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INTRODUCTION 

Project cost overruns are closely linked to  schedule delays for major defense acquisition programs.  The Government 

Accountability Office (GAO) previously found that manufacturing/integration  and testing  phases are most at risk of 

incurring cost and schedule growth. As of June 2022, NASA’s portfolio of major projects experienced cost and 

schedule overruns while more projects were added. Out of 21 major projects in the development phase of NASA’s 

acquisition process, 15 were responsible for a cumulative cost overrun of approximately $12 billion and cumulative 

schedule delays of 28 years. But just three projects—the James Webb Space Telescope, Space Launch System, and 

Orion—are responsible for more than three-quarters of the cost growth and almost half of the delays, see Russell, et 

al. (2022). 

Based on an exploratory case study from one of the largest manufacturing plans of a global company,  Koteshwar 

(2017) listed nine key challenges in the management of new product introduction projects: (1) designing/identifying 

the right resources (identifying the time for the right resources), (2) time-readiness and schedule, (3) stage-gate 

administration, (4) old ways of working, (5) poor communication and time-sharing, (6) missing learning opportunities 

(lack of action to spread the lesson, hence avoiding the same mistake), (7) defining business case, (8) poor coordination 

and alignment between different sub-projects, and (9) more projects with less competences.  In an audit report, NASA 

identified the following challenges to meeting cost and schedule goals (see, Martin et al. (2012)): a culture of optimism 

estimating ability to overcome risks inherent in delivering  projects within available funding constraints, technical 

complexity inherent in most projects, project managers’ struggle to execute projects  in the face of unstable funding, 

decrease in the number of small projects where aspiring managers can gain hands-on experience, and concerns 

regarding the decline in number of personnel with new product development experience and whether NASA can 

continue attracting technical talent.  In complex new product introduction projects, there are larger levels of variations 

in scope, engineering, and late-stage changes that lead to late product deliveries.  Additionally, with the involvement 

of a multitude of domestic and international suppliers, it is challenging to ensure that they work together to meet the 

pre-planned time schedule. Moreover, it is difficult to plan a specific target date for an entire program schedule 

involving multiple projects, investments, and suppliers. Indeed, a delay in equipment delivery from one supplier can 

affect the entire schedule for product delivery by the manufacturer. Finally, as noted by Javedi et al. (2013), there are 

challenges specific to a low-volume production system, such as: knowledge transfer from the sub-projects into 

manufacturing/production, development of the work instructions, the need for a higher level of training for the 

operators and production system design, and the required tailoring of new products to the existing production systems. 

All of the aforementioned factors make schedule forecasting for low-volume highly-complex new product 

development a challenging endeavor.   

On-schedule availability of highly-reliable and complex new products (such as a gas turbine aircraft engine, space 

station,  rocket engine, etc.)  is quintessential for executing a program within cost and schedule constraints.  

Specifically, availability of key technical hardware is dependent on  successful qualification and acceptance tests 

following product delivery by the primary manufacturing contractor, an event that commonly experiences schedule 

delays, but is difficult to predict or project. Recognition of the short-comings of existing schedule forecasting 

methodologies, prompted the investigation, development, and innovation of more objective approaches.  Availability 

of such new powerful tools, further empowers customers or users of these tools, specifically the US Government 

(USG), with  capabilities  for future project schedule management in its acquisition programs.  Therefore, objective 



2023 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 

 

4 
I/ITSEC 2023 Paper No. 23364 Page 4 of 14 

estimates of the product delivery date  and  the subsequent required-tests completion date are of paramount 

importance.  

The team members took two completely different approaches, addressing the challenging problem of schedule 

forecasting at two different manufacturing and testing phases of a new and highly complex product. Forecasting for 

testing phase will be submitted at a later NDIA conference.  This is because of major differences in the nature of the 

tasks and processes involved in these two phases, which led to different schedule forecasting methodologies, using 

different principles, logical, analytic, and computational tools.  In the following, only the manufacturing phase 

schedule forecasting is discussed. 

 

BACKGROUND 

In this section we concisely review  relevant  and required features of schedule  forecasting methodology   to generate 

objective project duration forecasts that minimizes or eliminates possible biases.  The novel Nostradamus forecasting 

methodology described here contains all of the important features.  This section should also facilitate an understanding, 

appreciation, and recognition of important features in the Nostradamus Objective forecasting approach (hereafter 

referred to Nostradamus). To the best of our knowledge, this is the first time that such a unique approach has been 

proposed and implemented in literature.  

In project management, cost and resource distribution is influenced by project duration. We make distinction between 

the planning or decision-making phase and the actual implementation phase of a project. However, in both cases, an 

objective evidence-based forecast of the project duration is of paramount importance. During the planning stage of a 

project, the main interest is often on cost-benefit analysis. This is specifically a helpful tool in public investment policy 

and planning.  During the implementation phase, one is interested in the project’s progress, as compared to what was 

planned, cost overrun, and identification of possible measures to compensate for any delays in project completion 

date.  

Unfortunately, as documented by Flyvbjerg and Bester (2021) and Flyvbjerg (2006), cost-benefit analysis, if not 

practiced carefully, is of less value because of psychological and political biases in its process that account for 

inaccuracies observed in forecasting.  The psychological source of forecast inaccuracy stems from “optimism bias”, a 

cognitive predisposition found with most people to judge future events in a more positive manner than is warranted 

by actual experience. Explanation of inaccuracy in terms of optimism bias has been developed by the work of Daniel 

Kahneman, see Kahneman (1994), Kahneman and Tversky (1979a, 1979b) and Lovallo and Kahneman (2003).  They 

found that human judgement is generally optimistic because of “overconfidence” and “insufficient regard to 

distributional information.” Hence, people will underestimate the project costs, completion times, and risks of planned 

actions, whereas they will overestimate the benefits of the same actions. Such behavior termed  the “planning fallacy” 

and is reasoned that it originates from people or forecasters who take an “inside view” by focusing on the constituents 

of the specific planned actions or tasks rather than on the outcomes of similar actions or tasks that have already been 

completed.  The latter source of forecast inaccuracy comes from strategic misrepresentation.   

To compensate for  the type of cognitive biases that Kahneman and Tversky found on decision making under 

uncertainty (which won Kahneman the 2002 Nobel Prize in economics),  the “reference class forecasting (RCF)” 

approach was developed.  They show that RCF can bypass human bias, including the ones mentioned earlier. In 

experimental research performed, RCF has been demonstrated to be more accurate than conventional forecasting 

methods. The study demonstrated that errors of judgement are often systematic and predictable than being random, 

suggesting bias rather than confusion. Interestingly, such errors in judgment are shared by both laymen and experts 

alike and that errors remain compelling even when the actor or forecaster is fully aware of their nature.  

Traditionally, project managers focus on the specifics of the considered project (e.g., particular actions, tasks/subtasks) 

to produce estimations, as they attempt to forecast uncertain events that would influence the future course of the 

project. Such an “inside view” forecasting approach is based on human judgment. RCF, however, takes an “outside 

view” on planned actions. The outside view on a given project is based on knowledge about actual performance in a 

reference class of comparable projects. Therefore, RCF does not try to forecast the specific uncertain events that will 
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affect the particular project, but instead places the project in a statistical distribution of outcomes from a “class of 

reference projects.”  

Batselier and Vanhoucke (2016) compared the project duration forecasting performance of  RCF with those by 

baseline estimate, task-duration-based classical Monte Carlo (MC) simulation (Gantt chart with symmetrical and 

asymmetrical triangular probability distribution for action or task durations), and Earned Value Method (EVM) for 

real-life construction projects. The study found that  RCF was the most user-friendly because it does not require 

detailed information (such as distributional data on task/subtasks durations for MC simulation) or extensive 

calculations (such as periodical forecast updates for EVM). Although RCF produces pre-project forecasts that remain 

constant throughout project execution (just like baseline estimates and Monte Carlo simulation), it surpasses all the 

traditional techniques in terms of accuracy, stability, and timeliness. The dominance of RCF in accuracy is especially 

remarkable, considering that the competing EVM technique offers forecasts that are updated at tracking points during 

the project progress. Furthermore, the strong performance of RCF occurs for both cost and time forecasting in nearly 

equal measure. The key point to emphasize for the RCF approach is that a reference class (for schedule & cost 

forecasting) should consists of  projects that are sufficiently similar to the considered project in order to attain the 

required level of accuracy in the forecasts.  

The novel Nostradamus forecasting approach, while completely different than RCF (in formulation and execution 

details), maintains and implements key concept that a reference class as similar as possible to the project at hand, is 

to be used in some form, if an objective and accurate project duration is critical and required.   

The Nostradamus forecasting methodology was developed in response to the realization that the existing conventional 

forecasting approaches were ill-equipped to be  applied to  low-volume, highly-complex new product development 

efforts practiced under USG acquisition process.  The term “complex or complexity” is used in the sense defined by 

William and Hillson (2002). The William-Hillson’s model of complexity is an extension of the  Baccarini’s model, in 

which uncertainty was added to two complexity dimensions, see Baccarini (1996). The two dimensions by Baccarini 

are the number of elements and the interdependencies of these elements.  In essence, they attribute the increasing 

complexity of a given project to two compounding causes: the relationship between product complexity and project 

complexity, and the length of the project.  

In addition to the complex nature of the product and project, an important feature of the scenario considers the fact 

that the forecasting of the project duration was to be accomplished for a new product that has never been built in USA.  

Hence, a significant departure from past experiences caused high uncertainty in so many processes, such as design, 

analysis, and particularly manufacturing.  The following work focuses on forecasting the time duration needed for 

manufacturing and delivery of the first few units of a new product. It should be made clear that this method considers 

manufacturing and delivery of each unit of product as a single project for which product delivery-date forecasting is 

required. Additionally, the experimental data was limited to three identical product units,  each at different stages of 

manufacturing, such that some or all learnings from a predecessor unit were transferred to subsequent units (learning 

curve effect).  As explained later, Nostradamus does take into account such a manufacturing process improvement in 

its forecasting approach. 

 

ACCURACY-LEVEL (AL) FORECASTING CONCEPT  

In this work, the terms “task” and “component”  are synonymous and refer to major tasks and major component, 

however, the word “major” is often omitted. A major “task” is defined as a set of all “activities” required to 

manufacture a major “component.”  Therefore, once a major task is successfully completed, an associated major 

component is manufactured. For example, a compressor-turbine unit is a major component for a turbocharged 

automotive engine, while nuts and bolts are not considered as major components. Here, a component can be a hardware 

or a software needed to control one or more hardware items.  Nevertheless, these major components (or major tasks) 

are entirely defined by the primary manufacturer. A “product” is defined as an assembly of  major components. The 

term “task” is more general, in a sense that its accomplishment may lead to a hardware, a software, or simply a service. 

The end of a project is determined at the time when all of the pre-defined major tasks are completed, and the final 
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hardware, software or service is delivered. In what is presented here, a limited quantity of units of the same new 

products are being manufactured with different manufacturer-estimated delivery dates distributed into the future. The 

objective is to forecast delivery dates for each of these products.  

Nostradamus uses two important pieces of information to forecast the product delivery date by the “primary 

manufacturer” (hereafter referred to as “manufacturer”). The first is the “performance” on a recently-delivered product 

(referred to as “source product”). Here, the “performance” is assessed and quantified by determining “accuracy level 

(AL)” the manufacturer was able to achieve in estimating the completion dates of different components of the product 

in question.  Note that the methodology uses the essence of the “reference class” concept, and its validity is justified, 

because the information used by Nostradamus is as close as one can possibly reach to this concept.  It should be clear 

that the Nostradamus  forecasting methodology works for the second new product delivered by the manufacturer and 

beyond, relying on an performance assessment from a most recently delivered product.  However, this limitation can, 

to a large extent, be addressed through use of a reference class product delivered in the past (not the same product), 

although for a completely new and complex product of the type, the efficacy of this approach was not investigated 

here. Further studies are examining this case and will be published.  

The second important piece of information Nostradamus uses to provide product delivery date forecasting is the 

“current information” from a not-yet-delivered product (referred to as “forecast product”) for which delivery forecast 

is needed.  To understand how this is achieved, the term “line of balance (LOB)” as used in this work is introduced. 

The LOB consists of a list of major components or tasks of a product, along with the associated estimated completion 

dates (ECDs), and expected product delivery date. The LOB is provided by the manufacturer and updated at every 

periodically-held (2 to 4 weeks) Program Manufacturing Review (PMR) meeting. There is no need to specify any 

interdependencies between these components or tasks, as it is assumed that schedule interdependencies between major 

components are taken into account by the manufacturer and reflected in the ECDs. Nostradamus only requires dates 

the manufacturer thinks or estimates each of the 

components would be completed.  Updated 

manufacturing schedules (ex. LOB, IMS) are 

often part of the contractual agreement between 

the USG and the manufacturer, and are 

required, if Nostradamus is to be used. It is 

assumed that at any PMR date, and to the best 

of their knowledge, the manufacturer’s 

engineers and project managers considered all 

relevant aspects of engineering, manufacturing, 

and available resources pertaining to the 

project, in their published estimated component 

(or task) completion dates. This is reasonable, 

as manufacturers, especially those involved in 

medium/large scale projects, have vested 

interest in such a practice and estimates needed 

for their own internal project management 

purposes. 

In summary, Nostradamus uses  schedule 

information from a completed unit to forecast 

the product delivery dates of subsequent units 

using analysis of periodically released LOBs 

that contain a comprehensive list of major 

components/tasks. This concept appears 

similar to the Bayesian approach, where prior 

information is used along with new information 

to provide a posterior knowledge. However, 

Figure 1. Shows an example as to how the Accuracy Level of an 

estimated completion date (ECD) for task #5 (or component #5), 

can be computed after when the product manufacturing is 

completed and it is delivered. The ECD is assessed by the 

manufacturer and, in this example, given on the 10th PMR.  The 

logic applies to all other task ECDs provided in the LOB 

spreadsheet.  

Actual 
Completion 

Date for Task# 5

ECD1

(DATE)

0
1

/1
0

/2
01

1

0
5

/2
0

/2
01

1

Days Actually 
Took for Task# 5

“PMR10” represents 
the Date at which the 

10th PMR was held

1
2

/2
0

/2
01

1
0

8
/1

5
/2

01
1

SCENARIO AFTER A PRODUCT IS DELIVERED

Accuracy Level of Task# 5 = E5 / (Days Actually Took for Task# 5)

E5

TIME
(Date)

Product 
Manufacturing 

Start Date Estimated Completion 
Date (ECD5) for Task# 5
by Manufacturer (from 

LOB)

Product 
Manufacturing 

Actual Completion 
Date

The Accuracy-Level Definition

Estimated  Number of 
Days to complete 

Task# 5 (from 
manufacturer’s LOB)



2023 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 

 

7 
I/ITSEC 2023 Paper No. 23364 Page 7 of 14 

details of the Nostradamus’ approach,  are quite different than the Bayesian approach.  

The Nostradamus forecasting approach is based on the concept of “Accuracy Level (AL)” of the product 

manufacturer’s task or component estimated completion date (ECD). The AL is defined as the number of days 

estimated by the manufacturer to complete a given task (Ei) divided by the “actual number of days” it took to complete 

this same task (ECDi – PMRj_Date). Note that this “actual number of days” is known by the time a product is 

completed and delivered. The AL values are often presented as percentages in which AL values less than, equal to, or 

greater than 100% indicate that the task completed later than, exactly on, or earlier than planned, respectively.  

For a clarifying example, let us assume that a manufacturer is working on the very first product. At its 10th PMR event 

held on 1/10/2011, the manufacturer provided an updated LOB spreadsheet file consisting of 40 components, assembly 

of which constitutes a completed and deliverable product (see Fig. 1).  On this LOB, one reads that the component #5 

(or task #5) will be completed on 5/20/2011, as displayed in Fig. 1. On this PMR date of 1/10/2011, it is unknown 

how accurate this manufacturer’s estimate is. However, the “accuracy level” can be calculated once this first product 

is delivered.  Let us further assume that the completed product is delivered on 12/20/2011, but component #5 was 

completed earlier on 8/15/2011. Therefore, the “accuracy level” of the manufacturer’s ECD for component #5, as 

stated on the PMR date of 1/10/2011, is equal to (number of days from 1/10/2011 to 5/20/2011) divided by the actual 

duration to complete (number of days from 1/10/2011 to  8/15/2011) resulting in an = AL = 130/217 = 0.599 (or 

59.9%) for this single ECD pertaining to the component #5.  Figure 1 explains how the AL is calculated after a product 

is delivered.  

In general,  at “jth” PMR for a given product presented on PMRj_Date, the following relationships  hold for  any task 

#i (or component #i): 

Ei  = ECDi – PMRj_Date   (1) 

ALi = Ei / (ACDi – PMRj_Date)  (2) 

Where, Ei  (i.e., “E for task #i”) is expressed in “number of days” between the two dates,  ECDi  (Estimated Completion 

Date for task #i) and PMRj_Date, ALi is the Accuracy Level for task #i (or  component #i) at PMRj,  and ACDi is the  

date when task #i was actually completed. The term (ACDi – PMRj_Date) is the “number of days it actually took for 

task #i to be completed,” which is only known when this task is actually completed. 

As an example, a project which held 15 monthly PMR events for a  product consisting of 40 components, will result 

in a maximum of 40x15 = 600 AL values once the product is completed and delivered. This dataset should be sufficient 

to construct a well-behaved probability histogram (PH) of the calculated AL values to determine the mean and standard 

deviation.  The mean 

value of this PH is an 

assessment of an 

average accuracy or 

precision of the 

manufacturer’s own 

forecasting 

methodology used in 

determining the task 

ECDs. The logic 

described here remains 

the same once a 

product is delivered, 

whether it is the first or 

the tenth unit.  Once a 

product is delivered, 

Nostradamus applies 

the best statistical 

Figure 2. Describes steps needed to construct a statistical best-fit PDF function to the 

raw-date accuracy-level probability histogram (PH) from the LOB information of a 

recently-delivered product.  
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curve fit to the accuracy level PH  in order to generate a Probability Distribution Function (PDF). This PDF is an 

analytic function that is subsequently  used for computer Monte Carlo (MC) simulations. The PDF of the AL values, 

extracted from the LOB data of a recently-delivered product, is then used by Nostradamus (see Fig. 2) for simulation 

and  schedule forecasting of subsequent  products that are under manufacturing and not yet delivered. (See the 

algorithm and computational method section).   

When a delivered product’s PDF is used for simulation and forecasting, this product is referred to as “source product.” 

The product for which a  schedule forecast is desired, is called the “forecast product.”  It should be evident that this 

“forecast product” is under manufacturing and not yet delivered. If an accuracy-level PDF, constructed  from the LOB 

information of a “source product” A,  is used to provide a schedule forecast for a not-yet-delivered  “forecast product”  

B, it is symbolically represented as “A → B.” 

 

UNDERLYING ASSUMPTIONS  

As indicated earlier, the Nostradamus algorithm requires a best-fit PDF of the accuracy level constructed from the 

LOB data  of a source  product to provide  schedule forecasts for all forecast  products. There are three critical 

assumptions that should be kept in mind when utilizing the Nostradamus schedule forecasting approach: 

1. Major components listed in the LOB spreadsheet are independent of each other; or if not, they are treated as 

independent because the ECDs for tasks are determined by a coordinated team of  engineering, 

manufacturing, and project management  experts who are cognizant of all inter-component dependencies 

(i.e., provide-need requirements) and use the manufacturer’s own scheduling tools/system to generate these 

component ECDs. Therefore, schedule impacts of any dependencies or linkages between such components 

have already been incorporated in the manufacturer-assessed ECDs, and is inherently reflected in the LOB.  

2. The Accuracy Level (AL) Probability Distribution Function (PDF) for a source product and its associated 

statistical parameters are largely applicable to all product units currently under manufacturing. The PDF 

derived from a source product is assumed to define and represent the underlying accuracy with which the  

manufacturer  provides forecasts of the ECDs for any not-yet-delivered product.  

3. The underlying probability distribution of the manufacturer’s own forecasting accuracy for generating the 

ECDs pertaining to a given forecast product, is expected to improve during its manufacturing due to the 

“learning curve” effect. However, Nostradamus uses a fixed accuracy-level PDF (derived from the “source 

product”) for schedule forecasting of a forecast product.  This is justified, because impacts of any “learning 

curve” during the manufacturing of a given product are assumed as reflected in the manufacturer’s updated 

LOB data disseminated at each subsequent PMR.  

 

ALGORITHM AND COMPUTATIONAL METHOD 

Once the probability histogram (PH) of the accuracy level is determined from the LOB of a source product, the 

Nostradamus algorithm applies a curve-fit using a suitable analytic probability distribution function (PDF) commonly 

used in statistics.  The “Maximum Likelihood” approach is applied to the accuracy-level raw data from which the PH 

was constructed, see Montgomery and Runger (2003).  Steps in this process are depicted in Fig. 2. While several 

different analytical PDFs were tested, it was found that the Gamma function best conformed to the dataset.  Note that 

the Gamma function value of zero is meaningful when its independent variable (i.e., accuracy-level) approaches zero. 

Additionally, the Gamma function  is only defined for zero and positive variable values, which is consistent with the 

fact that   “negative” accuracy level values are neither defined, nor meaningful.  Recall that the accuracy level range 

is from 0 to  greater than100%. 

Once  the best-fit Gamma PDF parameters are determined from the LOB data of a source product, it is used for a 

Monte Carlo (MC) simulation. Figure 3 shows how the statistical best-fit PDF is used to produce 3,000 randomly-

generated accuracy level values for each task (or component) of the forecast product, for which schedule forecasting 

is needed.  In this figure, the comments below the “accuracy level formula” are for when a source product LOB 
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information is used to determine the statistical best-fit PDF.  Once the PDF and associated parameters are determined, 

the comments above the “accuracy level formula”  explain how this PDF is used to produce 3,000 randomly-generated 

accuracy level values (MC simulation) for each task “i”. This is done to calculate 3,000 corresponding “forecasts” of 

the actual completion date for each task “i” of a forecast product (Fig. 3).  Essentially, a single ECDi (and its 

corresponding Ei – see, for example, E5  in Fig. 1) which the manufacturer provides for a task “i”  at a given PMR,  is  

“revised/corrected” by the algorithm,  3,000 times to generate 3,000 “forecasts” of the actual completion date for this 

specific task.  For each task “i” (or component “i”), a  probability histogram can be constructed, using these 3,000 

“forecasts,”  from which the  Nostradamus’ forecast completion dates  at  the 5% and  95% cumulative probabilities 

(Confidence levels) are determined. These same steps are repeated for each task (or component)  listed in the LOB 

from each PMR.  

Figure 4 illustrates the Nostradamus 

schedule forecasting logic flow 

required to generate the delivery date 

forecast for a forecast product from a 

specified PMR date. For each task 

“i” (or component “i”) of a forecast 

product, the algorithm randomly 

generates 3,000 AL values (ALi,k , 

k=1 to 3,000), from which 3,000 

“forecasts” of the actual completion 

date (ACDi,k , k=1 to 3,000) are 

calculated using MC simulation (see 

comments above the AL “formula” 

in Fig. 3). This simulation is based 

on a truncated best-fit PDF of the 

accuracy level  values (see Fig. 4(a)). 

Details on proper selections of 

truncation cutoff values (i.e., 

Lo_Limit and Hi_Limit) are 

discussed later in the calibration and 

anchoring section.  From these 3,000 

data, a probability histogram of the 

Nostradamus’ “forecast” of the 

ACDi is built for each task “i”, (Fig. 

4(b) shows this probability histogram for task “i”). From this Fig. 4(b), two forecasts of the task completion dates at 

the  5% and 90%  cumulative probability values are determined for task “i”.  Once these two Nostradamus’ forecast 

dates are determined for task “i”,  they are connected by a vertical segment of line,  as depicted in the Fig. 4(c).  These 

steps are repeated for all other tasks in a software loop to complete the left-middle graph. The Fig. 4(c) simultaneously 

shows the Nostradamus’ forecast ranges (i.e., dates from 5% to 90% cumulative probability values) for all the tasks 

(or components) of the product which is currently under manufacturing. Additionally, this same graph displays the 

PMR date  (dashed horizontal line) and the manufacturer’s expected product delivery date (solid green horizontal line)  

given at this PMR date.  Moreover,  the ECDs for all tasks given by the manufacturer (as hollow rectangular symbols) 

are shown for this same PMR event.  The graph in Fig. 4(c) is important, because it provides a visual snapshot in time 

of  the manufacturer’s estimates and results of the Nostradamus  forecast for  a not-yet-delivered product at a given 

PMR date. 

The last step in the Nostradamus’ schedule forecasting logic flow diagram is the construction of the product Delivery 

Failure Probability (DFP) as a function of time (i.e., date) measured from the PMR date.  The DFP is determined 

because the project risk of not being completed by the manufacturer’s projected delivery date is directly proportional 

to the “failure” probability. The DFP is a curve that ranges from 100% failure to deliver to 0% failure to deliver. The 

Fig. 4(d) shows an example of the DFP curve.   For example, the DFP value at a 01/20/2012 date (see the pink 

horizontal line in Fig. 4(c) and pink vertical line in the DFP graphs shown in Fig. 4(d)), is determined by the number 

Figure 3. Depiction of how the statistical best-fit PDF, determined from 

LOB of a source product,  is used to produce 3,000 randomly-generated 

accuracy level values (ALi,k , k=1 to 3,000) for each task “i” (or component 

“i”) of a forecast product, for which schedule forecasting is needed.  
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of cases, out of 3,000 MC simulations, where at least one task’s forecasted delivery date exceeds this 01/20/2012 date.  

Once the DFP curve is determined, the date at any DFP value can be ascertained.  Additionally, the interim data matrix 

used by the algorithm to construct this DFP curve is further analyzed to quantify and rank the contribution of each 

task towards the product delivery failure probability value. Knowing this, programmatic measures can be taken to 

favorably affect the product delivery dates and reduce the schedule risk.   

 

CALIBRATION AND ANCHORING PROCEDURE 

The Nostradamus schedule forecasting algorithm requires calibration and anchoring to a reference and relevant dataset 

from a source product  before it is able to provide acceptable  and objective forecasts for forecast products on the same 

manufacturing line. Once a completed product is delivered by the manufacturer, ECDs at every PMR event pertaining 

to this source product are known. Additionally, because this product is already delivered, the actual completion date 

of each task (or component) of the product and when the completed product was delivered are known.  

As indicated before, a statistical best-fit Gamma function is used for the MC simulation. However, in practice, this 

Gamma  PDF is truncated to reflect realistic forecasts.  For example, an accuracy level value of 5%  implies that  the 

estimated number of days needed to complete a task (“E”) was under estimated by a factor of 20 (see the formula in 

Fig. 3)  thereby indicating that if the manufacturer estimated that this task would take 3 months to be completed, the 

forecasted actual  duration to complete this task would be 60 months.  This forecast is  an unrealistic assessment. 

Hence, a Lo_Limit value (i.e., the lower cutoff for the truncated PDF) should be higher than 5%, (Fig. 4(a)).  As shown 

in Fig 4(a), low and high limit cutoffs were incorporated to truncate the full Gamma function, that is,  the Lo_Limit 

and Hi_Limit values.   It is worth emphasizing that the  accuracy level of 100%  means that the manufacturer correctly 

estimated completion date for this task. while an accuracy level value >100% is plausible and implies that the 

Figure 4. Shows  the Nostradamus’ logic flow diagram indicating major inputs and outputs. First, a statistical 

best-fit PDF to the Accuracy Level (AL) is determined for a recently-delivered product, shown in 4(a).  For each 

task (or component) of a product currently under manufacturing, the program generates 3,000 “forecasts” of the 

actual completion date from which a probability histogram is built, see 4(b),  and the dates at  5% and 90% 

cumulative probability values are identified and plotted (see vertical segments of line in 4(c)). Finally, a product 

Delivery Failure Probability (DFP) is constructed in 4(d). 
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manufacturer completed the task earlier than estimated.  This  scenario is realistic and has been observed in this 

analysis.  

Note that the calibration process and the forecast outcomes are more sensitive to selection of the Lo_Limit value rather 

than the Hi_Limit. The Hi_limit value also needs some fine tuning.  In practice, however, a Hi-Limit value of 150% 

was adequate for all cases investigated here and appeared realistic from actual data analysis.  

The calibration process begins by the construction of a best-fit Gamma  PDF to the accuracy level probability 

histogram of the source product. Using the best-fit Gamma PDF,  it is pretended as if this source product is not 

delivered and attempts are made to construct a delivery failure probability (DFP) graph for each of the PMR events 

held for this specific product. This calibration/anchoring step follows the same logic shown in Fig. 4,  but replaces the 

“forecast product” with the same source product.  For a given fixed Lo_limit value,  the product-delivery forecast date 

at a DFP=50% is determined for all of the PMR events pertaining to this same delivered source product.  For each of 

these forecast dates, which is associated to a specific PMR event, a “forecast imprecision” is defined. A product’s 

delivery-date forecast imprecision at a given PMR is the difference in number of days between the forecasted delivery 

date and the known  actual product delivery date, expressed as a percentage of the number of days from that same 

PMR event to the actual product delivery date. The imprecision value indicates how close or far (in percentages) a 

forecast date was to the actual  product delivery date. It should be evident that the product delivery-date forecast 

imprecision can only be calculated when a product is completed and its actual delivery date is known.  Once the 

forecast imprecision is calculated for the 50% DFP date for all PMR events, a “time-averaged forecast imprecision” 

is computed.   Note that this time-averaged forecast imprecision value is determined at the previously-given fixed  

Lo_Limit value. The primary goal of the calibration and anchoring procedure is to find an optimum Lo_Limit value 

that produces a “time-averaged forecast imprecision”  of equal to zero. 

Once the optimum Lo-Limit value is determined in the calibration process, along with its associated Hi_Limit, the 

MC simulations for each forecast product which is currently under manufacturing are conducted. This is done by 

generating 3,000 randomly-generated numbers from the previously-determined statistical best fit Gamma  PDF, but 

only accepting numbers in between the pre-determined Lo-Limit and Hi_Limit values.   

 

TEST RESULTS AND DISCUSSIONS 

The Nostradamus forecasting concept described here has been tested extensively using realistic data from past USG 

acquisition programs. In this section, typical results observed in our tests are presented and discussed. The results 

presented here utilize LOB data from the third already-delivered product (called “A” i.e. source product) to calibrate 

the PDF parameters,  which is subsequently used in the MC simulation to provide delivery date forecasts  for the 

fourth product (named “B” i.e. forecast product) at each of its respective PMR dates.   It is important to indicate that 

when these forecasts were made, product B was not yet delivered.  Conclusions reached here are also similar for any 

relevant product pair (e.g., 1st manufactured product, as a source product, and 2nd one, as a forecast product, etc).  

Figure 5  is the Historical Forecast Curves (HFCs), and shows the results of the product-delivery forecasts (DFP = 

10%, 50%, 95%) for product B from LOB data from each PMR. For comparison purposes, Fig. 5 also shows the 

manufacturer’s estimated delivery date for the same product B (Blue line).  Each symbol on these curves is a product-

delivery forecast made at a given PMR date, either by Nostradamus (three forecast dates at 10%, purple; 50%, yellow; 

and 95%, red DFP values)  or by the manufacture (a single blue forecast date).  The two solid green lines represent 

product B’s actual delivery date, which was  known only when it was actually delivered. The  number of days from 

the first PMR shown in Fig. 5 to the actual product delivery date was about 873 days. A 45-degree line is also shown 

as a visual reference line.   A linear fit to the manufacturer’s HFC (Blue) (not shown)  confirmed that the project 

progression was at an average slope of  less than 45 degrees.  The three HFCs derived by the Nostradamus algorithm 

converge to a point towards the end of the project, which appears to be on the 45-degree line.  In fact, it can be reasoned 

that all four HFCs must converge to a point on the 45-degree line, despite the fact that no PMR was held past the last 

one shown in  Fig. 5.  However,  it is assumed that the manufacturer continued holding PMRs and the last PMR was 

on the day when product B was actually delivered. On this date, the manufacturer’s forecasted delivery date would 
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have been reported the same as the PMR date, corresponding to a point on the 45-degree line.  This point is the actual 

delivery date of the product B under investigation.  

At first glance, all three Nostradamus HFCs in Fig. 5 provide delivery-date forecasts that are much closer to the actual 

delivery when compared to the manufacturer’s forecasts. However, the most important observation  is that the 50% 

DFP forecast date hovers around and closely follows the actual product-delivery date as shown by the green horizontal 

line (Fig. 5).   Considering the manner in which the calibration/anchoring was conducted, the date at the 50% DFP 

value is Nostradamus’ nominal delivery-date forecast with variations within the bounds defined by dates at 10% and 

95% DFP values.  

Figure 6 depicts the delivery-date 

forecast imprecision curves for 

product B, calculated after the 

product  was actually delivered.  

For the Nostradamus,  the nominal 

forecast date was used to calculate 

the forecast imprecision values.   

The imprecision for product B is 

defined in the same manner as 

already described for the “source 

product.”   Starting from the 

beginning of the project for product 

B, the manufacturer’s imprecision 

(orange) ranges from 110% to 

222%  over the course of 2 years, 

and only improves in the last 6 

months of the project. Towards the 

end of the project, the 

manufacturer’s imprecision curve 

trends  closer to zero. In 

comparison, the imprecision for 

Nostradamus’ product-delivery 

nominal forecast closely hovers 

around zero throughout the 

duration of the project.  These 

results validate the calibration and 

anchoring process, and exhibit an 

accurate forecast capability 873 days ahead of the project end date and before the product was delivered (i.e., at the 

beginning of the project).   

The maximum, average, and minimum imprecision values for Nostradamus’ forecast during the entire project period 

were -29%, -3%, and 16%, respectively, whereas those by the manufacturer registered at 222%, 143%, and 32% 

values.  The promising and impressive forecasting performance of the Nostradamus should be apparent.  

It is important to  note that for forecasting delivery-dates of any on-going project, Nostradamus does not require the 

dates when tasks (or components) started. All that is needed, are the manufacturer-provided estimated completion 

dates for these tasks. Although biases exist (such as overconfidence, anchoring, strategic optimism, and availability, 

(see Kahneman and Tversky (1979a)), Nostradamus compensates using the actual performance on a most-recently-

delivered source product. Also, requiring the manufacturer to disseminate its best estimates of task (or component) 

completion dates in each PMR, not only substantially reduces forecasting complexity, but also provides an incentive 

for offering its best forecasting efforts in order to minimize manufacturer’s reputational risk.  If a new unexpected 

technical issue arises after a PMR date that causes a substantial schedule delay, the Nostradamus algorithm will utilize 

updated information that the manufacturer incorporates in the next LOB  that takes into account the technical issue’s 

Figure 5.  Shows the Nostradamus’ product-delivery Historical Forecast 

Curves (HCFs) at three DFP values of 10%, 50%, and 95% for the “forecast 

product B.”  A single product-delivery HFC by the manufacturer for this 

same product is also shown. The recently-delivered “source product” in this 

case was named “A” and the “forecast product” was “B”. All delivery-date 

forecasts are made when this product (i.e., “B”) was not yet delivered. 
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Nostradamus 10% DFP Date (A--> B, Lo_limit=25)
 Nostradamus 50% DFP Date (A-->B, Lo_limit=25)
Nostradamus 95% DFP Date (A--> B, Lo_limit=25)
Manufacturer-Provided Estimated  Delivery Date for Product B
45-degree line
Actual Product Delivery Date
Actual Product Delivery Date

Forecast Dates 
at 50% DFP

Actual Product 
Delivery Date



2023 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 

 

13 
I/ITSEC 2023 Paper No. 23364 Page 13 of 14 

schedule impact (Assumption #1). 

Indeed, this Bayesian-like approach 

is inherently incorporated into the 

Nostradamus program logic  (i.e. 

using the past established 

performance and  combining it with 

any  newly-provided information to 

update and correct its product 

delivery-date forecasts) pays tribute 

to the adaptable and agile nature of 

the algorithm.  Additionally, no 

information regarding the inter-task 

dependencies or linkages (or inter-

activity dependencies/linkages 

within a task) are needed 

(assumption #1) because their 

impacts are captured in the task 

ECDs provided by the 

manufacturer. This is in stark 

contrast to forecasting methodologies requiring Gantt charts with begin-end dates and inter-task relationships to 

function.  When compared to other statistically-based approaches,  the use of the most recent performance information 

substantially reduces complexity in the forecasting methodology proposed here.   Lastly, and most notably, 

Nostradamus can be used at any time within a progressing project regardless of the project/product type. 

 

CONCLUSIONS 

A novel accuracy-level LOB-based schedule forecasting methodology (Nostradamus Objective)  is proposed for low-

volume highly-complex  new product development. While Nostradamus is expected to work reliably and objectively 

for any product manufacturing (or project management) effort, it is especially shown valuable and useful for new 

product development (NPD) and during the early stage of the project when uncertainties are high.  During this early 

stage, one or a very few product units are delivered (defining the “past or most recent performance”), but forecasts 

are highly needed for all not-yet-delivered products using LOB data from recurring PMRs (i.e., “current information”). 

The Nostradamus logic conforms with the “reference class concept” described by the Nobel Prize laureate Daniel 

Kahneman and coworkers, and is able to reliably and accurately forecast project completion dates of products on the 

same manufacturing line.  Additionally, the Nostradamus software program ranks a list of top components (or project 

tasks) of the product that heavily affect the delivery date or delivery delays. To the best of our knowledge, this is the 

first time in literature that the LOB data is used for schedule forecasting in such a unique approach described here. 

The raw data analyzed here is extracted from actual new product development in the context of US Government 

acquisition process. The algorithm was entirely developed in-house as no such commercially-developed program was 

available or able to provide reliable forecasts. The algorithm has gone through extensive verification and validation 

testing to build confidence on its implementation and results. Typical forecasting results are presented here, where a 

full LOB data from a recently-delivered product “A” is used to construct a probability distribution function (PDF) of 

the “accuracy level” values. This PDF is then used to perform MC simulations and produce 3,000  possible delivery 

date forecasts for each component of a forecast  product “B”.  Once the product “B” is later delivered, forecast 

imprecisions are calculated to see how close the Nostradamus forecasts were to the actual delivery date of  product 

“B,” and compared them with those calculated for the manufacturer’s forecasts.    

Results of these tests indicated that, over the project duration, a time-averaged forecast imprecision value of -3%  was 

achieved using Nostradamus, as compared to 143% by the manufacturer.  The imprecision of Nostradamus’ product-

delivery forecast, remained near zero even from the beginning of the project (nearly 2.5 years ahead of project 

completion date).   The maximum, average, and minimum imprecision values for Nostradamus’ forecasts during the 

Figure 6. Shows the imprecision of the forecasted product delivery dates for 

Nostradamus and the primary manufacturer. Zero imprecision value implies 

100% accurate forecast.   All delivery date forecasts are made when this 

product was not yet delivered.  Imprecisions are then calculated when the 

product is completed and delivered at the end of its project.  
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entire project period were -29%, -3%, and 16%, whereas those by the manufacturer registered at 222%, 143%, and 

32%.  The promising and impressively-high forecasting performance and accuracy of  Nostradamus Objective will 

continue contributing to high-visibility programs with strict cost and schedule constraints pertinent to delivering 

needed capabilities to the USG. 
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