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ABSTRACT

How can we build artificial intelligence (Al) that robustly recognizes how well a team is doing from behavioral data
that exhibits the full range of human complexity and dynamics? One method is cognitive inversion. An Al with a
causal model of human behavior that is sufficiently dynamic to account for behavioral variability and teammate
interactivity and scoped to a set of tasks and interactions of interest, combined with a probabilistic program inference,
can invert that behavioral model to generate hypotheses about the underlying goals and causes of observed behavior.
As a tutor, coach, or teammate, the Al can then intervene to assist when needed. Here, we describe our prototype
cognitive inversion system called Prescient, Socially Intelligent Coach (PSI-Coach) and its supporting components.
PSI-Coach monitors team members to recognize their goals, mental states, and behaviors from dynamic streams of
actions by combining probabilistic programming inference with a cognitive architecture designed to capture human
variation. PSI-Coach uses those recognized cognitive states to infer a team’s shared mental models and whether they
are in alignment or skewed; analyze these goals, mental states, behaviors, and shared mental models to compute
practical, real-time team performance indicators; and integrate all of this information with interactive-narrative
technology to plan minimally intrusive, effective, strategically timed interventions that help to improve team
performance. In experiments, we demonstrated the ability of cognitive inversion to automatically identify team process
problems unique to different teams and their situation dynamics, and, based on those results, we show PSI-Coach’s
ability to provide timely, tailored intervention content that improved team processes. Cognitive inversion showed a
35% increase over rule-based comparison systems’ real-time inferences (p<0.05), and led PSI-Coach to exhibit a
42%—-68% increase in agreement with human coaches on interventions over a baseline inference method (p<0.05).
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INTRODUCTION

Improving team performance requires deep understanding of what a team is doing—whether rational, irrational, or
idiosyncratic—and administering effective, nonannoying interventions so the team can reach high levels of
achievement. Recognizing detailed user goals, mental states, and behaviors (in all of their human complexity) from
low-level actions in dynamic open worlds is a challenging task requiring real-time inference of complex, human
cognitive processes. Predicting and planning well-timed, effective interventions requires a depth of understanding that
takes human coaches years to learn and has repeatedly failed (in sometimes spectacular ways) in research and
commercial artificial intelligence (Al) systems.

To meet these challenges, we created a Prescient, Socially Intelligent Coach (PSI-Coach). PSI-Coach is designed to
unobtrusively monitor each team member to (1) recognize goals, mental states, and behaviors without the assumption
of rationality by extending an expressive Al cognitive architecture with probabilistic programming languages (PPLs);
(2) robustly recognize details of dynamic open-world behavior using inference over reactive cognitive architecture
language features; (3) recognize aligned and skewed shared mental models within teams using joint behavior
inference; (4) measure team performance indicators in real time using inferred mental states combined with novel,
dynamic-task extensions to our partner’s test of collective intelligence; and (5) maximize team performance using
experience management algorithms that predict team behaviors and reason about both the efficacy and disruption of
interventions. PSI-Coach makes these predictions and interventions using a planning technology that reasons about
the effectiveness, timing, and disruption of potential interventions. This technology has delivered preliminary results,
unobtrusively guiding interactive stories with unpredictable participants.

Here, we will focus on objective number 1, above: the inference of human teammate goals via a process we call
cognitive inversion. The term derives from inverting a cognitive process model that, in the forward direction, generates
goals and subgoals, eventually producing observable behavior in the world. Inverting that model (“running it
backward”) uses the observable behaviors—the model of how they can be generated by goals—and infers which goals
were likely to have produced the observed behavior. Cognitive inversion, as described here, builds on decades of
earlier work in expressive Al cognitive architectures for generating natural human behavior. For example, it had long
been believed that computer vision could be performed by inverting the computer graphics pipeline (i.e., running it
backward), but this concept only recently became practical with breakthroughs in PPLs (Kulkarni, et al., 2015). This
general idea has also been applied to inverting physics simulators (Bates, et al., 2015) and seismic models (Arora, et
al., 2013). We integrate recent breakthroughs in PPLs (Pfeffer, 2016) that allow generative models of behavior to be
inverted for goal recognition.

The Current Study

An Al with a causal model of human behavior that is sufficiently dynamic to account for behavioral variability and
teammate interactivity and scoped to a set of tasks and interactions of interest, combined with probabilistic program
inference, can invert that behavioral model to generate hypotheses about the underlying goals and causes of observed
behavior. A cognitive inverter, then, needs three things: observations to explain, a cognitive model to invert, and a
probabilistic framework within which to infer likelihoods of causal paths linking goals to behaviors.
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First, the cognitive inverter needs observable behavior inputs. We implemented a team-based search and rescue (SAR)
task in a Minecraft™ testbed. We recorded the in-game behavior (actions) of teams of humans whose goal was to
locate and triage casualties in a mass causality event. Example actions we recorded included movement (i.e., walking)
within a building, entering rooms in the building, and marking casualties for levels of triage.

Second, the cognitive inverter needs a domain specific language (DSL) capable of generating the observed behavior.
The DSL encodes goals, subgoals, and possible behavioral methods of achieving those goals. People are complex and
dynamic; they do multiple things at the same time, switch between goals and tasks, pause activities and return to them
later, and react to opportunities and changes in the world. A sufficiently expressive DSL should be capable of capturing
this variation and also accommodate irrational behavior. An assumption of rationality pervades many Al systems,
cognitive theories, and team theories, greatly restricting their understanding of human behavior.

Our system inverts an expressive cognitive model built on Charles River Analytics’ Hap Al cognitive architecture
(Sliva, 2016; Loyall et al., 2004; Loyall, 1997). Hap is a multiagent scripting language with syntax and computational
architecture that performs parallel goal execution, prioritizes goals, and connects to simulator environments to sense
and take actions (Figure 1). Hap has been designed over 30 years to create believable (including irrational), cognitively
plausible, and socially realistic agents. Hap has spawned six research and commercial variants, which have been used
as a foundation for dozens of research projects in socially engaging interactive agents (e.g., at Carnegie Mellon
University; Stanford University; the Georgia Institute of Technology; and the University of California, Santa Cruz; as
well as several research laboratories). Versions of Hap have been used as a foundation for over a dozen Ph.D. theses.
Hap is currently on its sixth version, and Al agents based on Hap have been created for a diverse range of domains
(e.g., modeling medical teams, squad-level AI Army tactics, fourth-generation combat pilots, characters in interactive
stories, cyber social-attack-vector simulations, and distractible missile defense operators).
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Figure 1. Hap Al cognitive architecture (left) and several example Hap applications (right).

By using Hap for recognition, the Cognition Inverter can recognize strategies as well as natural human idiosyncratic
behaviors as a key foundation for assisting team performance. Example goals, strategies, and behaviors we encoded
included search strategies, casualty triage and treatment strategies, disoriented wandering, revisiting of rooms or
casualties, transporting casualties, and assisting teammates (e.g., helping to transport, removing obstacles).

Third, the cognitive inverter needs a PPL to construct and sample a probabilistic model of relationships among goals
and behaviors expressed in the DSL. The constructed model represents hypothesized goal pathways leading to
observed behavior. The sampling over structures composed in the DSL is the inversion step; it inverts the direction of
the forward-running expressive cognitive model to infer the goals and mental states of team members from their
behavior. The resulting probabilistic program synthesis results in a dynamic Bayesian network (DBN), the nodes of
which are goals and subgoals, with edges linking causal paths from goal to subgoal to behavior. Overall, the DBN
graph represents hypothetical goal pathways that explain the observations. The DBN nodes can be queried for their
posterior beliefs—the evidentiary support that a particular goal had a causal role in generating observed behaviors.
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We began research and development by manually constructing a DBN cognitive inverter. We built this initial DBN in
the Figaro™ PPL (Pfeffer, 2016). Figaro is an open-source PPL (cra.com/projects/figaro/) developed at Charles River
that expresses probabilistic models as data structures in the Scala programming language. We successful showed
cognitive inversion with this DBN using the Minecraft data. Subsequently, we built the Hap DSL and the Inverse Hap
cognitive inverter, iHap, using the Scruff™ PPL (Pfeffer, et al., 2021) to synthesize DBNs from constructs expressed
in the Hap DSL. Scruff is Charles River’s third-generation PPL (cra.com/projects/scruff/). It is an open-source library
for the Julia programming language designed as a composable framework for efficient inference of complex generative
systems (github.com/charles-river-analytics/Scruff.jl).

Concept of Operations

Putting the three parts together, iHap first ingests observations. It then constructs and samples a DBN of goal and
mental-state constructs expressed in the Hap-based DSL. This sampling enables the iHap cognitive inverter to assess
the likelihood that observations could have been generated by goal pathways. Once a cognitive inverter ingests the
observations, synthesizes a DBN over the DSL, and infers probabilities teammate goals, a larger system, such as PSI-
Coach, can act on the inference. PSI-Coach goes on to score likely causes of behavior and the inferred state of the
mission, and then intervene to provide recommendations or other support. Figure 2 illustrates the function of the
cognitive inverter in the larger PSI-Coach architecture.
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Figure 2. PSI-Coach functional architecture. PSI-Coach uses a cognitive inverter to understand and act on team
goals, mental states, and behaviors.

In Figure 2, the process starts at the asterisk (*) with the cognitive inverter observing the team’s interactions with the

open world. It then (1) infers the goals, mental states, and behaviors of individual team members in detail—whether
they are acting rationally or irrationally—and recognizes those goals, mental states, and behaviors in the presence of
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the dynamic, and adaptive changes that people regularly exhibit in open worlds. Next, the cognitive inverter (2) infers
the joint behaviors, shared mental models, and misaligned mental models of the team, and uses all of this inferred data
to compute PSI-Coach’s real-time measures of team performance. These measures are passed to the Strategic Coach
(3), which predicts possible futures, assesses team effectiveness in those possible futures, plans potential interventions,
and then executes interventions at the appropriate times to help the team achieve high performance. As PSI-Coach
monitors team activities, repeating this cycle, the cognitive inverter is also continuously learning the strengths and
weaknesses of the team and using that information to inform its predictions and intervention planning. PSI-Coach also
includes (4) an offline, rigorous experimental cycle to inform research and improve the PSI-Coach system.

METHODS

Construction of the Minecraft testbed and human subjects data collection were carried out collaboratively among
performers on the Defense Advanced research Projects Agency (DARPA) Artificial Social Intelligence for Successful
Teams (ASIST) program. Colleagues at Aptima, Inc., led testbed construction and colleagues Arizona State University
(ASU) led data collection. Development and testing of our cognitive inverter proceeded in three phases. In phase I,
we collected initial data on human teams within the Minecraft-based testbed. In phase 2, we implemented a DBN for
cognitive inversion without using a DSL and tested it during additional periods of human data collection. In phase 3,
we implemented and tested the Hap DSL and full Inverse Hap cognitive inverter that uses probabilistic program
synthesis to construct DBNS.

Human subjects research comprised three studies, following a research protocol approved by the ASU institutional
review board (IRB) and DARPA’s Human Research Protection Office (HRPO). Each study comprised approximately
20 experimental runs through the testbed. Experiment 1 tested individual participants on the SAR task, and
experiments 2 and 3 tested teams of three participants. Participants played one of three roles: scouts moved quickly to
locate casualties or move triaged casualties, medics triaged casualties and prepared them for extraction, and engineers
removed rubble to clear paths/doorways and to free trapped teammates. Any role could search for and discover
casualties. Once triaged, casualties could be moved to an extraction location matched to their triage category (A, B,
or C).

After initial data collection, we annotated the data to capture domain knowledge. We identified strategies and goals,
as well as hierarchical relationships between goals, subgoals, and behaviors (i.e., methods of achieving a goal via
subgoals that eventually ground out in observable behavior). For example, the three roles had different goals, and
individual participants might adopt different strategies for navigating the map based on their goal. Participants also
sometimes became disoriented, unsure of their location and wandered until they reoriented themselves. Thus, a room
or a casualty might be bypassed for any of several reasons. Some example reasons include the participant was carrying
a victim, was going to help a teammate with a critical victim, was an engineer looking for blockages, was using a
navigation strategy (e.g., “always turn left”) that did not encompass the bypassed room, or was confused. The cognitive
inverter’s job is to infer the likelihoods of these types of mental states from observed behavior so that PSI-Coach could
assess team performance and intervene when needed.

In phase 2, we constructed a DBN in Figaro over iterative development and testing against the phase I human data
and encoded the domain knowledge developed from the annotations. The DBN is a probabilistic graph that traces
paths from high-level goals or strategies through subgoals to observable behaviors. As a dynamic model, it steps
through time via a state transition function representing the dynamics of the test environment to recognize active goals
and subgoals capable of explaining the evolving behavioral record as new actions are observed. This phase 2 inverter
did not perform probabilistic program synthesis over a DSL, but encoded features of Hap behavioral reactivity and
variability in the hand-built linkages between belief nodes. After constructing the DBN, we integrated it into the larger
PSI-Coach system and tested it in further human subjects research in the Minecraft testbed.

In phase 3 of development and testing, we are implementing and testing the Hap DSL and Inverse Hap cognitive
inverter, iHap. Inverse Hap has two key features. First, it uses the same grammar as forward-running Hap, which
enables the cognitive modeler (user) to quickly externalize their domain knowledge by encoding building blocks of
agent goals and behaviors in the DSL. Second, it builds upon the inference capabilities of Scruffto convert the forward-
running Hap constructs expressed in the DSL into a generative probabilistic model over possible agent states. A Hap
agent’s state at any point in time is represented in its Active Behavior Tree (ABT) and Working Memory. The current
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set of goals and behaviors, and their current execution state, are represented in the ABT. Mental states are represented
in Working Memory. Using the Scruff PPL, we invert Hap to recognize the likely ABT fragments and mental states
that could have given rise to the sequence of actions that was observed. The ABT fragments, behaviors, and mental-
state variables constitute the DSL—the “primitives” that can be probabilistically sampled and combined to construct
hypotheses about the causes of the observed behavior.

The DSL provides preorganized goal and mental-state constructs expressed in the Hap cognitive modeling language.
These Hap constructs capture domain knowledge, such as goals and relations between goals (causal paths from goals,
to subgoals, to behaviors). The constructs also capture expressive complexities, such as that multiple goals can be
active currently, some subgoals must be executed sequentially, and goals and behaviors may have context conditions,
may succeed or fail, and may be achieved in more than one way. The expressivity of the constructs enables the
cognitive inverter to explain nonlinearities in the observations (e.g., that actions resulting from multiple goals running
in parallel may be interspersed in serial time, or that an initial attempt to achieve a goal by one method may fail part
way through its subgoals, while a subsequent attempt, via different subgoals, may succeed). To create the Hap DSL,
we ported key elements of the Hap architecture, grammar, and syntax from Java to Julia. We created Julia macros to
abstract the complexities of the Julia code, which provides a compact way to write iHap programs and retains familiar
Hap syntax.

Figure 3 depicts a high-level view of the iHap 3,‘;'?,&.‘;;’:;;2‘;;’5
architecture. All DSL constructs (iHap macros
embedded in Julia programming language) are
interpreted and serialized into Julia source code for
iHap programs (ABT definitions). An inference
interpreter then takes the generated ABT definitions
along with a definition of the agent’s initial world
state and synthesizes and runs a Scruff probabilistic
model: the iHap cognitive inverter. The inverter is a
DBN representation over possible ABTs and agent X
world states—hypothesized goal pathways, from architecture.
top-level ultimate goals to observed actions. The DBN uses an asynchronous particle filter (aPF) as an inference
algorithm. The aPF under the hood uses the expansion/contraction logic around the Hap engine as a generative model
to create probability distributions over possible ABTs. We can then assert evidence against this probability distribution
by observing actions that a human performs to then infer the most likely ABT that would have generated said action(s).
The inverter can thus be queried for likelihoods and posteriors at each node of the DBN.

Inverse Hap Internals

Scruff Model Cognitive
Inverter

Inference
Interpreter

iHap
Interpreter
iHap Julia

Program
as JSON

iHap Julia
Program as
source code

iHap
Programs

Figure 3: Inverse Hap cognitive inverter

iHap extends the forward Hap system by (1) replacing random choices in Hap with probability distributions inferred
through the PPL; (2) using the Working Memory variables as latent variables to be inferred; (3) adding latent internal
variables for goal switching and reactive changes, so additional dynamic changes can be learned and recognized; and
(4) adding dynamic noise to deterministic choices in the behavior models (e.g., step skipping and changes in step
ordering, to support learnable exceptions to these choices). With these extensions, when the cognitive inverter sees a
sequence of actions that does not fit a single goal or activity, but instead fits a mix of partially executed goals, it can
recognize behaviorally plausible combinations. By only recognizing behaviorally plausible combinations, the
inference is efficient and avoids spurious recognitions.

iHap creates a Hap ABT of possible paths to observations given the domain knowledge, then uses particle filtering
inference to determine the posterior belief of each node. Overall, given that one has modeled a set of behaviors, iHap

ingests observations, generates Hap agent fragments that can produce them as nodes in a DBN, and assesses the
likelihood that each node had a role in causing the observations.

RESULTS
Figaro DBN

We ran experiments with the Figaro-encoded cognitive inverter using observations of human team behavior collected
in the Minecraft-based SAR task. The results demonstrated that a DBN that encoded goal-oriented SAR domain
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knowledge and important elements of human strategic and behavioral variability could recognize team goals from
behavioral observations. Figure 4 and Figure 5 illustrate cognitive inverter results and their use by the larger PSI-
Coach system overlayed on testbed maps.

PSI-Coach navigation
reasoning predicts that
this room is unlikely to be
revisited (white = likely
not on navigation plan)
based on the human
subject’s intent, even
though the subject is
nearby this room and
should go into the room
and save high-priority
victim.

Missed high-priority
victim

Current human player
position

Figure 4. Inference of triage strategy (left) and prediction of future search behavior (right), illustrated in top-
down views of building interiors, showing a participants’ navigation paths (green lines) and casualty locations
(colored squares).

In Figure 4, the left-hand panel illustrates the cognitive inverter infereence of the triage strategy from observed
navigation behavior. Casualties denoted by a circular blue highlight around a green square were likely bypassed on
purpose. Casualties denoted by a circular red highlight around a green square were likely bypassed inadvertently. In
the right-hand panel, PSI-Coach predicts future search behavior from inferred triage strategy. Darker blue denotes
areas likely to be (re)visited. Unshaded areas are unlikely to be (re)visited. PSI-Coach can then intervene to prompt a
teammate to check for missed high-priority casualties that are in areas unlikely to be visited.

In Figure 5, a participant in the medic role has been ignoring team communication prior to and within the area of the
blue box, entering rooms that have been communicated as clear. PSI-Coach waits to issue an intervention at the start
of the orange box, when the cognitive inverter infers that the medic is about to ignore team communication again.
After the intervention, the medic turns around, avoiding a repeated mistake; starts reliably following better team
process; and uses team communication more consistently.

Overall, cognitive inversion automatically identified team process problems unique to different teams and their
situation dynamics. Based on such inferences, PSI-Coach provided timely, tailored intervention content that improved
team processes within 60 seconds. Cognitive inversion showed a 35% increase over rule-based comparison systems’
real-time inferences (p<0.05) and led PSI-Coach to exhibit a 42%—68% increase in agreement with human coaches
on interventions over a baseline inference method (p<0.05).
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Medic is ignoring team
communication and entering
rooms that have been
communicated as cleared.

PSI-Coach chose not to
intervene immediately.
Waited until Medic was about
to ignore another team
communication, and
intervened at that point, to
maximize understandability
and adoption: “[5:16] Be
sure to use the room marker
to decide whether to enter
this room.”

Intervention Effect

Medic, avoids repeating
mistake, and then starts
reliably following better team
process by using the team
communication consistently.

i
F
biee

Figure 5. Demonstration of medic decision-making before and after intervention from PSI-Coach (the red
line traces the path of a participant in a medic role, with the current location shown as red to in middle-left of
the figure).

Inverse Hap

We implemented the PPL version of the Hap language with full-scope features, including shared memory and language
scoping and post hoc probabilistic modeling of agent mental activity. A PPL factor construct allows approximate
Bayesian scoring of sequences of agent behavior. iHap allows aPF inference with soft sampling controlled by factor.
In general, inference in a full-scope system presents scalability challenges: agent programs express probability
distributions over high-dimensional combinatorial spaces, with constraints expressed through approximate Bayesian
scoring. Creating a DSL from a cognitive modeling architecture such as Hap addresses these constraints, yielding a
novel perspective on inference over agents: parsing sequences of agent action observations as generated from a
probabilistic grammar. iHap synthesizes agent programs from agent grammars applied to behavioral subsequences.
Our expanded factor-based inference construct supports island-driven inference, performing inference over behavior
fragments and combinations of fragments for increased scalability and robustness. This extends the inference
capabilities from traditional inference over random choices facilitated by human cognitive modeler to inference over
entire behavior models from observed actions in the domain. In addition, our designs for inference compilation
technology speed up inference and increase model coverage.

Presently, we have created simple tests for the iHap cognitive inverter and run small experiments to verify component
functionality and integration. We have not tested iHap on the human data or integrated it into the larger PSI-Coach
architecture. To test iHap, we implemented simple iHap models (an example is illustrated in Figure 6), which
nonetheless exhibit varying possible behaviors and actions to explain observations. In the example in Figure 6, the
observation is that a searcher has walked past a room without checking it for casualties. This may have been accidental
(an event with increased likelihood if the searcher is a novice) or it may have been strategic (e.g., because the searcher
was going to help a medic with a critical casualty).
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For the example in Figure 6, we ran three tests, wherein

A Searcher Looking
we passed the resultant Scruff model an observation that Context: for New Casualties
the searcher missed a room and was either novice, expert, Searcher
or of unspecified skill. The model successfully returned Skill

probabilities of the missed versus skipped explanations
based on evidence posted about searcher skill and

passing by a room without checking. These types of tests, Inadvertently Strategically
albeit simple, indicated that the iHap pipeline functions Missed a Casualty Skipped a
as intended, from observations, through probabilistic \ J Casualty
program synthesis over DSL constructs, to causal p v N p ¥
inference, culminating in posterior probabilities at each Walked Past Walked Past
node. —»  Room without Room without  f#—
Checking Checking
\ J .
CONCLUSION L ¥
People are complex and dynamic; they do multiple things E _D oe | Revisit Room

at the same time, switch between goals and tasks, pause Later

activities and return to them later, and react to
opportunities and changes in the world. Traditional plan
recognition and activity recognition systems struggle to
handle this dynamic behavior. Plan recognition systems
recognize a user’s specific stage in a rigid plan but fail in
the complexity of an open world. Activity recognition Observation:
systems (e.g., those using deep learning, rule-based Walked Past
systems, or Bayesian graphical models) robustly
recognize coarse-grained activities within the dynamic
complexity, but they fail to provide the specific context
of where in a plan an individual is stuck. Cognitive  Figure 6: Goals, mental states, and an observation
inversion provides detailed recognition of team for a simple iHap proof-of-concept test.
members’ goals and the behavior execution state in these natural, overlapping flows of human activity by inverting a
cognitive model’s mechanisms for such reactive, adaptive, and dynamic cognitive processes. Our implementation of
cognitive inversion enables PSI-Coach to monitor team members and intervene during training or operations to
improve team performance.

Room
Without
Checking

Our results show that cognitive architectures combined with probabilistic programming to implement cognitive
inversion can be used to represent important human mental model variations, including intent, task strategy, task
execution, and resource usage and knowledge, among other factors. Cognitive inverter algorithms can infer
dynamically changing mental models (e.g., unexpected strategies, changes in intent) from observations of behavior
and can predict future execution of strategies to enable well-timed intervention points, similar to human coaches.

We implemented two cognitive inverters. The first cognitive inverter encoded domain knowledge and behavioral
variability directly into a DNB in the Figaro PPL. We used this version to test cognitive inversion and PSI-Coach with
human data prior to developing a DSL from a cognitive architecture. While this approach is successful, it requires the
user to have diverse technical expertise. The user needs to know the principles of probabilistic programing and DBNSs,
the specific PPL (e.g., Figaro, a Scala library), as well as the domain knowledge (e.g., strategies and pitfalls of
performing SAR). The second cognitive inverter used a DSL based on a cognitive architecture, Hap. The use of macros
to create goal, strategy, and behavioral constructs in the cognitive architecture means the user only needs to how to
build cognitive models (e.g., in Hap) based on domain knowledge. The use does not need to know Julia, Scruff
probabilistic modeling, or how to create a DBN; the DSL-based cognitive inverter does the work of synthesizing and
running the inverted cognitive model.

Cognitive inversion can benefit training because an inverter-equipped intelligent training system can know the ground-

truth state of the training range and scenario and use that knowledge to intervene at opportune moments. For example,
when intervening on a searcher who accidently missed a casualty earlier, PSI-Coach could wait until the searcher was
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near the casualty’s location again to prompt the searcher about the earlier mistake. Cognitive inversion can benefit
operations because an inverter-equipped intelligent decision aid can analyze incoming data to infer adversarial tactics,
techniques, and procedures (TTPs), suggest and provide confidence estimates over alternative hypotheses about
adversary TTPs and strategies/goals (PSI-Coach’s cognitive inversion step), and suggest complementary courses of
action (PSI-Coach’s intervention step). Potentially, the cognitive inverter can mitigate confirmation bias and other
cognitive biases or point an analyst to where observations are missing that, if discovered, could resolve uncertainty.
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