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ABSTRACT 
 
Key to studying and assessing trust and other team emergent states in human-agent teams (HATs) is the ability to measure 
trust, which has predominantly been assessed through self-report survey methodologies. However, on their own, self-report 
measures are limited by issues such as social desirability (e.g., Arnold & Feldman, 1981; Taylor, 1961), inaccuracies due to 
retrospective assessments of abstract concepts (Podsakoff & Organ, 1986), the assessment of trust as static rather than a 
dynamically emerging state (Kozlowski, 2015), and the impracticality of asking team members to pause tasks to complete 
surveys. There is a clear need for innovative approaches to better capture trust for both research and applied purposes. Recently, 
researchers have recommended and begun incorporating more unobtrusive measurement methodologies such as physiological 
measures, event-based behavioral assessments, and analysis of language/communication (Azevedo-Sa et al., 2021; Hill et al., 
2014; Marathe et al., 2020; Waldman et al., 2015).  Unobtrusive measures offer many benefits beyond self-report measures, 
including being more objective, more predictive, more dynamic and real-time, and interfering less with taskwork and teamwork. 
Meanwhile, behavioral measures of trust, such as allocating tasks to autonomous agents and manually controlling agents, are 
readily available and also correlated with trust (Schaefer et al., 2021; Khalid et al., 2021). On their own, none of these 
approaches comprehensively measure trust across a variety of HAT domains and interactions. By evaluating and mapping out 
known measures of trust to use cases, this paper presents a review of the literature in this field and proposes a theoretically-
grounded Integrative Measurement Framework of Trust Dynamics in HATs that will more accurately, effectively, and 
practically capture trust in HATs by combining traditional and contemporary measurement approaches.  
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INTRODUCTION TO TRUST IN HUMAN-AGENT TEAMS 
 
Due to improvement of agent capabilities, the prevalence of autonomous systems is expanding in contemporary 
society. For instance, the United States Air Force is preparing their fleet to be 60% unmanned or optionally manned 
by 2035 (Otto, 2016). Agents can now team with humans to perform complex tasks in settings such as tactical 
intelligence surveillance and reconnaissance, cyber defense, and suppression of enemy air defenses (Otto, 2016; Chen 
& Barnes, 2014). As human-agent teams (HATs) operate in these interdependent and complex settings, properly 
calibrating a human’s trust in agents becomes a critical factor that affects team dynamics and effectiveness (Yu et al., 
2019; Kohn et al., 2020). To assess human-agent teamwork, trust in agents must be effectively measured. 
 
While many measures of trust are used in the HAT literature, limitations surrounding their effectiveness have been 
raised (Lu & Sarter, 2020). Self-report measures are the most common approach for measuring trust (Merritt & Ilgen, 
2008) but are task-disruptive and impractical for real-world scenarios. For example, in fast-paced and dynamic 
environments such as search and rescue missions, administering surveys during the mission would interrupt 
performance and cost valuable time that should be spent rescuing victims. Behavioral measures have been used as an 
alternative to self-report measures of trust. For example, rejecting agent input has been inferred as low trust (Wang et 
al., 2017). However, behaviors are task-specific, and although they are highly correlated, behaviors do not equate to 
attitudes (Ajzen, 1991). Physiological measures, such as electroencephalography (EEG), have also been used 
(Khawaji et al., 2015; Dong et al., 2015). Physiological measures are objective and able to capture dynamic changes 
in trust via a constant data stream. Unfortunately, collecting and analyzing this data can be costly, physically intrusive 
to participants, and confounded with other constructs when used alone. However, when context is taken into account 
and multiple measures are used in tandem, they can better approximate trust without disrupting a team's momentum. 
Though there are numerous approaches to measuring HAT trust, there is disparate guidance for capturing dynamic 
trust over time. To unify the existing literature and guide future research on trust in HATs, this paper 1) reviews 
current trust measurement approaches within the HAT literature and 2) proposes an integrated framework of HAT 
trust measures that evaluates and maps known measures to use cases to suggest context-appropriate measures of trust. 
 
 
REVIEW OF TRUST MEASURES IN HUMAN-AGENT TEAMS  
 
Trust is an elusive construct to measure, as it has been conceptualized in a variety of ways. Due to the diverse options 
available, choosing the appropriate measure can be difficult and confusing. These measures can be broadly organized 
into three major categories: self-report measures, behavioral measures, and physiological measures. 
 
Self-Report Measures 
 
Multi-Item Self-Report Scales 
Self-report scales are among the most accessible forms of measurement in any given research domain, especially of 
attitudes (Kohn et al. 2020). Many trust in HAT studies have employed self-report trust scales. However, they often 
differ, as a myriad of self-report trust scales exist. Among the many scales used, two scales stand out as frequently 
used measures of trust in the HAT research community: Jian et al’s (2000) Trust in Automated Systems survey, and 
Mayer & Davis’s (1999) Measure of Trust & Trustworthiness. 
 
Jian et al’s (2000) Trust in Automated Systems survey identifies trust as a construct containing opposite, antithetical 
dimensions of trust (positive vs. negative). Jian et al’s (2000) study conducted a cluster analysis resulting in 
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identification of 12 trust items. This scale treats trust as a singular bipolar construct with trust and distrust on either 
end. The scale recognizes multiple elements of trust in automation including positive and negative items about the 
automated system’s reliability, security, familiarity, and integrity in HATs (Kohn et al., 2021). The scale can be used 
either at the sub-facet level to understand particular dimensions of trust, or as a composite scale of overall trust (Jian 
et al., 2000). The scale has been employed consistently as a valid measure of trust (Kohn et al., 2020). 
 
As agents in HATs transition to more interdependent teammate roles rather than tools, it is also important to examine 
the interpersonal nature of trust (Mayer et al., 1995). Researchers have adapted Mayer & Davis’s (1999) Measure of 
Trust and Trustworthiness based on the organizational trust framework developed by Mayer et al. (1995). The scale 
and framework both separate trust from its antecedents, identifying trust as an evolving attitude in which a trustor is 
willing to be vulnerable to another party based not only on the trustor’s propensity to trust, but also on the trustor’s 
perception that the trustee is trustworthy (Alarcon et al., 2018; Mayer et al., 1995). In this scale, trustworthiness 
encompasses three dimensions: Ability, Benevolence, and Integrity. Propensity to trust and overall trustworthiness 
are separate constructs that predict trust. Studies of trust in HATs have often adapted one or more dimensions to assess 
a specific element of trust. Despite the original framework defining propensity to trust as separate from trust, modern 
adaptations of this scale (1999) have added propensity to trust as a sub-dimension (Kohn et al., 2020; Körber, 2018). 
The original measure validation studies of employee trust found evidence of reliability and validity and it has since 
been used regularly in HAT research as a credible source (Kohn et al., 2020). That said, we do not endorse adding 
propensity to trust as a sub-dimension of dynamic momentary trust, due to its theoretical distinctiveness.  
 
Single-Item Self-report Measures 
In addition to validated scales, single-item self-report measures of trust in automation have also been employed 
(Körber, 2018). Single-item measures are most often used when trust needs to be measured often to capture the 
dynamic changes in trust. Researchers have embedded the item within missions as a brief pop-up menu that pauses 
the simulation to capture trust as it fluctuates during task performance (Hergeth et al., 2015). However, some 
researchers argue that single-item trust measures are inherently unidimensional, while the literature often defines trust 
as a multi-dimensional construct (Lee & See, 2004; Mayer et al., 1995). The validity of single-item trust measures has 
thus been criticized for their inability to parse out dimensions of trust (Körber, 2018; Kohn et al., 2021). Researchers 
have also voiced concerns that single-item measures are inadequate for capturing abstract constructs not easily defined 
(Körber, 2018; Morgado et al., 2017). Single-item measures have thus been criticized because participant responding 
reflects their own beliefs and definitions about a construct rather than a standardized definition. However, most people 
generally have a sense of what it means to trust another entity or at least have their own personal definition of trust 
(de Fine Licht & Brulde, 2021). Single-item measures also offer multiple benefits. First, single item measures take 
less time to complete, enabling trust to be captured in the middle of a mission and thus capture changes in trust 
alongside trust-related events. Second, single-item measures enable more fine-grained analyses of trust networks. 
Even within single-human HATs with multiple agents, single-item measures still enable investigation of ego-centric 
networks that connect trust scores amongst the different dyadic relationships that one human has with each agent.  
 
Behavioral Measures 
 
Usage Behaviors 
Overwhelmingly, previous studies utilizing behavioral measures of trust in HATs have focused on usage measures to 
capture over-reliant and under-reliant behaviors of trust in agents (Wang et al., 2017). Over-relying occurs when the 
human operator relies on the agent to complete tasks or make decisions when one should not be (Parasuraman & Riley, 
1997). Under-relying occurs when the human operator completes tasks or makes decisions without assistance from 
the agent. Parasuraman and Riley (1997) outline four behaviors to describe how humans use automation: use, disuse, 
abuse, and misuse. Use, disuse, and misuse are outlined below as primary usage behaviors in identifying trusting 
behaviors. Automation abuse is a behavior that demonstrates operator use of automation without regard for the 
consequences for human performance. Abuse relies on the design of the automation rather than being trust-dependent, 
which is why it is not comprehensively reviewed in the following section. 
 
Parasuraman and Riley (1997) define use as the intentional activation of automation. A common example would be 
self-driving capabilities in cars or autopilot in aircraft. Using automation is indicative of trust since the decision to 
engage in automation is greatly influenced by an operator’s trust in it (Lee & Moray, 1992; Muir, 1987). Similarly, 
following an agent’s recommendations is consider use behavior (Freedy et al., 2007). Conversely, disuse of 
automation is defined as the neglect or underutilization of automation (Parasuraman & Riley, 1997). Disuse, such as 
rejecting agent recommendations, suggests low operator trust (Wang et al. (2017).  
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The misuse of automation refers to overreliance, resulting in failures of supervision from the operator (Parasuraman 
& Riley 1997) and detrimental effects on performance (Lee & See, 2004). This typically occurs when the operator 
experiences high workload or has low confidence in their ability to accomplish the task. For example, Freedy et al. 
(2007) simulated a military escort task where participants worked with agents to eliminate hostile enemies to protect 
a civilian envoy. The human operator monitored the agent with the option to manually override and eliminate enemies 
if they felt the enemy was getting too close. Frequently overriding the automation indicated under-trusting, while few 
instances of overriding indicate over-trust. The study results suggested behavioral actions correlated with self-report 
scores. Although agents’ capabilities have advanced, all automation has a failure rate. Thus, it is important that human 
teammates appropriately monitor agents and intervene when automation does fail. 
 
Usage behaviors have been widely used in previous literature, demonstrating high correlations with trust. However, 
the majority of published HAT research paradigms set the agent as a tool rather than a teammate. Some HAT research 
has pushed toward human-agent cooperation in their experiments. For instance, Demir et al. (2019) developed a space 
exploration task in which a human and two agents had interdependent roles such that the navigator and pilot had to 
fly to waypoints for the photographer to take photos of targets. This task paradigm exemplifies collaborative HAT 
environments in which agents and human work together to achieve a common goal. To understand trust when humans 
and agents are interdependent, behavioral measures must go beyond use/disuse for other indicators of collaboration.  
 
Context-Specific Action Behaviors 
Context-specific action behaviors are behaviors humans exhibit when working with an agent and are highly dependent 
on the task.  For example, in a study examining robots as social partners, waving and speaking to the robot was 
indicative of trust in the robot (Bainbridge et al., 2011). In another study, participants’ comfort levels were determined 
by their physical proximity to the robot, suddenness of movements around the robot, and physical cues used when 
responding to the robot (e.g., nodding when agreeing or shaking their head when disagreeing; Fratczak et al., 2021). 
Furthermore, Buchholz et al. (2017) employed the Give-Some Dilemma mixed-motive game where participants and 
agents exchanged tokens with the coin value doubling when exchanged. Thus, individual outcomes were maximized 
when participants kept and received all coins; team outcomes were maximized when both players exchanged all coins. 
An increased number of positive behaviors (high number of tokens exchanged, positive communication, and quicker 
response time) correlated with a higher trust.  Studies have found using context-specific action behaviors can be a 
reliable indicator of trust (Albayram et al., 2020); however, this is dependent on properly identifying context-specific 
trust actions within the right scenario. For example, physical proximity to the agent may be pertinent in an in-person 
experimental environment, but irrelevant in a computer-based interaction (Bainbridge et al., 2011). 
 
Physiological Measures 
 
Eye Tracking  
Gaze, defined as visual fixation over an area of interest in a subject’s visual field (Erickson et al., 2020), is one of the 
most common eye-tracking metrics for measuring trust in automated agents. How many times and how long a 
participant gazes over a certain area demonstrates a participant's extraction of information from their surroundings to 
carry out a task (Bales & Kong, 2017). Most studies employing gaze found correlations related to performance rather 
than trust (Bales & Kong, 2017; Wright et al., 2014; Bagheri et al., 2004). However, newer studies have developed 
predictive models from eye-tracking data for inferring trust levels in real time. In a study by Lu and Sarter (2020), 
participants completed an unmanned aerial vehicle (UAV) desktop simulation including visual search and tracking 
tasks. The visual search task involved the participant monitoring eight UAV camera feeds to detect military targets. 
Gaze, defined by how much time the participant fixated on the area where the visual search task took place, and 
transition count, or the number of transitions in gaze between two areas of interest, were used to measure trust in the 
agent. After collecting baseline information from participants at the beginning of the study, Lu and Sarter (2020) 
developed predictive models of gaze and transition count, which achieved 80% accuracy. As automation reliability 
changed from high to low, gaze and transition count increased, inferring potential decreases in trust. Although these 
measures were not validated through self-report, results showed promise for eye-tracking measures in the HAT space.  
 
Vocal Pitch 
Vocal pitch refers to how high or low a participant’s voice is (Niculescu et al., 2013). Elkins and Derrick (2013) 
investigated the relationship between vocal dynamics (pitch and duration) and trust in an Embodied Conversational 
Agent (ECA). Participants completed a face-to-face interview with the ECA and then reported their trust in it. Vocal 
pitch was inversely related to trust, and this effect was strongest early in the interview. However, this stronger initial 
correlation may be due to either increasing trust throughout the study or the participant’s recognition of their change 
in pitch and a conscious effort to fix it.  While this study suggests that vocal pitch may be a good indicator of initial 
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trust, further research is needed to examine the reliability of voice pitch as a measure of trust for longer time periods. 
 
Cardiovascular Measures 
Cardiovascular measures i include electrocardiograms (ECGs), which quantify heart rate and heart rate variability 
using electrical leads (Johnson et al., 2021). Heart rate variability has been found to pair well with behavioral trust 
indicators (Tolston, 2018). In Van Lange and colleague's (2011) study, participants interacted with a team through a 
consensus wagering task, then placed wagers on the agent's performance for a maze running task. The study found 
that heart rate variability and self-report measures of trust in the agent from round one were significant predictors of 
trust behavior in an agent for round two. Mitkidis et al. (2015) conducted a study observing heart rate synchrony and 
arousal as a predictor of trust during a public goods game. Thirty-seven pairs of participants' constructed LEGO model 
cars during four consecutive sessions lasting 10 minutes each. Participants' heart rates were measured during the 
interaction to observe synchrony. Following the car-building sessions (the trust condition), twenty pairs of participants 
completed a public good game in which theyd contributed any amount of money out of their own pot to a public pool, 
with total payoff being optimized when players contribute all available funds. They found that participants' heart rate 
profiles were more synchronized during the trusting condition and heart rate synchrony was a significant predictor of 
expectations during the public goods game, suggesting heart-rate synchrony may be an indicator of interpersonal trust. 
 
Neural Signatures 
Electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) data are the most common measures 
for detecting neural signatures for HAT trust. fMRI is a frequently used brain imaging method, which detects changes 
in blood-oxygenation levels (Menon & Crottaz-Herbette, 2005). EEG measures neuronal processing through electrical 
brain activity by attaching electrodes to the scalp (Subha et al., 2010). Although neural signatures are not as prevalent 
as self-report or behavioral measures, studies have found correlations between activation of certain brain regions and 
HAT interactions in both fMRI and EEG data. In Lee (2018) participants played a mixed motive game whilst collecting 
fMRI data. When the participant cooperated with the agent, the left region of the parietal lobe was activated, which 
correlated with self-report capability-based trust. Goodyear and colleagues (2017) also collected fMRI data and 
revealed greater strength of the lingus gyrus (LG) when participants accepted advice from a human compared to a 
machine. In Dong et al. (2015), differences in agents’ human-like cues were assessed through behavioral performance 
and EEG results. No significant differences in behavior were found after experiencing a human-like cue from the 
agent; however, EEG data found significant differences in mean amplitude within event-related potential (ERP) 
patterns. Although neural signatures are not widely utilized, previous studies have shown promising results. This is 
largely attributed to their objectivity, which eliminates subjective biases recognized in self-report measures. However, 
collecting fMRI and EEG data can be strenuous due to expensive and obtrusive equipment along with the difficulty 
of analyzing the data. More specifically, studies have shown difficulty in accurately representing trust using EEG data 
due to the high volumes of noise within EEG signals (Subha et al., 2010). Due to the novelty of neural signatures in 
HATs, there is little uniformity in trust correlations associated with certain brain regions across studies. Identifying 
which brain regions correlate with trust will be needed for ongoing research in the HAT domain. 
 
Galvanic Skin Response 
Galvanic Skin Response (GSR) measures the change in skin conductivity, which fluctuates based on amount of sweat 
(Sharma et al., 2016).  Khawaji et al. (2015) explored the relationship between GSR, cognitive workload, and trust. 
Pairs of participants were randomly assigned to one of two experimental conditions: enhanced trust and diminished 
trust. Participants completed four chat sessions in which they played an investment game and GSR data was captured 
and analyzed to determine average and peak GSR values. A cognitive workload questionnaire was also administered 
after gameplay for each session. All trust manipulations occurred prior to gameplay to establish baseline. Results 
revealed that when cognitive load was low, average GSR values and average GSR peaks were significantly lower 
during the high trust condition compared to during the low trust condition. These results suggest that during a low 
cognitive load scenario, GSR can be employed to measure trust (Khawaji, et al., 2015). Akash et al. (2018) aimed to 
identify if physiological metrics could be utilized to develop a classifier-based empirical trust model. Across 100 trials 
participants engaged in a driving simulator equipped with an obstacle detection sensor that would identify objects and 
generate a report for the participant to evaluate. The participant then chose to trust or distrust the report. Throughout 
the study, GSR and EEG data was recorded. The tonic (slow changing) and phasic (fast changing) components of the 
GSR values were captured and the Net Phasic Components were calculated. Results revealed the phasic component 
of GSR was a significant predictor of trust, and when combined with EEG data contributed to a model that predicted 
trust across participants with 70% accuracy. In Hald et al. (2020), participants completed a collaborative drawing task 
in which the participant held a piece of paper while the robot drew a square. Sudden changes in the robot’s speed and 
motor noise were designed to elicit a decrease in trust, which was measured by self-report, motion tracking, and GSR. 
GSR results were not significant between conditions despite the questionnaire showing significance. This may be due 
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to a small warm-up period and poor baseline data.  GSR appears to show promise as a trust measure. 
 
Summary 
Based on this review, measures including vocal pitch and eye-tracking require additional research before they can be 
soundly recommended as measures of HAT trust. Furthermore, measurement of neural signatures requires incredibly 
specialized expertise and are often impractical to implement by most HAT researchers. However, there appears to be 
sufficient support, and feasibility of implementation, for the use of both multi-item, validated scales and single-item 
self-report measures, usage and context specific action behavioral measures, and cardiovascular and GSR 
physiological measures. The following section evaluates these measures and proposes a framework for utilizing these 
measures in isolation and together to capture the various aspects of human trust in agents.  
 
 
MEASUREMENT FRAMEWORK FOR TRUST IN HUMAN AGENT TEAMS 
 
Measure Evaluation Criteria 
 
To evaluate effectiveness of each of these measures, we propose eight criteria, including six criteria stemming from 
Wickens & Holland (2000): sensitivity, diagnosticity, selectivity, obtrusiveness, temporal resolution, and reliability. 
To account for practical resources, we also add affordability and resource intensiveness as additional criteria.  
 
Sensitivity 
Sensitivity refers to the threshold of input required to register change in a construct’s value (Vig & Walls, 2000; 
Wickens & Holland, 2000). Sensitivity, in this case, reflects how easily a measure responds to input from a person 
with respect to trust. A high sensitivity measure will register changes from very small inputs, while a low sensitivity 
measure will require significant inputs (Vig & Walls, 2000). In general, higher sensitivity is desirable because it better 
reflects the overall construct, especially for highly dynamic constructs that may subtly change over time. 
 
Diagnosticity 
Diagnosticity refers to how well a measure explains the drivers of a construct’s score. A highly diagnostic measure 
better explains why scores on the construct are high or low (Wickens & Holland, 2000). For example, multi-
dimensional trust scales explain different driverof trust allowing for increased diagnosticity (Jian, et al., 2000).  
 
Selectivity 
Selectivity is similar to discriminant validity and refers to a measure’s ability to delineate between a construct of 
interest and other irrelevant constructs (Rönkkö & Cho, 2022; Wickens & Holland, 2000). Measures that demonstrate 
low selectivity are correlated with the intended construct as well as with other constructs, presenting an obstacle for 
measuring trust as individuals cannot be certain if their measure assesses trust or another construct such as stress or 
workload (Khawaji et al., 2015, Sharma et al., 2016). High selectivity measures would parse out correlations between 
the measure and the construct of interest, with less correlational overlap from other constructs. 
 
Obtrusiveness 
Obtrusiveness refers to how disruptive a measure is when capturing data (Wickens & Holland, 2000). A highly 
obtrusive measure is very noticeable and often interferes with a task because it requires attention. Obtrusiveness is 
undesirable because it reduces the measure’s ability to capture a construct naturally without interference (Webb et al., 
1999). Generally, measures are more obtrusive when they require more attention to collect data (e.g., questionnaires) 
or are more physically noticeable (e.g., on-body equipment).  
 
Temporal Resolution 
Temporal Resolution refers to how granular the data provided by a measure is with respect to time (Wickens & 
Holland, 2000). Temporal resolution can also be thought of as how often data points are recorded, or the bandwidth 
of time that a measure is capable of capturing (e.g. milliseconds, seconds, minutes; Huang et al., 2021). Higher 
temporal resolution is generally more desirable because it provides more data, however this may come at the expense 
of being inundated with too much data. With highly granular data, it becomes important to make intentional 
aggregations of periods of data to make sense of it. Temporal resolution is particularly important when capturing 
dynamic constructs that are expected to change quickly in small periods of time.  
 
Reliability 
Reliability refers to how consistently a measure reproduces similar data (Traub, 1994). Reliability can be thought of 
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as how much the measure’s data varies each time it is used. Highly reliable measures will reproduce similar data when 
used repeatedly under the same conditions. Higher reliability is always desirable.  
 
Affordability 
Realistically, the feasibility of using a measure depends on the resources available. We include affordability to 
acknowledge that the accessibility of a measure is important when considering whether or not to employ it. Actual 
costs of a measure fluctuate depending on the vendor and type of measure, therefore we provide general affordability 
ratings. Although these thresholds are subjective, the hope is to provide a relative price gauge. 
 
Resource Intensiveness  
In addition to affordability, the amount of time and energy required to implement a measure and analyze its resulting 
data is an important consideration. Resource Intensiveness refers to the time and effort demands to effectively 
implement a measure and analyze associated data. For example, physiological measures can be incredibly resource 
intensive to implement due to the time and training necessary to learn the technical set-up and configuration as well 
as to conduct the analyses necessary to make meaning of the data. Conversely, self-report measures tend to be very 
non-resource intensive as they have already been validated and produce direct scores that are easy to analyze.  
 
Measure Evaluation 
 
Table 1 reflects an informal evaluation of the measures using the proposed criteria. Plus signs denote positive attributes 
related to the measurement evaluation criteria; double plus signs indicate very high levels of the positive attribute; 
minus signs denote negative attributes. As is evident in Table 1, there is currently no single best measure that can be 
recommended to effectively capture HAT trust. Various measures have different advantages and disadvantages. 
Validated self-report scales have high levels of diagnosticity given their multidimensional nature, which explains key 
aspects that contribute to trust. These are the only measures to date that capture these key aspects separately. They are 
also high in selectivity as they have been demonstrated to have divergent validity from other related constructs (Flake 
et al., 2017), high reliability (Körber., 2018), and are also low-cost and non-resource intensive to implement and 
analyze. However, self-reports tend to be highly obtrusive to the task as respondents must be interrupted to respond. 
They are typically administered once after the task and are thus low in temporal resolution, making it hard to assess 
dynamic changes in trust. In contrast, single-item self-report measures maintain selectivity, cost effectiveness, and 
non-resource-intensiveness of self-report scales, while increasing temporal resolution as they can be injected during 
tasks through a quick pop-up. This is still obtrusive to the task, although less so, and single item measures do not 
provide the diagnosticity and reliability of multi-item scales. 
 
Table 1. Measure Evaluation for Trust in HATs 

 Self Report Measures Behavioral Measures Physiological 
Measures 

Validated 
Scales 

Single 
Item 

Usage 
Behaviors 

Context-Specific 
Actions 

Cardio- 
vascular 

GSR 

Sensitivity + - - + +* +* 
Diagnosticity ++ - - + - - 

Selectivity ++ + - + - - 
Unobtrusiveness  - + ++ ++ + + 

Temporal Resolution - - + + ++ ++ 
Reliability ++ - - + + + 

Affordability ++ ++ + + - - 
Non-Resource Intensive  ++ ++ + - - - 

* Although research on cardiovascular and GSR measures as indicators of trust have not definitively shown these measures are specifically sensitive 
to changes in trust, this may be a research limitation rather than a limitation of the measures themselves. Cardiovascular and GSR measures are 
generally sensitive to input and have the potential to be sensitive to changes in trust. Further research is needed to verify this.  
 
Behavioral measures provide the least obtrusive means of measuring trust and moderate to high levels of temporal 
resolution, depending on the behavior being captured (e.g., response to an event may be low frequency, but body 
language can fluctuate rapidly). However, because attitudes and behaviors are distinct (Ajzen, 1991), usage behaviors 
may not reflect trust attitudes exclusively and thus have low levels of sensitivity and selectivity. Usage behaviors are 
also low on diagnosticity as the behaviors themselves do not explain trust scores (although sometimes performance 
context can increase this), and reliability is questionable until validated as these measures must be carefully developed 
for each specific context. Context-specific measures, if designed well, can provide increased sensitivity, diagnosticity 
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and selectivity as scenarios can be designed to elicit specific behaviors indicative of trust. Usage measures in particular 
can typically be captured without excessive cost or resources through use of observer checklists and system collected 
response measures. However, for well-designed context-specific action measures, there can be intense resources 
required for both scenario design and post-hoc coding of behaviors and communications from video transcripts.  
 
Finally, physiological measures including cardiovascular and GSR measures, provide extremely high levels of 
temporal resolution as they can be captured second-by-second, and in a manner fairly unobtrusive to the task (although 
some argue that some of the sensors can be physically obtrusive). They also have the potential to be fairly sensitive 
as has been demonstrated in their ability to capture small changes in workload (Akash, et al., 2018) and sensor 
technology is becoming increasingly reliable. The biggest disadvantage of physiological measures is that sensor 
technology can be extremely expensive, especially if there is a need for software to support analysis by a non-expert, 
and resource intensive to learn to administer and analyze. Physiological measures also have low levels of selectivity 
as many different physical and emotional states can cause fluctuations, and low levels of diagnosticity because you 
do not know why they are fluctuating (although performance context can assist with this as well).  
 
Measure Selection and Implementation  
Given these advantages and disadvantages, decisions regarding which measure of trust to utilize depend on the 
research goals and the HAT performance context. Further, it is often necessary to utilize multiple measures to 
triangulate in on trust at different times and increase construct validity.  To assist in measure selection, we present 
three categorical use-cases that vary based on (a) level of interactivity with the agent, (b) how dynamically we 
anticipate human trust in the agent varying (i.e., static, moderately dynamic, highly dynamic), and (c) the research 
goals. In the first use case, the goal is to understand what influences trust in an agent when there are few, if any, 
interactions with the agent (e.g., vignette-based research) and therefore human trust in the agent is unlikely to fluctuate 
over time. In the second use case, the goal is to study factors that influence trust when there are low to moderate levels 
of interaction with the agent and thus, human trust in the agent may fluctuate to a degree, but the focus is not on 
dynamic changes in trust. Finally, in the third use case the goal is to study dynamic changes in trust over time in a 
HAT performance context that is highly interactive, with less focus on why trust changes as this is controlled with 
experimental design. Table 2 illustrates which measures to implement in each of these use cases. It should be noted 
that there are additional considerations in measure selection that were not the focus of this effort. For example, 
administering measures in a multi-level context with multiple agents and humans can increase the obtrusiveness of 
the self-report measures as each entity must be rated, and the cost and resources necessary to collect physiological 
data increase since multiple sensors must be purchased and multiple data streams analyzed. Further, the practicality 
of using measures in an applied context (e.g., real-world military operations) may be of additional interest if collecting 
real-time data during performance is important so that interventions can be implemented. 
  
Table 2. Measure Implementation Guidance with Use Case Scenarios 

 Self-Report Behavioral  Physiological  
Validate
d Scales 

Single 
Item 

Usage 
Behaviors 

Context-Specific 
Actions 

Cardio GSR 

1. Low interactivity,  
static trust X  X    

2. Moderate interactivity, 
moderately dynamic trust X X X X   

3. High interactivity, 
highly dynamic trust  X X X X X 

 
Low Interactivity, Static Trust 
When there is low interactivity, few expected fluctuations in trust over time, and the goal is to understand what 
influences trust based on manipulation of various variables (e.g., in a vignette-based scenario), validated self–report 
scales provide a great tool to capture a snapshot of the multidimensional nature of trust and shed light on factors that 
influence trust. To bolster this understanding and identify how trust attitudes may impact human behaviors, usage 
measures can be utilized alongside scales, providing a more robust understanding of why a participant trusts an agent. 
To implement these measures, the researcher should administer validated scales before and after each scenario. Usage 
can be captured by having participants report their response to the vignette. For example, in Reig et al. (2021)’s 
vignette study, participants used a self-report scale to indicate their trust in an agent after viewing one of four videos 
that reflect different trust repair strategies enacted by the agent. In this low-interactivity scenario, context specific 
action measures and physiological measures are not recommended as the researcher is not examining trust fluctuations. 
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Moderate Interactivity, Moderately Dynamic Trust 
When there is moderate interactivity, small fluctuations in trust, and the goal is to understand factors that influence 
trust, such as in a brief simulation-based scenario, validated self–report scales continue to provide a great tool to 
capture a snapshot of multidimensional trust. However, higher temporal resolution is needed as trust is expected to 
fluctuate, and it is preferable to minimally disrupt HAT interactions. Single-item self-report measures can be layered 
on through brief pauses that are minimally obtrusive. Behavioral measures can also be captured unobtrusively to gain 
insight on how trust changes after an intervention or scenario event. Coupling behavioral measures with self-report 
measures increases temporal resolution while being less disruptive.  As usage behaviors are typically used for low-
level HAT tasks where the operator may choose to engage or disengage the automation, applying use/disuse criterion 
may be challenging to tease apart trust from required task-based interactions. This reliance-trust behavioral confound 
is less prevalent if tasks promote interactivity and cooperation amongst teammates with additional options to 
use/disuse an agent's supplementary capabilities, as well as provide opportunities to capture context-specific behaviors 
indicative of trust. For example, Azevedo-Sa et al. (2021) examined how automated driving systems’ (ADS) reliability 
and road visibility influence trust. Trust was assessed through self-report and behavioral measures such that high 
frequency of emergency braking by participants inferred low trust. Validated scales could also be administered before 
and after the task or between conditions to provide diagnostic information that explains a human operator’s trust.  
 
High Interactivity, Highly Dynamic Trust  
Finally, when there is high interactivity, highly dynamic fluctuations in trust over time, and the goal is to understand 
these dynamic fluctuations, such as in a more extensive simulation-based scenario, validated self–report scales will 
provide limited assistance given their low temporal resolution. In this use case, capturing responses to single-item 
trust scales, usage, and context-specific behavioral measures will allow for study of trust dynamics over time with 
minimal task interruption. Further, physiological measures will increase temporal resolution and sensitivity, allowing 
for more granular measure of changes in trust.  This is desirable as trust is thought to fluctuate rapidly in response to 
trust-related events like violation and repair (Glikson & Woolley, 2020). For example, Mitkidis et al. (2015) used 
heart rate synchrony as a predictor of trust in an experimental setting where participants engaged with an agent for 
four consecutive sessions that each lasted ten minutes. Using heart rate data collected both within and across the four 
10- minute sessions, it was found that heart rate was more synchronized in the trusting condition.  
 
 
FUTURE RESEARCH 
 
As HATs are instantiated into more complex environments such as teams with multiple humans interacting with 
multiple types of agents, accurately assessing trust in HATs is imperative for future research. Previous research has 
illustrated conflicting results amongst various trust measures, demonstrating a need for numerous measures to gather 
precise results. Future research should examine measurement of trust in multiple agents and elaborate on the 
implications of having multiple trust targets. Developing a solidified assessment of trust is important for differentiating 
participant trust levels between each agent and overall team trust. Another important element to consider is how to 
capture trust over time. Since relationship dynamics differ before and after trust violations and repair events, 
understanding how trust is built, broken, and repaired is critical. Future research should incorporate multiple measures 
in concert to understand the trajectory of trust across these different phases of interaction, especially in 
heterogeneously composed HATs (e.g., multi-human, multi-agent, or multi-team HATs).  
 
There are also multiple future research opportunities to improve upon these measures of trust. For example, as HAT 
roles become more interdependent, activating automation will no longer be an option for human operators since 
automation will already be deeply embedded into the system. This will inherently affect the usage criterion since 
humans may no longer have the option to activate or deactivate automation. Therefore, as HATs continue to progress 
into more elaborate environments, upcoming behavioral measures should also evolve past automation activation or 
supervisory-related tasks to make usage more relevant to advancing HAT missions, such as multi-agent teams. For 
context-specific behaviors, no research to date has created a generalizable framework for identifying and solidifying 
these. Therefore, it is recommended that emerging context-specific behaviors are validated and supported by prior 
literature and a framework for identifying these behaviors be developed to assist in supporting the choice of behaviors. 
Furthermore, future research in eye-tracking measures should develop individualized eye-tracking baselines through 
machine learning models to increase validity and uniformity, similar to Lu and Sarter’s (2020) technique. Future 
research is also needed to establish the relationship with trust and various vocal properties (e.g., pitch, speed).  
 
To assess the validity of using numerous measures in tandem, developing a series of different testbed/tasking solutions 
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with the same measurements is crucial in assessing the validity of this framework. Although trust is an elusive 
construct, triangulation from numerous measurements can combat this issue and help us better understand the 
development and degradation of trust in a realistic HAT environment. 
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