
Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 

I/ITSEC 2023 Paper No. 23145 Page 1 of 13 

 

 

Neural Activity Mapping of Army Aviation Flight Task Performance 
 

Dr. Christina K. Parker LT Nick Armendariz Dr. JJ Walcutt Dr. Dhiraj 
Jeyanandarajan 

Dr. Leonard Momeny 

Christina.parker.9@us.af.mil Nicholas.j.armendariz@
health.mil 

drjjwalcutt@claystrategic
designs.com 

djey@qneuro.com Leonard.s.momeny.mil@
army.mil 

 
ABSTRACT 

 
The following paper explores how Army Aviation could leverage the neural pattern mapping of cognitive activity 
during flight task performance for curriculum design as well as learning and performance modernization that directly 
supports multi-domain operational environments.  This study introduced a commercial-of-the-shelf (COTS), eight (8) 
non-contact node EEG device into a cap and through iterative exploratory research methods sought to establish and 
confirm both learning and learned neural activity patterns for the performance of nine (9) selected rotary-wing flight 
tasks. This initial research, as a technology review, collected performance data regarding the interface between the 
EEG device and Army Aviation Flight Simulators. The first step of the analysis, using device-specific machine 
learning analysis, was compared to establish differences and baselines of learned (control) and learning (experimental) 
flight task performance neural activity patterns while also monitoring device or simulation ‘noise’ interruptions to the 
data collected. As gateway research, the data collected in this research opens doors to greater opportunities for multi-
branch studies that address cognitive load, attention, and other brain-based influences and impacts on learning and 
mission performance. The data serves to improve understanding of when learning occurs and knowing how to adjust 
curriculum design to be immediately responsive to performance needs. It acts as a trigger for future research that 
informs organizational education structures, occupational proficiency, and mission readiness that ultimately enhance 
wartime readiness under Large-scale Combat Operations. 
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INTRODUCTION 
 
The future of learning can no longer be ignored nor held back, as advances in sensor development, computing power, AI, 
and other areas have made abundantly clear to both education and government professionals alike. This is especially true in 
the realm of many standard Department of Defense educational or instructional institutions. The reality remains that there is 
a failure to optimize the potential of the mind throughout the educational experience or to put in military parlance to apply 
cognitive weaponry (Walcutt, 2019). Whether through the deliberate omission or inclusion of wearables equipped for 
cognitive data collection (Walcutt et al., 2020) or the neglect to fully include opportunities in augmented reality, many 
struggle to create the training or education necessary to effectively complement the experience so richly deserved by the 
nature of the future battlefield (Parker & Momeny, 2021; Parker et al., 2022).  What propagates this struggle? Perhaps there 
are insufficient infrastructures to support the advanced implementation of rapidly evolving and extending technologies 
throughout the learning and performance space. It is easy to estimate that many personnel lack both exposure and experience 
with advanced technologies that could revolutionize educational tools available to the DoD. Such lack of exposure and 
experience with both cutting-edge technology and educational science can easily contribute to rampant resistance to change 
across all echelons of training and training support organizations.  
 
New doctrine and concepts surrounding the future of modern warfare would seem to imply that if the technology used by 
service members is not met with comparable advances in the application of educational science, then the future success of 
the services is at risk (FM 3-0). For instance, initial training for aviators, in many cases, remains comparable to what others 
experienced in years passed while their avionics, elements of the user interface, and eventual application in combat have 
grown exponentially in complexity.  Readiness rates for line units are also impacted by the growing complexity of both war 
and technology, especially with respect to end-user readiness of high-priced military systems, e.g., aircraft, as both individual 
operator and unit performance require constant assessment. A real challenge to all of this remains the cost. And whether for 
initial training or readiness, the cost to operate either a simulator or actual aircraft/vehicle remains exceedingly high. 
 
What is required to begin moving in the right direction is an optimization of education and tailoring of individual educational 
experience. Efficiencies can be found in moving past the subjective assessment of often undertrained instructors locked in 
dated instructional methods (Parker et al., 2022) and embracing the promise of tech-enabled cognitive science. For example, 
imagine the potential savings in both time and resources should someone be able to measure cognitive load drop-off through 
simple and lightweight worn EEGs on aviators performing duties in simulators or collective training devices. An instructor 
pilot could identify when learning occurred during training and consider observed task proficiency, thereby being able to 
move on in training rather than following mandatory subjective flight time requirements. Or simply put, tailor flight 
experience and training to individual proficiency instead of wasting both time and resources on unnecessary iterations based 
upon objective data that learning has occurred. Modern training can gain incredible efficiencies through the optimization of 
cognitive weapons available to instructors. The power of knowing when learning has occurred and the provision of freedom 
to accelerate a student through individually tailored flight training has the potential to be major cost-savings for the greater 
DoD.  
 
PURPOSE 
 
The purpose of this research is to begin to delve into the practical application and integrative nature of the aforementioned 
technologies. The authors seek to explore the learning and performance environment within the highly technical field of 
Army Aviation. Through limited experimentation in an LUH-72 simulator, and using device-specific machine learning 
analysis, the authors seek to establish and compare differences and baselines of learned (control) and learning (experimental) 
during flight task performance. It is hypothesized that mapping of neural activity patterns during simulated flight task 
performance, while also monitoring device or simulation ‘noise’ interruptions to the data collected, can reveal moments of 
objective identification of a learned task through measurement of brain activity. Such measurements, when coupled with 
complementary observations from an instructor pilot, can confirm the occurrence of task confidence and competence and 
thereby allow the trainer to move the student along at the right moment rather than arbitrarily according to generalized and  
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prescribed time allotments for task training. Successful analysis of data will allow the authors to advise on how such neuro-
mapping may effectively be integrated within both existing and conceptualized future educational systems and platforms 
through a greater view of the workings of the brain, thereby advancing the application of identified moments of cognition 
during learning and development to better impact student mission performance. The first task for these authors was to 
determine technological compatibility between existing flight simulators and the neurotechnology devices.  
 
LITERATURE REVIEW 
 
EEG and Learning 
 
EEG (electroencephalography) and learning in the context of integrating new learning technologies explores the potential of 
EEG-based techniques to enhance learning experiences. EEG measures the electrical activity of the brain, offering insights 
into cognitive processes during learning. This may provide key indices of stressors in human performance which could help 
improve learning outcomes. 
 
Research in this field has shown promising results. EEG-based techniques, such as brain-computer interfaces (BCIs) and 
neurofeedback provide real-time information about learners’ brain states enabling personalized and adaptive learning 
experiences. For instance, BCIs can be used to detect learners’ attention levels and engagement, allowing learning 
technologies to dynamically adjust content delivery (Nam, et.al., 2018). Moreover, neurofeedback training using EEG has 
been found to improve attention, memory, and cognitive control, leading to enhanced learning outcomes (Guger, et.al., 2014). 
By providing learners with real-time feedback on their brain activity, they can learn to self-regulate their cognitive processes 
and optimize their learning experiences.  
 
However, challenges exist in the integration of EEG and learning technologies. EEG data analysis and interpretation require 
expertise, and the development of user-friendly interfaces and algorithms is essential to make EEG-based technologies 
accessible and practical for widespread educational use. The potential of EEG and its applications in enhancing learning 
experiences through personalized and adaptive approaches is emerging, but further research is needed to refine EEG-based 
techniques, improve usability, and explore the long-term effects of integrating EEG with learning technologies on learning 
outcomes. 
 
Cognitive Load and Learning 
 
Cognitive load refers to the amount of mental effort required to perform a task or complete a given objective. It refers to the 
mental effort required to process information, while learning involves acquiring and integrating new knowledge and skills.  
Cognitive load can be categorized into three main types: intrinsic, extraneous, and germane load. Intrinsic load represents 
the inherent difficulty of a task, extraneous load refers to the additional cognitive effort required to process irrelevant 
information, and germane load is the cognitive effort required to process relevant information. The measurement of cognitive 
load is important in understanding human performance and behavior. One way to measure cognitive load is through the 
analysis of brain activity, specifically in the theta, alpha, and beta frequency bands which will be described in an upcoming 
section within this article.  
 
Cognitive load and learning in the context of integrating new learning technologies explores the impact of these technologies 
on learners’ cognitive processes and the potential benefits and challenges they present.  Several studies have investigated 
how learning technologies influence cognitive load. Sweller’s cognitive load theory (Sweller, 1988) suggests that well-
designed technologies can reduce cognitive load by providing interactive and multimedia-based learning experiences that 
cater to learners’ individual needs and preferences. For instance, virtual reality and simulation-based environments offer 
immersive and engaging experiences, enhancing understanding and retention of complex concepts (Wu et al., 2020). Further, 
the ability to utilize these training aids in a simulated (safe) environment may enhance cognitive load availability (Walcutt, 
Armendariz, & Jeyanandarajan, 2022).  
 
However, the integration of new learning technologies can also pose challenges. In the DoD, acquisitions can be an 
unnecessary hurdle if not planned for, but also if creators do not consider how the tool will be integrated (Armendariz, et.al., 
2017). Poorly designed or overly complex interfaces may overwhelm learners, increasing their cognitive load and hindering 
learning outcomes. Furthermore, the presence of multiple technological tools and platforms may lead to cognitive overload, 
as learners must navigate and adapt to different interfaces and functionalities (Paas et al., 2003). 
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The literature emphasizes the importance of instructional design in mitigating cognitive load. Strategies such as chunking 
information, providing clear and concise instructions, and scaffolding learning activities can help learners manage their 
cognitive load effectively (Mayer &amp; Moreno, 2003). Additionally, adaptive learning technologies that personalize 
content delivery based on learners’ abilities and prior knowledge can optimize cognitive resources and facilitate learning. 
Careful consideration must be given to design principles and instructional strategies to ensure that these technologies 
effectively support learning and minimize cognitive overload. Further research is needed to explore optimal methods of 
integrating new learning technologies and to assess their long-term effects on cognitive load and learning outcomes. 
 
Understanding Theta, Alpha, and Beta Frequencies as they relate to Cognitive Load 
 
In layman’s terms, brain waves are electrical patterns produced by the brain that can be measured using 
electroencephalography (EEG) during different mental states and activities. EEG measures the frequency of brain waves in 
terms of oscillations per second or Hertz (Hz). These brain waves are measured in terms of frequency, with different 
frequencies corresponding to different mental states. Theta, alpha, and beta frequencies are three of the most well-known 
brain waves. The results of these three frequencies establish the foundation by which the authors determine technology 
efficacy during flight task performance in a simulated environment.  In recent years, researchers have been studying the 
relationship between these frequencies and cognitive load, which is the amount of mental effort required to perform a task.  
 
Theta Frequency is a type of brain wave that has a frequency range of 4-8 Hz. Theta waves are typically associated with  
states of drowsiness, daydreaming, deep relaxation and cognitive processes such as attention, memory, and learning. Recent 
studies have suggested that theta waves may also be an indicator of cognitive load. For example, a study conducted by Zhang 
et al. (2021) found that theta power was positively correlated with task difficulty during a working memory task. Zhang 
suggested that increased theta power may reflect the increased cognitive effort required to perform the task.  In other words, 
as task difficulty increases, theta activity increases in the frontal and parietal regions of the brain.   
 
Alpha Frequency has a frequency range of 8-12 Hz. Alpha waves are typically associated with states of relaxation and 
calmness, and are often observed when a person is closing their eyes or meditating. Recent studies found that alpha power 
was negatively correlated with cognitive load during a visual working memory task. These studies suggested that decreased 
alpha power may reflect the increased cognitive effort required to perform the task. 

Beta Frequency has a frequency range of 12-30 Hz. Beta waves are typically associated with states of arousal and alertness 
and cognitive processes such as attention, inhibition, and decision making. They are often observed when a person is engaged 
in a task that requires concentration and focus. Recent studies have found that beta power was positively correlated with 
cognitive load during a visual working memory task in that increased beta power may reflect the increased cognitive effort 
required to perform the task. 
 
Neurostate Assessment to Support Data-Driven Training Decisions 
 
Strategic initiatives (e.g., Army Modernization Strategic Plan, Digital Transformation Strategy) are demanding that training 
practices evolve to meet the needs of the future contested and data-overloaded environment (Armendariz & Walcutt, 20232). 
The expectation of training efficiency and specificity will grow substantially over the next decade. Data-driven insights will 
allow for enhanced training pathways, improved focus on key training elements, and ultimately increase lethality while 
decreasing time-to-train. However, in order to make sense of and use data, the capture of data is an obvious requirement. 
Nonetheless, we have largely limited our data capture activities to subjective behavioral observations. These are not only 
inherently asystematic and influenced by personal bias, but they are nearly impossible to analyze at the individual or 
collective level. Data from technology will need to be collected in all forms for the future soldier to meet the expectations of 
the future complex fight (Armendariz & Walcutt, 20231). Accordingly, this project looked at the feasibility of using neuro-
state assessment capabilities to determine if these data can be captured during training, without interfering with 
electromagnetic waves or other technology.  
 
The expectation of training efficiency and specificity will grow exponentially over the next decade. Data-driven insights will 
allow for enhanced training pathways, improved focus on key training elements, and ultimately increase lethality while 
decreasing time-to-train. With the confirmation of this, neuro-state assessment has the propensity to provide the data needed 
to: (1) accelerate learning, (2) improve long-term retention, (3) synergize high-performance teams, and (4) personalize 
learning.  Integrating neurotech hardware/software during training can allow us to actively monitor brain state through  
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electroencephalography (EEG) to track cognitive load and engagement. This gathering and analyzing of individual as well 
as aggregated data can help identify and prescribe training interventions for students, instructors, and learning systems such 
as aircraft, simulators, virtual and extended reality devices, and synthetic training environments. The data can also be useful 
in determining enterprise augmentations to training pathways, focus areas, and timing of training for both individuals and 
cohorts when used to inform intentional learning structures and curriculum design (Parker, 2020; Parker & Momeny, 2021, 
Parker et.al., 2022). Ultimately, a neurotechnology-based system can work to inform and influence cognitive load (CL) by 
responding and adjusting training parameters within a 3D virtual reality training simulator to keep the operator in their 
optimal CL zone for learning new skills.  
 
METHODOLOGY 
 
Data collection occurred over the course of two consecutive periods in a UH72A full-motion flight simulator at the U.S. 
Army Aviation Center of Excellence at Fort Novosel, Alabama. The UH72A Lakota rotary wing aircraft is the designated 
training aircraft for all Initial Entry Rotary Wing Common Core (IERWCC) students.  As this was a technology review to 
determine the suitability of the use of neurotechnology with existing flight simulation devices, pre-IERWCC students did 
not participate in the data collection.  Rather, two of the five researchers and one volunteer expert UH72A Instructor Pilot 
(IP) wore the EEG device during the performance of 9 selected flight tasks that are instructed and assessed during the IERW 
(Initial Entry Rotary Wing) course.  
 
Aviator #1 was a non-researcher in this study.  He was a rated rotary wing aviator with extensive experience as a UH72A 
Instructor Pilot. Aviator #2 was a researcher for this study. He was a rated rotary wing aviator with no experience in the 
UH72A.  Aviator #3 was a researcher for this study. He was a rated fixed-wing aviator with no experience in the UH72A or 
rotary-wing aircraft in general. Though specifically a technology demonstration for exploring the rotary-wing applications 
of the EEG device, and limited in participants, Aviators 1 through 3 provided excellent stratification of experience from 
which to collect data. From instructor pilot to experienced helicopter pilot without airframe-specific experience, to finally 
the helicopter novice, the sample promises to provide valuable data with respect to different circumstances in learning and 
their associated experience with cognitive load.  
 
Two EEG headsets were provided by Quantum Neuromonitoring Corporation (Qneuro).  The rigid frame headset was used 
for recordings due to the soft form factor headset being damaged during transport. After collecting baseline data that 
consisted of the participant maintaining one minute of eyes open/relaxed and one-minute of eyes closed/relaxed, the 
recordings began for specific task performance. The nine (9) recorded tasks were as follows: 
 

Task 1 Hover day VMC1 
Task 2 Hover day IMC2 
Task 3 Hover night VMC 
Task 4 Hover night IMC 
Task 5 Flying pattern day VMC3 
Task 6 Flying pattern day IMC 
Task 7 Flying pattern night VMC 
Task 8 Flying pattern night IMC 
Task 9 Flying pattern night VMC EP4 

  
Triggered events were labeled 'Activity 01' by the software. Simultaneously notes were taken by the EEG equipment operator 
noting times and descriptions of events as they occurred and referencing time markers displayed by the EEG recording 
software and the Simulator clock. Similar notes were also recorded by two additional researchers in this study in order to 
triangulate the data.   
 
On Day 1, the simulator was not enabled for full motion, as the intent was to establish the nine tasks to serve as a baseline 
for the technology feasibility evaluations. The hard form factor EEG monitoring tool was adjusted for each participant to 

 
1 VMC stands for Visual Meteorological Conditions, equating to excellent visibility for the pilot of the aircraft, thus lower stress and cognitive load. 
2 IMC stands for Instrument Meteorological Conditions, equating to poor visibility for the pilot of the aircraft, thus higher stress and cognitive load.  
3 Pattern indicates the act of flying upwind, or on runway heading, turning either right or left, paralleling the runway heading on a downwind and then 
finally turning to land back at the heliport or airfield on the initial runway heading.   
4 EP stands for Emergency Procedure, a simulated problem with the aircraft requiring the pilot to immediately respond with corrective action. This is 
typically point of higher stress for the pilot. 
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ensure appropriate readings and then measured during each of the nine tasks. The nine tasks were flown by the participant 
in the right seat with a non-participant in the left seat. Those collecting data were at the console and able to monitor both the 
EEG readings and the flight instruments during each task. These personnel were supported by Army simulator staff and 
observing psychologist. 
 
Baseline data was established for Aviator 1, the UH72 Instructor Pilot, and all 9 base tasks were performed. This data was 
thought to serve as a baseline of comparison for the other two aviators, as it is assumed the Instructor Pilot will experience 
far less cognitive load than the other two participants given the frequency of his routine performance of tasks in the aircraft. 
Once complete, Aviator 3 was equipped, achieved a baseline measure, and then proceeded to fly the aforementioned tasks.  
 
On Day 2, Aviator 2, the experienced helicopter pilot with no time in the UH72 was again equipped with the rigid system, 
achieved a baseline measure, and then completed the 9 base tasks. In addition to data collection with the rigid harness, the 
soft form factor EEG was also checked for recording integrity along with testing during full motion flight simulation 
conditions to determine if this added any additional artifact to the EEG recording or if the full motion created a hinderance 
to the data collected. Aviator 1 wore the soft form EEG device and will appear as the fourth subject in the figures and data 
presented below. 
  
Preliminary data collection was successfully recorded for all 3 aviators on both days of recording. Signal quality was 
considered good for real-time analysis when run through filters and noise reduction algorithms. Unfiltered, raw EEG data 
were also recorded for all sessions and will be used as a reference for environmental impact on the recording (motion, 
electrical noise). Once data is organized according to task, a comparison to baseline for each individual will be run using 
spectral analysis protocols, referencing markers of interest such as upper alpha, theta to beta, alpha to theta, SMR and 
cognitive load, engagement, and attention markers. 
    
DATA ANALYSIS 
 
The instruments utilized to ascertain the neuroactivity of the participants were both the rigid and soft configuration devices 
made by Qneuro. The neurotechnology (Qneuro) headset used 8 channels of EEG data at the following locations based on 
the international 10/20 system of electrode placement: Fp1, Fp2, FC3, FC4, O1, O2, Fz and Cz. The electrodes are active 
non-contact electrodes worn over hair and without any gel or electrolyte solution to increase conductivity. Data were 
collected at a sampling frequency of 250 samples per second for each channel. All data (including calibration data) were 
collected within the UH72 simulator. Pre-processing of data included filtering and artifact removal. 
 
The data analysis was not conducted in real-time within the simulator. Instead, all readings were analyzed following the data 
collection event using the MATLAB program (Walcutt et al., 2020). Presented in the following summary of the data analysis 
are the sample graphs that best represent the following points: 
 
1) Figure 1 demonstrates the EEG device is able to record the full spectrum of brain activity typically recorded by more 

standard EEG devices. The discriminating condition important to this technology review/application study is that data 
was directly recorded within the target environment of a full-motion rotary-wing simulator. The data demonstrates that 
a full complement of EEG signals was collected without incident and in no way detracted from the performance of flight 
tasks by participants. All the other graphs demonstrate this as well but for more targeted/specific frequencies, so this 
graph is the best for a broader overview. 

2) Figure 2 demonstrates the trend of three of our more important frequencies (theta, alpha, and beta) across the range of 
different tasks.  

3) Figure 3, 4, and 5 are individual trend representations of the different frequencies as they varied across the different 
tasks. 

4) Figure 6 demonstrates the trend of more commonly used metrics as calculated by ratios of the base frequency powers. 
An example of one of these metrics is cognitive workload which correlates with one or more of the calculated ratio 
trends. 

5) Figure 7 demonstrates one of these ratios that correspond with the cognitive load of the individual as they vary across 
tasks for the different channels. 

6) Figure 8 demonstrates another ratio that corresponds with cognitive load. 
7) Figure 9 demonstrates the trend observed with cognitive load numerically for the different tasks for one of the subjects. 
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Figure 1: Spectrogram 

 
Subject 1 was recorded within the simulator. Recorded data across frequency bands from 2-35Hz present and recorded from 
a portable EEG device. Data suggests that typical EEG frequencies are able to be recorded in this environment. There are 
some noted high power bands more suggestive of environmental causes in the high Beta range approximately around 25Hz 
that are stronger on certain channels (FC3) than others. This might affect further analysis if there are changes of interest for 
our analysis that are within those bands. This warrants further exploration in subsequent testing to reduce or eliminate the 
observed artifact using mechanical or software compensation. The data recorded even without this fine-tuning provided more 
than enough spectral data for analysis. 
 
 
 

 
Figure 2: Cross-subject trend data for theta (1), alpha (2), and beta (3) frequencies across the different tasks. 

 
It is notable to see there appears to be an observable trend line with increasing task difficulty (10>1). Using only three 
subjects without control data does not allow us to draw any substantive conclusions, but the preliminary data analysis does 
indicate that more detailed study is warranted to explore this observable trending. 
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Figure 3: Cross-Subject Alpha 

 
 
 

 

 
Figure 4: Cross-Subject Beta 
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Figure 5: Cross-Subject Theta 

 
Trend data for three of the main frequencies of interest: theta (4=8 Hz); Alpha (8-12 Hz); Beta (12-18 Hz). Tasks labeled 
1-10. 

 

 

 
Figure 6: Cross-subject trend data of more commonly used EEG metrics: beta/theta; theta/alpha; beta/alpha; 

beta/(alpha+theta); theta/(alpha+beta). 
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Figure 7: Cross Subject Beta/(Alpha+Theta) 

 
 
 

 

 
Figure 8: Cross-Subject Theta/Alpha 

 
 

 

Activity Number (Duration) Cognitive Load Index (Theta/Alpha) Cognitive Load Index (1/Alpha) 

1 (73s) 1.359716 (0.371318) 0.01651 (0.00414) 

2 (98s) 1.070639 (0.439549) 0.015777 (0.006422) 
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3 (210s) 0.656788 (0.568297) 0.018576 (0.0171) 

4 (70s) 1.342209 (0.4414) 0.022816 (0.008031) 

5 (51s) 1.393683 (0.489078) 0.017972 (0.005533) 

6 (247s) 1.030528 (0.281208) 0.014993 (0.004218) 

7 (337s) 1.232244 (0.435951) 0.01697 (0.005148) 

8 (329s) 1.335811 (0.537479) 0.017388 (0.007299) 

9 (285s) 1.609615 (0.684026) 0.01909 (0.007047) 

 
Figure 9: Cognitive load index 

 
 

The cognitive load index was calculated using a bandpass filter (0.5 to 40 Hz), notch filter (60Hz), artifact subspace 
reconstruction method for artifact removal, and independent component analysis for eye blink removal, using Fp1, Fp2, O1, 
and O2 channels. Power spectral densities were calculated from these channels and the average power sum of theta from 
frontal channels and alpha from occipital channels was used to calculate the cognitive load. 
 
FINDINGS AND DISCUSSION 
 
This study focused on a feasibility evaluation of the neurotechnology efficacy within existing Army Aviation flight 
simulation devices. Far too often with technology integration, there are well-founded fears of whether the tool will work, 
first of all, and second – if there will be usable data collected. It is encouraging to note that the data collected was usable and 
exceeded expectations regarding the primary purpose of the study for seeing whether the EEG system will work in recording 
data in the simulator.  
 
All figures created from collected data demonstrate an ability to utilize neurotechnology to identify both relevant EEG-
related readings to moments of elevated concentration and the like to the eventual synthesis of a CL scale. There are 
aggregated differences visible across participants 1 through 3. It is important to recall, all figures have 4 data sets displayed 
and positions 1 and 4 belong to Aviator 1, the UH72 Instructor Pilot who was first measured in the rigid and then soft device 
configuration. There are distinct differences in the presentation of the readings from the instructor pilot, positions 1 and 4 of 
each figure, and that of the Aviator 2 and 3, who have varying levels of experience and thus present different wave patterns 
to that of the Instructor Pilot, or Aviator 1. Such pattern discrimination can imply the ability to read, measure, collect, and 
analyze CL and other elements of neural activity across differing experience levels during critical and often costly training. 
 
A unique point of discussion is identified in Figure 2, as cross-subject trend data for theta (1), alpha (2), and beta (3) 
frequencies across the different tasks seem to demonstrate an observable trend line with increasing task difficulty (10>1). 
Thus, preliminary data analysis indicates that a more detailed study is warranted to explore this observable trend. Such 
trending is to be expected, as aviators performing tasks increasing in difficulty are not simply performing mechanical 
activities akin to just muscle memory but are also constantly dealing with spatial reasoning-oriented problems in a dynamic 
environment that can be experiencing conditional change from moment to moment. Finally, Figures 4, 5, 7, and 8 present 
stark differences in presentation at the various levels of wave measurement for Aviators 2 and 3 when compared to the 
experienced Instructor Pilot.  
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Given the presented assessment of data, the authors assert that, at a minimum, neurotechnology efficacy has been established 
with respect to its place in simulations in support of dynamic aviation training and continuing education research for a more 
effective future force. Future research is critical moving forward and should look more definitively toward conclusive data 
regarding differences between individuals, cohorts, or varying tasks. Coming study designs will need to be intentionally 
prescribed to collect performance and demographic data on rated aviators as the control group and not yet rated aviators, or 
aviation students awaiting the IERW course as the experimental group. With such a potential research pool researchers could 
compare and establish differences between baselines of learned (control) and learning (experimental) flight task performance 
via analysis of neural activity patterns in aviators. Learning pattern baselines could consider 1) what learning neural patterns 
looked like in comparison to the learned neural patterns and 2) the time it takes to progress from learning patterns to learned 
patterns. With that type of quantification, qualification, and analysis, education could be streamlined and more individually 
tailored and adaptive.   
 
FUTURE RESEARCH 
 
The importance of cognitive research and learning technology tools that can measure cognitive performance becomes 
particularly evident in the context of training aviators in simulators. Aviation training demands a high level of cognitive 
abilities, including spatial awareness, decision-making, multitasking, and situational awareness. Understanding and 
optimizing these cognitive processes can significantly improve the performance and safety of aviators. Cognitive research 
provides valuable insights into the specific cognitive skills required for successful aviation operations. By studying the 
cognitive demands of flight scenarios, researchers can identify key areas where aviators may encounter challenges or 
potential errors (Warm, et.al., 1997). These findings can inform the development of tailored learning technology tools, such 
as flight simulators, that replicate realistic aviation environments. Advanced flight simulators equipped with sophisticated 
learning technology tools can measure and assess an aviator cognitive performance during simulated flights. These tools can 
track eye movements, response times, decision-making patterns, and other cognitive indicators. By analyzing this data, 
instructors and trainees can gain a comprehensive understanding of an aviator’s strengths and weaknesses, enabling targeted 
training interventions. Moreover, learning technology tools in aviation training can offer adaptive learning experiences, 
adjusting the difficulty and complexity of simulated scenarios based on the aviator’s performance. This personalized 
approach optimizes the training process, allowing aviators to focus on specific areas that need improvement while reinforcing 
their strengths. 
 
Key next steps in future research require greater analysis of the currently collected data against more qualitative assessments 
that could be provided via the insight of a qualified instructor pilot. Such a detailed qualitative assessment conducted in 
conjunction with the research team’s neurologist could provide more insight into the difference in measuring neural activity 
between learners in a more static environment and those in a dynamic flight environment (Walcutt et al., 2020). While 
learning will always be learning, sorting through the additional noise found in specific wave patterns as a byproduct of spatial 
problem-solving continuously occurring in the mind of the aviator would be necessary if to identify exactly when learning 
occurs, e.g., CL drop-off.  
 
Summary 
 
Neural activity patterning can be a useful tool for instructional design purposes and warrants further research. By studying 
the patterns of neural activity that occur during the learning process, instructional designers can gain a better understanding 
of how the brain processes information and uses it to for memories and make decisions, particularly under high stress, high 
information input multi-domain operational environments. Identifying neural patterns for complex task performance can be 
used to design learning experiences that are optimized for the way the brain works best by collective, by individual, by 
environment.  
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