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ABSTRACT 
 
How can we build artificial intelligence (AI) that robustly recognizes how well a team is doing from behavioral data 
that exhibits the full range of human complexity and dynamics? One method is cognitive inversion. An AI with a 
causal model of human behavior that is sufficiently dynamic to account for behavioral variability and teammate 
interactivity and scoped to a set of tasks and interactions of interest, combined with a probabilistic program inference, 
can invert that behavioral model to generate hypotheses about the underlying goals and causes of observed behavior. 
As a tutor, coach, or teammate, the AI can then intervene to assist when needed. Here, we describe our prototype 
cognitive inversion system called Prescient, Socially Intelligent Coach (PSI-Coach) and its supporting components. 
PSI-Coach monitors team members to recognize their goals, mental states, and behaviors from dynamic streams of 
actions by combining probabilistic programming inference with a cognitive architecture designed to capture human 
variation. PSI-Coach uses those recognized cognitive states to infer a team’s shared mental models and whether they 
are in alignment or skewed; analyze these goals, mental states, behaviors, and shared mental models to compute 
practical, real-time team performance indicators; and integrate all of this information with interactive-narrative 
technology to plan minimally intrusive, effective, strategically timed interventions that help to improve team 
performance. In experiments, we demonstrated the ability of cognitive inversion to automatically identify team process 
problems unique to different teams and their situation dynamics, and, based on those results, we show PSI-Coach’s 
ability to provide timely, tailored intervention content that improved team processes. Cognitive inversion showed a 
35% increase over rule-based comparison systems’ real-time inferences (p<0.05), and led PSI-Coach to exhibit a 
42%–68% increase in agreement with human coaches on interventions over a baseline inference method (p<0.05). 
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INTRODUCTION  
 
Improving team performance requires deep understanding of what a team is doing—whether rational, irrational, or 
idiosyncratic—and administering effective, nonannoying interventions so the team can reach high levels of 
achievement. Recognizing detailed user goals, mental states, and behaviors (in all of their human complexity) from 
low-level actions in dynamic open worlds is a challenging task requiring real-time inference of complex, human 
cognitive processes. Predicting and planning well-timed, effective interventions requires a depth of understanding that 
takes human coaches years to learn and has repeatedly failed (in sometimes spectacular ways) in research and 
commercial artificial intelligence (AI) systems.  
 
To meet these challenges, we created a Prescient, Socially Intelligent Coach (PSI-Coach). PSI-Coach is designed to 
unobtrusively monitor each team member to (1) recognize goals, mental states, and behaviors without the assumption 
of rationality by extending an expressive AI cognitive architecture with probabilistic programming languages (PPLs); 
(2) robustly recognize details of dynamic open-world behavior using inference over reactive cognitive architecture 
language features; (3) recognize aligned and skewed shared mental models within teams using joint behavior 
inference; (4) measure team performance indicators in real time using inferred mental states combined with novel, 
dynamic-task extensions to our partner’s test of collective intelligence; and (5) maximize team performance using 
experience management algorithms that predict team behaviors and reason about both the efficacy and disruption of 
interventions. PSI-Coach makes these predictions and interventions using a planning technology that reasons about 
the effectiveness, timing, and disruption of potential interventions. This technology has delivered preliminary results, 
unobtrusively guiding interactive stories with unpredictable participants. 
 
Here, we will focus on objective number 1, above: the inference of human teammate goals via a process we call 
cognitive inversion. The term derives from inverting a cognitive process model that, in the forward direction, generates 
goals and subgoals, eventually producing observable behavior in the world. Inverting that model (“running it 
backward”) uses the observable behaviors—the model of how they can be generated by goals—and infers which goals 
were likely to have produced the observed behavior. Cognitive inversion, as described here, builds on decades of 
earlier work in expressive AI cognitive architectures for generating natural human behavior. For example, it had long 
been believed that computer vision could be performed by inverting the computer graphics pipeline (i.e., running it 
backward), but this concept only recently became practical with breakthroughs in PPLs (Kulkarni, et al., 2015). This 
general idea has also been applied to inverting physics simulators (Bates, et al., 2015) and seismic models (Arora, et 
al., 2013). We integrate recent breakthroughs in PPLs (Pfeffer, 2016) that allow generative models of behavior to be 
inverted for goal recognition. 
 
The Current Study 
 
An AI with a causal model of human behavior that is sufficiently dynamic to account for behavioral variability and 
teammate interactivity and scoped to a set of tasks and interactions of interest, combined with probabilistic program 
inference, can invert that behavioral model to generate hypotheses about the underlying goals and causes of observed 
behavior. A cognitive inverter, then, needs three things: observations to explain, a cognitive model to invert, and a 
probabilistic framework within which to infer likelihoods of causal paths linking goals to behaviors.  
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First, the cognitive inverter needs observable behavior inputs. We implemented a team-based search and rescue (SAR) 
task in a Minecraft™ testbed. We recorded the in-game behavior (actions) of teams of humans whose goal was to 
locate and triage casualties in a mass causality event. Example actions we recorded included movement (i.e., walking) 
within a building, entering rooms in the building, and marking casualties for levels of triage. 
 
Second, the cognitive inverter needs a domain specific language (DSL) capable of generating the observed behavior. 
The DSL encodes goals, subgoals, and possible behavioral methods of achieving those goals. People are complex and 
dynamic; they do multiple things at the same time, switch between goals and tasks, pause activities and return to them 
later, and react to opportunities and changes in the world. A sufficiently expressive DSL should be capable of capturing 
this variation and also accommodate irrational behavior. An assumption of rationality pervades many AI systems, 
cognitive theories, and team theories, greatly restricting their understanding of human behavior.  
 
Our system inverts an expressive cognitive model built on Charles River Analytics’ Hap AI cognitive architecture 
(Sliva, 2016; Loyall et al., 2004; Loyall, 1997). Hap is a multiagent scripting language with syntax and computational 
architecture that performs parallel goal execution, prioritizes goals, and connects to simulator environments to sense 
and take actions (Figure 1). Hap has been designed over 30 years to create believable (including irrational), cognitively 
plausible, and socially realistic agents. Hap has spawned six research and commercial variants, which have been used 
as a foundation for dozens of research projects in socially engaging interactive agents (e.g., at Carnegie Mellon 
University; Stanford University; the Georgia Institute of Technology; and the University of California, Santa Cruz; as 
well as several research laboratories). Versions of Hap have been used as a foundation for over a dozen Ph.D. theses. 
Hap is currently on its sixth version, and AI agents based on Hap have been created for a diverse range of domains 
(e.g., modeling medical teams, squad-level AI Army tactics, fourth-generation combat pilots, characters in interactive 
stories, cyber social-attack-vector simulations, and distractible missile defense operators).  
 

 
 

Figure 1. Hap AI cognitive architecture (left) and several example Hap applications (right). 
 
By using Hap for recognition, the Cognition Inverter can recognize strategies as well as natural human idiosyncratic 
behaviors as a key foundation for assisting team performance. Example goals, strategies, and behaviors we encoded 
included search strategies, casualty triage and treatment strategies, disoriented wandering, revisiting of rooms or 
casualties, transporting casualties, and assisting teammates (e.g., helping to transport, removing obstacles). 
 
Third, the cognitive inverter needs a PPL to construct and sample a probabilistic model of relationships among goals 
and behaviors expressed in the DSL. The constructed model represents hypothesized goal pathways leading to 
observed behavior. The sampling over structures composed in the DSL is the inversion step; it inverts the direction of 
the forward-running expressive cognitive model to infer the goals and mental states of team members from their 
behavior. The resulting probabilistic program synthesis results in a dynamic Bayesian network (DBN), the nodes of 
which are goals and subgoals, with edges linking causal paths from goal to subgoal to behavior. Overall, the DBN 
graph represents hypothetical goal pathways that explain the observations. The DBN nodes can be queried for their 
posterior beliefs—the evidentiary support that a particular goal had a causal role in generating observed behaviors. 
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We began research and development by manually constructing a DBN cognitive inverter. We built this initial DBN in 
the Figaro™ PPL (Pfeffer, 2016). Figaro is an open-source PPL (cra.com/projects/figaro/) developed at Charles River 
that expresses probabilistic models as data structures in the Scala programming language. We successful showed 
cognitive inversion with this DBN using the Minecraft data. Subsequently, we built the Hap DSL and the Inverse Hap 
cognitive inverter, iHap, using the Scruff™ PPL (Pfeffer, et al., 2021) to synthesize DBNs from constructs expressed 
in the Hap DSL. Scruff is Charles River’s third-generation PPL (cra.com/projects/scruff/). It is an open-source library 
for the Julia programming language designed as a composable framework for efficient inference of complex generative 
systems (github.com/charles-river-analytics/Scruff.jl). 
 
Concept of Operations 
 
Putting the three parts together, iHap first ingests observations. It then constructs and samples a DBN of goal and 
mental-state constructs expressed in the Hap-based DSL. This sampling enables the iHap cognitive inverter to assess 
the likelihood that observations could have been generated by goal pathways. Once a cognitive inverter ingests the 
observations, synthesizes a DBN over the DSL, and infers probabilities teammate goals, a larger system, such as PSI-
Coach, can act on the inference. PSI-Coach goes on to score likely causes of behavior and the inferred state of the 
mission, and then intervene to provide recommendations or other support. Figure 2 illustrates the function of the 
cognitive inverter in the larger PSI-Coach architecture.  
 

 
 
Figure 2. PSI-Coach functional architecture. PSI-Coach uses a cognitive inverter to understand and act on team 

goals, mental states, and behaviors. 
 
In Figure 2, the process starts at the asterisk (*) with the cognitive inverter observing the team’s interactions with the 
open world. It then (1) infers the goals, mental states, and behaviors of individual team members in detail—whether 
they are acting rationally or irrationally—and recognizes those goals, mental states, and behaviors in the presence of 

https://cra.com/projects/figaro/
https://cra.com/projects/scruff/
https://github.com/charles-river-analytics/Scruff.jl
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the dynamic, and adaptive changes that people regularly exhibit in open worlds. Next, the cognitive inverter (2) infers 
the joint behaviors, shared mental models, and misaligned mental models of the team, and uses all of this inferred data 
to compute PSI-Coach’s real-time measures of team performance. These measures are passed to the Strategic Coach 
(3), which predicts possible futures, assesses team effectiveness in those possible futures, plans potential interventions, 
and then executes interventions at the appropriate times to help the team achieve high performance. As PSI-Coach 
monitors team activities, repeating this cycle, the cognitive inverter is also continuously learning the strengths and 
weaknesses of the team and using that information to inform its predictions and intervention planning. PSI-Coach also 
includes (4) an offline, rigorous experimental cycle to inform research and improve the PSI-Coach system. 
 
 
METHODS 
 
Construction of the Minecraft testbed and human subjects data collection were carried out collaboratively among 
performers on the Defense Advanced research Projects Agency (DARPA) Artificial Social Intelligence for Successful 
Teams (ASIST) program. Colleagues at Aptima, Inc., led testbed construction and colleagues Arizona State University 
(ASU) led data collection. Development and testing of our cognitive inverter proceeded in three phases. In phase I, 
we collected initial data on human teams within the Minecraft-based testbed. In phase 2, we implemented a DBN for 
cognitive inversion without using a DSL and tested it during additional periods of human data collection. In phase 3, 
we implemented and tested the Hap DSL and full Inverse Hap cognitive inverter that uses probabilistic program 
synthesis to construct DBNs. 
 
Human subjects research comprised three studies, following a research protocol approved by the ASU institutional 
review board (IRB) and DARPA’s Human Research Protection Office (HRPO). Each study comprised approximately 
20 experimental runs through the testbed. Experiment 1 tested individual participants on the SAR task, and 
experiments 2 and 3 tested teams of three participants. Participants played one of three roles: scouts moved quickly to 
locate casualties or move triaged casualties, medics triaged casualties and prepared them for extraction, and engineers 
removed rubble to clear paths/doorways and to free trapped teammates. Any role could search for and discover 
casualties. Once triaged, casualties could be moved to an extraction location matched to their triage category (A, B, 
or C).  
 
After initial data collection, we annotated the data to capture domain knowledge. We identified strategies and goals, 
as well as hierarchical relationships between goals, subgoals, and behaviors (i.e., methods of achieving a goal via 
subgoals that eventually ground out in observable behavior). For example, the three roles had different goals, and 
individual participants might adopt different strategies for navigating the map based on their goal. Participants also 
sometimes became disoriented, unsure of their location and wandered until they reoriented themselves. Thus, a room 
or a casualty might be bypassed for any of several reasons. Some example reasons include the participant was carrying 
a victim, was going to help a teammate with a critical victim, was an engineer looking for blockages, was using a 
navigation strategy (e.g., “always turn left”) that did not encompass the bypassed room, or was confused. The cognitive 
inverter’s job is to infer the likelihoods of these types of mental states from observed behavior so that PSI-Coach could 
assess team performance and intervene when needed. 
 
In phase 2, we constructed a DBN in Figaro over iterative development and testing against the phase I human data 
and encoded the domain knowledge developed from the annotations. The DBN is a probabilistic graph that traces 
paths from high-level goals or strategies through subgoals to observable behaviors. As a dynamic model, it steps 
through time via a state transition function representing the dynamics of the test environment to recognize active goals 
and subgoals capable of explaining the evolving behavioral record as new actions are observed. This phase 2 inverter 
did not perform probabilistic program synthesis over a DSL, but encoded features of Hap behavioral reactivity and 
variability in the hand-built linkages between belief nodes. After constructing the DBN, we integrated it into the larger 
PSI-Coach system and tested it in further human subjects research in the Minecraft testbed.  
 
In phase 3 of development and testing, we are implementing and testing the Hap DSL and Inverse Hap cognitive 
inverter, iHap. Inverse Hap has two key features. First, it uses the same grammar as forward-running Hap, which 
enables the cognitive modeler (user) to quickly externalize their domain knowledge by encoding building blocks of 
agent goals and behaviors in the DSL. Second, it builds upon the inference capabilities of Scruff to convert the forward-
running Hap constructs expressed in the DSL into a generative probabilistic model over possible agent states. A Hap 
agent’s state at any point in time is represented in its Active Behavior Tree (ABT) and Working Memory. The current 
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set of goals and behaviors, and their current execution state, are represented in the ABT. Mental states are represented 
in Working Memory. Using the Scruff PPL, we invert Hap to recognize the likely ABT fragments and mental states 
that could have given rise to the sequence of actions that was observed. The ABT fragments, behaviors, and mental-
state variables constitute the DSL—the “primitives” that can be probabilistically sampled and combined to construct 
hypotheses about the causes of the observed behavior. 
 
The DSL provides preorganized goal and mental-state constructs expressed in the Hap cognitive modeling language. 
These Hap constructs capture domain knowledge, such as goals and relations between goals (causal paths from goals, 
to subgoals, to behaviors). The constructs also capture expressive complexities, such as that multiple goals can be 
active currently, some subgoals must be executed sequentially, and goals and behaviors may have context conditions, 
may succeed or fail, and may be achieved in more than one way. The expressivity of the constructs enables the 
cognitive inverter to explain nonlinearities in the observations (e.g., that actions resulting from multiple goals running 
in parallel may be interspersed in serial time, or that an initial attempt to achieve a goal by one method may fail part 
way through its subgoals, while a subsequent attempt, via different subgoals, may succeed). To create the Hap DSL, 
we ported key elements of the Hap architecture, grammar, and syntax from Java to Julia. We created Julia macros to 
abstract the complexities of the Julia code, which provides a compact way to write iHap programs and retains familiar 
Hap syntax.  
 
 Figure 3 depicts a high-level view of the iHap 
architecture. All DSL constructs (iHap macros 
embedded in Julia programming language) are 
interpreted and serialized into Julia source code for 
iHap programs (ABT definitions). An inference 
interpreter then takes the generated ABT definitions 
along with a definition of the agent’s initial world 
state and synthesizes and runs a Scruff probabilistic 
model: the iHap cognitive inverter. The inverter is a 
DBN representation over possible ABTs and agent 
world states—hypothesized goal pathways, from 
top-level ultimate goals to observed actions. The DBN uses an asynchronous particle filter (aPF) as an inference 
algorithm. The aPF under the hood uses the expansion/contraction logic around the Hap engine as a generative model 
to create probability distributions over possible ABTs. We can then assert evidence against this probability distribution 
by observing actions that a human performs to then infer the most likely ABT that would have generated said action(s). 
The inverter can thus be queried for likelihoods and posteriors at each node of the DBN. 
 
iHap extends the forward Hap system by (1) replacing random choices in Hap with probability distributions inferred 
through the PPL; (2) using the Working Memory variables as latent variables to be inferred; (3) adding latent internal 
variables for goal switching and reactive changes, so additional dynamic changes can be learned and recognized; and 
(4) adding dynamic noise to deterministic choices in the behavior models (e.g., step skipping and changes in step 
ordering, to support learnable exceptions to these choices).  With these extensions, when the cognitive inverter sees a 
sequence of actions that does not fit a single goal or activity, but instead fits a mix of partially executed goals, it can 
recognize behaviorally plausible combinations. By only recognizing behaviorally plausible combinations, the 
inference is efficient and avoids spurious recognitions.  
 
iHap creates a Hap ABT of possible paths to observations given the domain knowledge, then uses particle filtering 
inference to determine the posterior belief of each node. Overall, given that one has modeled a set of behaviors, iHap 
ingests observations, generates Hap agent fragments that can produce them as nodes in a DBN, and assesses the 
likelihood that each node had a role in causing the observations.  
 
 
RESULTS 
 
Figaro DBN 
 
We ran experiments with the Figaro-encoded cognitive inverter using observations of human team behavior collected 
in the Minecraft-based SAR task. The results demonstrated that a DBN that encoded goal-oriented SAR domain 

 
Figure 3: Inverse Hap cognitive inverter 

architecture. 
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knowledge and important elements of human strategic and behavioral variability could recognize team goals from 
behavioral observations. Figure 4 and Figure 5 illustrate cognitive inverter results and their use by the larger PSI-
Coach system overlayed on testbed maps. 
 

 
 

 
 

Figure 4. Inference of triage strategy (left) and prediction of future search behavior (right), illustrated in top-
down views of building interiors, showing a participants’ navigation paths (green lines) and casualty locations 

(colored squares). 
 
In Figure 4, the left-hand panel illustrates the cognitive inverter infereence of the triage strategy from observed 
navigation behavior. Casualties denoted by a circular blue highlight around a green square were likely bypassed on 
purpose. Casualties denoted by a circular red highlight around a green square were likely bypassed inadvertently. In 
the right-hand panel, PSI-Coach predicts future search behavior from inferred triage strategy. Darker blue denotes 
areas likely to be (re)visited. Unshaded areas are unlikely to be (re)visited. PSI-Coach can then intervene to prompt a 
teammate to check for missed high-priority casualties that are in areas unlikely to be visited. 
 
In Figure 5, a participant in the medic role has been ignoring team communication prior to and within the area of the 
blue box, entering rooms that have been communicated as clear. PSI-Coach waits to issue an intervention at the start 
of the orange box, when the cognitive inverter infers that the medic is about to ignore team communication again. 
After the intervention, the medic turns around, avoiding a repeated mistake; starts reliably following better team 
process; and uses team communication more consistently. 
 
Overall, cognitive inversion automatically identified team process problems unique to different teams and their 
situation dynamics. Based on such inferences, PSI-Coach provided timely, tailored intervention content that improved 
team processes within 60 seconds. Cognitive inversion showed a 35% increase over rule-based comparison systems’ 
real-time inferences (p<0.05) and led PSI-Coach to exhibit a 42%–68% increase in agreement with human coaches 
on interventions over a baseline inference method (p<0.05). 
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Figure 5. Demonstration of medic decision-making before and after intervention from PSI-Coach (the red 
line traces the path of a participant in a medic role, with the current location shown as red to in middle-left of 

the figure). 
 

Inverse Hap 
 
We implemented the PPL version of the Hap language with full-scope features, including shared memory and language 
scoping and post hoc probabilistic modeling of agent mental activity. A PPL factor construct allows approximate 
Bayesian scoring of sequences of agent behavior. iHap allows aPF inference with soft sampling controlled by factor. 
In general, inference in a full-scope system presents scalability challenges: agent programs express probability 
distributions over high-dimensional combinatorial spaces, with constraints expressed through approximate Bayesian 
scoring. Creating a DSL from a cognitive modeling architecture such as Hap addresses these constraints, yielding a 
novel perspective on inference over agents: parsing sequences of agent action observations as generated from a 
probabilistic grammar. iHap synthesizes agent programs from agent grammars applied to behavioral subsequences. 
Our expanded factor-based inference construct supports island-driven inference, performing inference over behavior 
fragments and combinations of fragments for increased scalability and robustness. This extends the inference 
capabilities from traditional inference over random choices facilitated by human cognitive modeler to inference over 
entire behavior models from observed actions in the domain. In addition, our designs for inference compilation 
technology speed up inference and increase model coverage. 
 
Presently, we have created simple tests for the iHap cognitive inverter and run small experiments to verify component 
functionality and integration. We have not tested iHap on the human data or integrated it into the larger PSI-Coach 
architecture. To test iHap, we implemented simple iHap models (an example is illustrated in Figure 6), which 
nonetheless exhibit varying possible behaviors and actions to explain observations. In the example in Figure 6, the 
observation is that a searcher has walked past a room without checking it for casualties. This may have been accidental 
(an event with increased likelihood if the searcher is a novice) or it may have been strategic (e.g., because the searcher 
was going to help a medic with a critical casualty).  
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For the example in Figure 6, we ran three tests, wherein 
we passed the resultant Scruff model an observation that 
the searcher missed a room and was either novice, expert, 
or of unspecified skill. The model successfully returned 
probabilities of the missed versus skipped explanations 
based on evidence posted about searcher skill and 
passing by a room without checking. These types of tests, 
albeit simple, indicated that the iHap pipeline functions 
as intended, from observations, through probabilistic 
program synthesis over DSL constructs, to causal 
inference, culminating in posterior probabilities at each 
node. 
 
 
CONCLUSION 
 
People are complex and dynamic; they do multiple things 
at the same time, switch between goals and tasks, pause 
activities and return to them later, and react to 
opportunities and changes in the world. Traditional plan 
recognition and activity recognition systems struggle to 
handle this dynamic behavior. Plan recognition systems 
recognize a user’s specific stage in a rigid plan but fail in 
the complexity of an open world. Activity recognition 
systems (e.g., those using deep learning, rule-based 
systems, or Bayesian graphical models) robustly 
recognize coarse-grained activities within the dynamic 
complexity, but they fail to provide the specific context 
of where in a plan an individual is stuck. Cognitive 
inversion provides detailed recognition of team 
members’ goals and the behavior execution state in these natural, overlapping flows of human activity by inverting a 
cognitive model’s mechanisms for such reactive, adaptive, and dynamic cognitive processes. Our implementation of 
cognitive inversion enables PSI-Coach to monitor team members and intervene during training or operations to 
improve team performance.  
 
Our results show that cognitive architectures combined with probabilistic programming to implement cognitive 
inversion can be used to represent important human mental model variations, including intent, task strategy, task 
execution, and resource usage and knowledge, among other factors. Cognitive inverter algorithms can infer 
dynamically changing mental models (e.g., unexpected strategies, changes in intent) from observations of behavior 
and can predict future execution of strategies to enable well-timed intervention points, similar to human coaches. 
 
We implemented two cognitive inverters. The first cognitive inverter encoded domain knowledge and behavioral 
variability directly into a DNB in the Figaro PPL. We used this version to test cognitive inversion and PSI-Coach with 
human data prior to developing a DSL from a cognitive architecture. While this approach is successful, it requires the 
user to have diverse technical expertise. The user needs to know the principles of probabilistic programing and DBNs, 
the specific PPL (e.g., Figaro, a Scala library), as well as the domain knowledge (e.g., strategies and pitfalls of 
performing SAR). The second cognitive inverter used a DSL based on a cognitive architecture, Hap. The use of macros 
to create goal, strategy, and behavioral constructs in the cognitive architecture means the user only needs to how to 
build cognitive models (e.g., in Hap) based on domain knowledge. The use does not need to know Julia, Scruff 
probabilistic modeling, or how to create a DBN; the DSL-based cognitive inverter does the work of synthesizing and 
running the inverted cognitive model. 
 
Cognitive inversion can benefit training because an inverter-equipped intelligent training system can know the ground-
truth state of the training range and scenario and use that knowledge to intervene at opportune moments. For example, 
when intervening on a searcher who accidently missed a casualty earlier, PSI-Coach could wait until the searcher was 

 
Figure 6: Goals, mental states, and an observation 

for a simple iHap proof-of-concept test.  
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near the casualty’s location again to prompt the searcher about the earlier mistake. Cognitive inversion can benefit 
operations because an inverter-equipped intelligent decision aid can analyze incoming data to infer adversarial tactics, 
techniques, and procedures (TTPs), suggest and provide confidence estimates over alternative hypotheses about 
adversary TTPs and strategies/goals (PSI-Coach’s cognitive inversion step), and suggest complementary courses of 
action (PSI-Coach’s intervention step). Potentially, the cognitive inverter can mitigate confirmation bias and other 
cognitive biases or point an analyst to where observations are missing that, if discovered, could resolve uncertainty. 
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