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ABSTRACT 
 
Artificial intelligence (AI) has enormous potential to improve Air Force pilot training by providing actionable 
feedback to pilot trainees on the quality of their maneuvers and enabling instructor-less flying familiarization for early-
stage trainees in low-cost simulators. Historically, AI challenges consisting of data, problem descriptions, and example 
code have been critical to fueling AI breakthroughs. The Department of the Air Force-Massachusetts Institute of 
Technology AI Accelerator (DAF-MIT AI Accelerator) developed such an AI challenge using real-world Air Force 
flight simulator data. The Maneuver ID challenge assembled thousands of virtual reality simulator flight recordings 
collected by actual Air Force student pilots at Pilot Training Next (PTN). This dataset has been publicly released at 
Maneuver-ID.mit.edu and represents the first of its kind public release of USAF flight training data. Using this dataset, 
we have applied a variety of AI methods to separate “good” vs “bad” simulator data and categorize and characterize 
maneuvers. These data, algorithms, and software are being released as baselines of model performance for others to 
build upon to enable the AI ecosystem for flight simulator training. 
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INTRODUCTION 
 
Flight simulators play a critical role in pilot training. Current training paradigms require scarce, highly-experienced 
instructor pilots to teach even the most basic flight maneuvers, beginning with basic flight maneuver familiarization 
in flight simulators. AI has significant potential to enhance simulator-based training by providing real-time feedback 
on the quality of each flight maneuver to student pilots for early-stage learning. An important first step towards 
achieving AI enhanced pilot training is teaching an AI to recognize categories of flight maneuvers from flight 
simulator data. The application of AI to any new domain is a daunting task. One proven approach is to develop an AI 
challenge to grow the AI ecosystem around a new domain. 
 
AI challenges serve as a primary tool for development and innovation by engaging the broader research community. 
Challenges have been created to advance the fields of machine learning, high performance computing, and visual 
analytics. Introducing important AI problems to the public allows for increased collaboration among diverse research 
teams and maximization of potential solutions (see Figure 1). Challenges such as YOHO (J.P. Campbell, 1995), 
MNIST (C.C.Y. LeCun and C.J. Burges, 2017), HPC Challenge (HPC Challenge, 2017), Graph Challenge (E.Kao et 
al., 2017; J. Kepner et al., 2019; S. Samsi et al., 2017), ImageNet (O. Russakovsky et al., 2015) and VAST (K.A. Cook 
et al., 2014; J Scholtz et al., 2012) have driven major developments in various fields. Each of these challenges have 
catalyzed critical research efforts in their respective fields: YOHO enabled speech research; MNIST remains 
foundational to the computer vision research community after two decades; HPC Challenge has stimulated research 
on parallel programming environments and plays a critical role in supercomputing acquisitions; Graph Challenge has 
produced award-winning software and hardware; ImageNet has enabled vision research; VAST challenges the visual 
analytics research community with new topics annually. These and many other challenges impact their fields 
immensely by introducing bedrock tools for acquisition and source selection processes, as well as providing a baseline 
for future challenges in the field. 
 

  
Figure 1: AI Challenge Motivation. AI challenges allow diverse teams to work on common well-defined problems 

and greatly increase the probability of finding a solution. 

1 Team 1 Problem Win Probability

~20%

10 Teams 10 Problems Win Probability

~200%
(~2 solutions to
10 problems)

10 Teams 10 Problems Win Probability

>>1000%
(many solutions to

each problem)

10 Challenges 100s of Teams
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Interdisciplinary research teams at the Department of the Air Force-Massachusetts Institute of Technology AI 
Accelerator (DAF-MIT AI Accelerator) composed of Air Force and Space Force personnel, MIT researchers, and 
MIT Lincoln Laboratory technical staff, create public challenges to build AI ecosystems around difficult Air and 
Space Force problems, which are discussed in more detail at aia.mit.edu/challenges. These challenges seek to make 
fundamental advances in AI to support broader societal needs like AI explainability and robustness. We introduce one 
of these AI Accelerator challenges, the Maneuver Identification (ID) Challenge, targeting increased efficiency in pilot 
training pipelines. 
 
Data Provenance 
 
The dataset provided in the challenge represents recordings of student training flights conducted in virtual reality 
(VR). At the time of collection, PTN conducted US Air Force Undergraduate Pilot Training at Randolph Air Force 
Base, TX, primarily in the T-6A Texan II training aircraft. As an experimental pilot training unit, PTN’s early victories 
included the incorporation of virtual reality training hardware and methods into the flying training syllabus. Due to 
the data collection occurring in live, dynamic flying training operations, some meta-data associated with the dataset 
was unavailable. Some unknown meta-data includes the identity and experience level of the pilot flying in the 
recording (brand new student or highly experienced instructor pilot), the number and types of maneuvers contained in 
each recording file if any, the quality of each maneuver contained in each recording (unsatisfactory, fair, good, or 
excellent), the formality of the training conducted in the recording (formal syllabus training event where students are 
graded on performing maneuvers in accordance with syllabus standards, informal unguided practice- “play”, or 
instructor pilots practicing maneuvers), the start and stop times or location of any maneuver(s) contained in each 
recording, the type and number of discontinuities in flight path (intentional discontinuities such as intentional 
repositioning of the simulated aircraft to accomplish training objectives, unintentional discontinuities such as a 
simulator artifact, or no discontinuities). Additionally, the data needed to be cleaned and curated to be usable and 
releasable. Cleaning actions performed included the exploration of the dataset, removal of duplicate records, 
identification and verification of the type of data contained in each field or column, removal of unnecessary or 
redundant columns, identification of the units of measure for each column, conversion of data types to internationally 
recognized units of measure (i.e., converting nautical miles per hour to meters per second), and moving each recording 
to a standard starting location and altitude (i.e., removing absolute simulated location and altitude of the aircraft). 
 
Previous Relevant Research 
 
The Air Force began Pilot Training Next (PTN) to explore the use of new technologies, such as consumer virtual 
reality flight simulators and novel instructional tools, with small test cohorts to personalize training and improve 
student access to training resources (J. Stockton, 2019). The Air Force Chief Data Officer (SAF/CO) worked with 
PTN researchers to begin the Maneuver ID effort; early maneuver detection attempts involve comparing sections of 
flight data to known exemplary maneuvers to detect the maneuvers being attempted (J. Stockton, 2019). The data used 
in SAF/CO efforts is being repurposed for the Maneuver ID Challenge to continue the influx of novel solutions. The 
body of work surrounding maneuver identification and flight pattern learning using artificial intelligence is significant 
and a few examples are noteworthy. In the 1970s, NASA developed a technology implementing Adaptive Maneuver 
Logic (AML) to virtually simulate air-to-air combat. AML tracks the flight patterns of its opponents to predict what 
their next move will be using bank angle, lift, and thrust (G.H. Burgin, 1975). This has paved the way for more 
maneuver identification research: a 2015 project, motivated by the importance of load analyses on aircraft, analyzed 
flight data using a library of maneuvers (Y. Wang et. al., 2015). Previous work has explored the application of AI in 
classifying and predicting driving maneuvers like lane changes using position and velocity data (A. Benterki et al., 
2020; Y. Wang and I. W. Ho, 2018) as well as the classification of unsafe driving maneuvers from dashcam videos 
(M. Simoncini et al., 2022). Using Bayesian methods, random trees, and various neural networks, the technology can 
predict lane changes in cars with up to 97% accuracy given six-second sequences of data input (A. Benterki, 2020).  
 
Team Contributions 
 
The development of any AI challenge in a novel domain is an ongoing, iterative process. As teams attempt the variety 
of AI tasks available, issues are detected and addressed to improve the challenge. The feedback and solutions from AI 
researchers received in the initial stages of these challenges are a crucial aspect of developing an AI challenge. This 
paper presents the contributions of four initial research teams that have taken different approaches to the Maneuver 
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ID Challenge. The teams are making their software available to the community for others to build upon and have 
discovered several areas of improvement that are discussed within this manuscript. As is typical in such AI challenges, 
the variety of solutions produced provide a foundation for future solutions. 
 
The major contributions of these teams are described in the remainder of the paper and are summarized as follows:   
• Initial observations of the data yielded additional data labels identifying various features within the sorted data 

that contribute to the growing body of information on the data.  
• Effective sorting of “good” and “bad” data which is essential for scaling up the dataset has been achieved using 

several AI techniques, including simple statistical measures, random forest models, bagging trees, simple decision 
trees, support vector machines, logistic regression, and convolutional neural networks.  

• Maneuver identification has also been approached using the aforementioned techniques.  
• Various unsupervised learning models have also been applied to circumvent the low-shot nature of truth-labeled 

data. This low-shot labeling challenge has also led to one of our teams to develop new web-based labeling services 
using video simulations created from the trajectory data. Such services can enlist the expertise of pilots and those 
familiar with Air Force maneuvers to acquire more labeled data once it is ready to be released. 

 
CHALLENGE DESCRIPTION  
 
PTN gathered thousands of distinct pilot training sessions from hundreds of hours on flight simulators, flown by 
students, trained pilots, and instructors. The sessions were flown using the Lockheed Martin Prepar3d flight simulator 
software (prepar3d.com) (J. Stockton, 2019). Commercial flight simulators of this type are not designed to 
dynamically emit data in a multi-pilot training context. PTN developed a novel state-of-the-art data logging system 
that can aggregate data from multiple simulators simultaneously. Following data transformations and anonymization 
making the data AI ready, the trajectory data has been made available in a Dropbox folder as tab separated value 
(TSV) files. The process of data transformation is detailed in this Challenge’s previous paper, Maneuver Identification 
Challenge, found at Maneuver-ID.mit.edu/Motivation. The TSV files consist of a plain text table containing the times, 
positions, velocities, and orientations of the aircraft throughout the flight session (i.e., see Figure 2). The files can be 
read by most data processing systems and viewed in any spreadsheet program. In addition, 2-dimensional top-down 
views of ground-track trajectories are stored as portable network graphics (PNG) files (e.g., see Figure 3).  
  

 
Figure 2: Example TSV file for a single flight simulator recording 

 

 
Figure 3: Example PNG files for flight simulator recordings 

 
The Maneuver ID dataset consists of several different artifacts that provide information and resources for those 
interested in participating in the challenge. The dataset containing the unlabeled flight simulator data is hosted on 
DropBox. The DropBox also contains a labeled exemplar maneuver file for each of the 29 maneuvers to be identified; 
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these data files, flown by expert pilots, exist in the same TSV and PNG format as the unlabeled data and can be used 
to train models that identify the unlabeled maneuvers in Task 2 of the challenge. The DropBox can be accessed by 
navigating to Maneuver-ID.mit.edu/data and signing the data sharing agreement located there. The agreement follows 
standard data-sharing best practices, notifying participants of the anonymization of the data, confirming the legitimacy 
of their research, as well as ensuring that they agree to respect the anonymization of the data. The webpage at 
Maneuver-ID.mit.edu contains other supporting artifacts including a challenge description and background, a list of 
18 maneuvers with maneuver parameters and narrative How-To descriptions, and videos of trained pilots executing 
some of the described maneuvers in accordance with AETCMAN 11-248, T-6 Primary Flying (HQ AETC/A3VU, 
2016).  
 
The Maneuver ID Challenge has identified three tasks for the community.  
1. Sorting the physically feasible (good) and physically infeasible (bad) data into separate sets based on the presence 

of unbroken trajectories (good) and identifiable maneuvers (good) and straight lines (bad), jumps (bad), and 
maneuvers that break physical laws (bad). The good data consists of sorties that each have a collection of realistic 
maneuvers flown, whereas the bad data contains sorties with inconsistencies that do not align with feasible, real 
world flight patterns. Currently, there is good and bad trajectory truth data that has been sorted and verified 
manually by two non-subject matter experts (non-SMEs) and spot checked by SMEs (i.e., pilots), meaning errors 
in these labels may exist. The manually sorted truth data, which separates the good and bad files into different 
folders, is included as part of the data set.  

2. Identifying which maneuver(s) the pilot is attempting to execute. Each sortie has trajectory data containing several 
maneuvers; labeled sorties are not currently available, but teams are working on labelling. 

3. Scoring the pilot once the maneuver has been identified. This could greatly benefit the efficiency and quality of 
the pilot training education.  

The current body of work from participants focuses on the first two tasks. To address the lack of several labeled sorties 
currently available for the second task, teams have taken different strategies – developing models based on the prospect 
of future labeled sorties and experimenting with unsupervised models, both of which are discussed later. 
 
 
DATA EXPLORATION & PRE-PROCESSING 
 
Gaining intuition on datasets before diving into machine learning model development can pay dividends. We created 
methods to visualize the flight maneuvers contained in the data and perform additional labelling to gain intuition 
about this rich, complex dataset. We provide these methods to challenge participants and detail them below. 
 
Visualization 
 
One approach to visualizing the flight simulator data 
involves creating video animations from the raw data (e.g., 
see Figure 4). Blender’s open-source Python library, 
Blender Python, allows a programmatic approach to 
creating these animations. After loading an aircraft model 
(in this case, a T-6 Texan, which is an older version of the 
T-6A Texan II used in our pilot training simulator data, but 
is a free, widely-available model), a specified data file is 
iteratively animated by setting the position and rotation of 
the airplane. Additional smaller improvements can be 
adjusted within the Blender environment (e.g., the 
background and clipping length) to create smoother 
animations. The animated object can then be rendered or 
exported as a GL Transmission Format (glTF) or AVI 
video file format to be viewed outside of the Blender 
environment. 
 
 

Figure 4: Screenshot of Blender Animation 
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Another visualization approach enlists Python’s open-source 
graphing library, Plotly, to create interactive visualizations. Both 
2D and 3D visualizations of the data can be created using 
Python’s Plotly, Chart Studio, and Kaleido. Taking a list of 
dictionaries containing the data as the input, the data can be 
plotted in interactive graphs. The 2D visualization offers an 
aerial visualization of the plotted x (East) and y (North) 
coordinates, whereas the 3D visualization plots all three position 
coordinates (x, y, and z) in a 3D coordinate plane (e.g., see Figure 
5). 
 
 

Additional Labeling 
 
This new visual analysis allowed aspects of the data that pose challenges to the sorting and categorization of 
maneuvers to be identified through an automated process. These include the following: impossible speeds, 
teleportation (i.e., instant repositioning of the plane in the simulator space), long taxiing maneuvers (i.e. aircraft 
maneuvering on the ground before or after flight), and irregular stops throughout the duration of some ‘good’ labeled 
sorties. These irregularities were identified and documented using R. Each file was iterated through to determine if 
the plane was exhibiting one of the behaviors described based on threshold values. If the plane exhibited a behavior 
for a certain amount of time, then it was labeled as such. Specifically, stopped and taxiing sorties were found by 
examining the speeds of the aircraft and determining whether the aircraft was moving. Teleportation (aka 
“discontinuities”) was identified based on discontinuous jumps in the plane’s position. Lastly, impossible speeds were 
identified by differentiating the position, yielding the coordinate speeds, and determining any infeasible values. Based 
on this data, a spreadsheet was compiled listing each of the files containing irregularities along with the label next to 
it (i.e., see Figure 6). 
 

 
Figure 6: First 15 Files Exhibiting Irregularities with Behavior Labels 

 
TASK 1: SORTING 
 
Once the data is sufficiently curated, visualized, and 
explored, model development can begin. A variety of 
approaches exist, including basic statistical measures, 
canonical data models, and convolutional neural 
networks.  The first task focuses on the challenge of 
sorting the available data into ‘good’ and ‘bad’ 
categories based on the physical feasibility of a pilot 
executing the maneuver(s) within the recording. Unlike 
real aircraft, VR simulators used to collect the data can 
be left idling continuously to avoid lengthy computer 
boot-up and loading times. If the simulation was left 
running while unused, it may have recorded long 
stretches of no or minimal aircraft movement. Likewise, 
simulators are often used to re-accomplish a single maneuver many times over, or quickly snap between simulated 
locations and altitudes to accomplish subsequent training objectives. These simulator behaviors may manifest in the 
data as ‘discontinuities’ where the simulated aircraft is instantaneously re-positioned to a new location or state. 

Figure 5: 3D Visualizations for a Sample Flight 
 

Figure 7: Sample PNG Truth Data Manually 
Sorted into ‘Good’ (green) and ‘Bad’ (red) 

Categories 
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Researchers can use the manually sorted ‘good’ and ‘bad’ truth data to train and validate their models (i.e., see Figure 
7).  
 
Approach 1: Basic Statistical Measures: One approach leverages basic statistical measures of mean and standard 
deviation to score the trajectories. Although simple in its implementation, this approach has performed very well when 
attempting the first task of sorting the ‘good’ and ‘bad’ files. Upper bound values for the mean and standard deviations 
of the position coordinates and roll of the aircraft were chosen to separate the ‘bad’ files from the ‘good’ ones. The 
algorithm scores each maneuver based on a Boolean operation that determines if each file within the sorted ‘good’ 
and ‘bad’ folders meets the criteria of the statistical measures. The true positive percentages are calculated by dividing 
the ‘good score’ (the total number of files that meet the criteria) by the total number of files in the manually labeled 
good data folder; true negative percentages are calculated by dividing the ‘bad score’ (the total number of files that do 
not meet the criteria) by the total number of files in the manually labeled bad data folder. Table 1 contains the results 
for the tested statistical parameters. 
 
Table 1: True Positive and True Negative Percentages for Starter Statistical Parameters 

Mean (m) Standard Deviation (m) True Positive (%) True Negative (%) 

xEast < 500 xEast < 100 97.8 91.5 

yNorth < 500 yNorth < 100 

Roll < 0 

 
Future work on this approach could optimize the mean and standard deviation limits to achieve higher true positive 
and negative rates or introduce additional statistical measures beyond mean and standard deviation. 
 
Approach 2: Canonical Models: Another sorting approach involves training more sophisticated classifiers. Due to 
the structural differences between the good and bad sortie data, summary statistics can be aggregated and used to train 
a multitude of statistical models - the performance results for each classifier are summarized in Table 2. The results 
are derived from a balanced data set where the training data consists of equal components of feasible and infeasible 
data. Random Forest and bagging tree models trained on the summary statistics dataset are the best-performing. These 
two models are able to accurately predict whether a sortie is good or bad with an approximately 98% accuracy, F1 
score, specificity, and recall, using the default hyperparameter settings in R. These models do not contain the 
supplemental data acquired by filtering the ‘good’ sorties. 
 
Table 2: Classifier Performance on each Respective Balanced-Test Dataset 

Dataset Classifier Accuracy 
(%) 

Average F1 
Score (%) 

Average 
Specificity (%) 

Average Recall 
(%) 

Summary 
Statistics 

Random Forest 98.67 98.67 98.67 98.67 
Bagging Trees 98.00 97.99 98.67 97.33 
Decision Tree 94.67 94.81 92.00 97.33 

Support Vector Machine 92.67 93.08 86.67 98.67 
Logistic Regression 92.00 91.67 96.00 88.00 

Naïve Bayes 91.33 91.16 93.33 89.33 
Neural Network 75.33 68.38 97.33 53.33 

 
Approach 3: Image Classification via Neural Networks: A final sorting approach is to use image classification. 
This approach assumes that the 2D top-down visual representation of the sortie’s flight path in Figure 7 is sufficient 
to distinguish between good and bad instances, which in general can be an oversimplification when considering 3-
dimensional flight, but nevertheless produces promising results. 
 
A convolutional neural network (CNN) can be constructed and trained to classify the files based on image 
representations of the labeled data with a high degree of accuracy. Preprocessing may include combining the x and y 
velocity parameters into one value of airspeed to reduce the number of parameters. A CNN can then be constructed 
based on the graphs of the ‘yNorth’ positions vs. the ‘xEast’ positions of the virtual plane. The labeled data can be 
split into training and testing categories, with a portion of the training files set aside for validation. A basic CNN can 
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be written assisted by torch.nn. The model can be trained on the PNG files for 5 epochs with a learning rate of 0.01. 
Validating the model with the testing data results in an overall accuracy of ~95.3%. Future work for this approach 
may come from changing the size of and applying transformations (i.e., rotation and cropping) to the images, which 
may reduce speed, but increase accuracy. One can also create a deeper CNN, adding altitude over time as another 
layer, or borrow a more sophisticated CNN, such as the ResNet50 architecture.  
 
As an image classification task, there exists a wealth of deep vision model architectures that have achieved state-of-
the-art performance on diverse image datasets. For this task, we can borrow a ResNet50 architecture and train the 
model from scratch, without using its original pre-trained weights on ImageNet, on the PNG image files of the sorties’ 
flight path for 10 epochs using stochastic gradient descent with an initial learning rate of 0.01, momentum set at 0.9, 
weight decay set at 0.00005, and a batch size of 32 images per iteration. Since the dimension of the final dense layer 
of ResNet50 is greater than the number of classes for this problem, the final dense layer is modified to specifically 
match its dimension to the number of classes in this problem. The images undergo some standard pre-processing, such 
as cropping and resizing, and are split into a train-test set of 80-20 where the training images are shuffled every epoch 
during training to prevent the network from learning incidental information or spurious correlations gleaned through 
the ordering of the images. Under these settings, the network achieves a test performance of ~98% with a true positive 
rate of ~99% and true negative rate of ~93% on the test set where the positives correspond to the “good” class and the 
negatives correspond to the “bad” class based on the previously sorted ‘truth’ data (see Table 2b). Given the class 
imbalance (ratio of about 88:12 good to bad files) present in the data, future work should keep in mind the nuances 
around model evaluation or data supplementation efforts of the under-represented class. However, it is worth noting 
that the ResNet50, even when trained and tested on the imbalanced dataset, delivers considerable performance.  
 
Table 2b: ResNet50 Performance on PNG Dataset of Flight Maneuvers, Unbalanced Test Dataset 

Dataset Classifier Accuracy 
(%) 

True Positive Rate 
(%) 

True Negative Rate 
(%) 

Images of 
Maneuvers 

ResNet50 
(Modified) 

98.6 93.3 98.8 

 
A direction for future work would be to develop a means to distinguish between good and bad sorties in a multimodal 
fashion: namely, a model that is able to take different representations of sortie data and use them to learn different 
aspects of good and bad in sortie data across various representation domains. One example is a multi-branch neural 
network that takes in multiple inputs (i.e., one branch takes in tabular data as input and another takes in images) but, 
via some form of weight sharing and concatenation in its hidden layers, still performs binary classification in the final 
layer. This way, the network may be able to glean additional information across different sortie representations and 
modalities that each representation alone may not sufficiently provide.  
 
 
TASK 2: IDENTIFYING MANEUVERS 
 
The second task involves identifying the maneuvers within the flight recordings that the pilot is attempting to execute. 
Currently, only single examples of each maneuver, containing a TSV and PNG file for a single maneuver flown on 
the simulator, are available to train and test with, making many of the traditional approaches to this problem 
challenging. Furthermore, the sorties may each contain several maneuvers within a single flight, creating a potential 
additional task of splitting up individual files based on the beginnings and ends of different maneuvers. To mitigate 
this, one team is building a Mechanical Turk-style labeling application crowd-source labels from experts. This consists 
of a Django web application with an interactive interface to view and label the glTF files created by Blender. 
Development of the system is still underway. However, preliminary results field an interactive environment with 
object tracking and handling animation playback. Further development will create glTF animation markers and store 
the labeled information in a database. 
 
Approach 1: Time-series Random Forest: Approaches relying on the prospect of more labeled data have been set 
up. A time-series Random Forest approach can be conducted to identify the type of maneuver being flown in a sortie. 
Python’s open-source package sktime can be primarily used to train the model. Following data resampling and 
cleaning of NaN values, the multivariate model is trained by concatenating the variables. The model is then able to 
predict the sortie’s maneuver; however, the accuracy of the labels suffers from the lack of truth data. 
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Approach 2: Unsupervised Learning: Under the presumption that no labels will be available, it is necessary to 
explore and develop an approach that does not require labels to generate predictions. Though the quality of these 
predictions may be found wanting if labels are made available, the goal here is to simply provide a potential framework 
that can generate predictions, without any supervision, based solely on the similarity between identified maneuvers 
and maneuvers in sortie data. 
 
To identify maneuvers in sortie data, one method identifies patterns in the exemplar maneuver data and matches them 
to similar patterns in the challenge data. These similarities can exist on both the univariate and multivariate scale. In 
terms of univariate similarity, each feature in the maneuver data should exhibit a strong degree of similarity with the 
same corresponding feature in some part of the sortie data if said maneuver is present. For multivariate similarity, the 
correlations between the features of a maneuver should also strongly resemble the correlations between the features 
in some part of the sortie data as well if said maneuver is present. Together, these two similarities can be used to 
quantify the likelihood that any maneuver is present in the sortie data.  
 
For univariate similarity, dynamic time warping is used to compare maneuver features with their respective 
counterparts in the sortie data since sorties can contain multiple maneuvers and be of different lengths (usually longer 
than the maneuver data). Dynamic time warping is used to compare each pair of features as well as their first 
differences (i.e. the feature minus itself lagged by one time step) to help quantity both raw similarity but also similarity 
in their differenced forms to help mitigate potential issues with non-stationarity when comparing time series. For 
multivariate similarity, a correlation matrix distance is used and takes the form of one minus the cosine similarity 
between two correlation matrices. Together, the univariate and multivariate similarity measures produce a set of 
similarity scores for each maneuver and its likely presence in each sortie dataset. These scores are transformed via 
softmax to produce probability scores that are then combined together to identify the likelihood a maneuver is present 
in a sortie dataset. Ideally, univariate and multivariate similarity measures should be calculated via a rolling window 
on the sortie dataset for each maneuver since the length of the sortie dataset is typically longer than each maneuver’s 
recorded data and the sortie dataset can contain more than multiple maneuvers; however, due to potential 
computational burdens, we compute similarities on the full set without a rolling window and leave this approach as a 
direction for future work. 
 
REFERENCE CODE DISTRIBUTION 
 
Each team has generously agreed to contribute their starter code for each of the approaches discussed in this paper. 
The repository is publicly available in GitHub under the Maneuver-Identification organization. Participants can visit 
github.com/Maneuver-Identification to access the starter code and Maneuver-ID.mit.edu/data to submit the data 
sharing agreement and gain access to the data via Dropbox.  
 
SUMMARY AND NEXT STEPS 
 
AI can significantly improve Air Force pilot training by reducing the need for instructor pilots in the introductory 
phases of pilot training and giving student pilots access to better tools for self-paced learning in VR. The Maneuver 
ID Challenge is championing the creation of such capabilities to increase pilot training efficiency by providing data, 
tools, and starter algorithms to the global public. The Maneuver ID challenge has assembled thousands of virtual 
reality simulator flight recordings collected by actual Air Force student pilots at Pilot Training Next (PTN). This 
publicly released novel USAF flight training dataset can be accessed through Maneuver-ID.mit.edu, along with other 
resources detailing the challenge. This paper has discussed the various AI methods applied in separating “good” from 
“bad” simulator data as well as categorizing and characterizing maneuvers.  The algorithms and software are being 
released as baseline performance examples for future participants to work off. Table 3 outlines the progression and 
development of artifacts that have contributed to the set up and continuation of the challenge. 
 
AI challenges iteratively improve throughout their lifetime. The Maneuver ID Challenge will continue to produce 
artifacts to increase the value and accessibility of the dataset for participating researchers. The link to the GitHub 
repository containing commented code and explained approaches is available on the website and will serve as a 
template for ongoing solutions that address the drawbacks of some of these approaches: the appearance of several 
maneuvers within a single file, the lack of several truth data examples of each maneuver, etc.  
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Table 3: Progression of artifacts developed during the Maneuver ID Challenge 
Original New  In Development 

Webpage containing pertinent 
information on the challenge 

(Maneuver-ID.mit.edu) 

‘News’ page and ‘FAQs’ added to 
website to document major 
updates to the datasets and 

questions about the challenge 
(Maneuver-ID.mit.edu/News, 
Maneuver-ID.mit.edu/FAQs) 

Blender produced gITF files 
containing animated visual 

representations of the raw data 

Dropbox folder containing flight 
simulator data as well as sample 

maneuver data 

Created GitHub repository for 
starter code 

(github.com/Maneuver-
Identification) 

Django web application that will 
allow crowdsourced labeling efforts 

to acquire truth data for Task 2  

IEEE Paper published August 2021 
outlining the challenge:  

Maneuver Identification Challenge 

Spreadsheet documenting 
additional labels for sorties 

containing irregularities 
YouTube playlist containing video 

recordings of exemplar maneuvers in 
the VR flight simulators  

(Maneuver-ID.mit.edu/maneuvers) 
 
Two outcomes of this Challenge would provide value to student pilots, provide another valuable tool in the instructor 
pilot’s toolkit, and build a virtuous cycle of more and higher quality data enabling more and better training tools.  
First, the ability to accurately identify maneuvers enables data infrastructure that can be used to further enhance 
training. As an example, every maneuver a student pilot flies in the simulator can be automatically identified and 
logged to allow for incredibly granular trend analysis across the pilot training enterprise. A student pilot would be able 
to quickly view every practice emergency landing pattern landing (ELP) he’s flown over time and a flight commander 
overseeing 20 or more student pilots can view all of his students’ ELPs in one place. Additionally, a dataset of all 
students’ training which also contained labels of maneuvers would be significantly richer than the comparable raw 
data, as the data curation activities involved in this challenge demonstrate. Such a rich dataset spanning many years 
would contain enormous value and potential insights to everyone from instructor pilots to analysts at higher 
headquarters, to senior leaders. 
 
Second, once maneuvers can be identified, the ability to grade maneuvers in an explainable way enables much earlier 
and more accessible learner-centered training, with more focused and effective use of instructor pilots’ time resulting 
in more effective training. While athletes who become professional often begin practicing their sport in middle school 
or high school, Air Force pilots frequently receive no training or experience in flying until after college; this 
technology would help bridge that gap. With the low-cost of VR simulators, cadets in Reserve Officer Training Corps 
(ROTC) college programs, Air Force Academy cadets, and even Junior ROTC cadets in high school, who would 
normally have no access to flying training prior to arriving at Undergraduate Pilot Training after college, can begin 
learning basic flying fundamentals in VR simulators that will serve them well in pilot training. Student pilots who 
often wait several months or more for their formal pilot training start date can likewise access the same training.  
 
Simulation software on such a ubiquitous VR simulator can demonstrate perfect maneuvers completed by instructors, 
grade early access students on maneuvers they attempt, and explain how to improve each maneuver to better emulate 
the instructor demonstration in an iterative and real-time way. The ability to identify and grade maneuvers can also be 
used in actual aircraft in real-time, as open mission systems capable of quickly deploying novel software on non-
safety critical aircraft systems become more widely-available in military aircraft. This technology would accelerate 
debriefs and provide trend analysis and objective data back to even fully-qualified pilots to help improve their own 
flying. For example, a young fighter pilot wingman can compare and contrast how each of his maneuvers compares 
to those flown by the most experienced pilots in his squadron. 
 
Finally, from a technology acquisition point of view, training-quality datasets and challenges enable companies hoping 
to provide such AI-enhanced pilot training technology to the government to objectively demonstrate their capabilities 
in comparison to benchmark algorithms and other industry and academia participants, making the market for such 
technology more open, objective, and competitive. 
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