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ABSTRACT 
 
Physical, tactical, and field training are critical for improving warfighter physical performance and capabilities. 
Exercises and training events are typically supervised; however, group/team training lacks personalized supervision, 
which is even more difficult during field events and war-gaming. While technologies such as optical motion capture 
(mocap) can capture detailed biomechanics, they are most conveniently used in indoor laboratory settings or in a pre-
staged outdoor area. Commercial wearable sensors are readily available, but the data typically correspond to a discrete 
bodily location and only provide limited information about whether someone is moving, as opposed to how 
movements are being performed. To fill this gap, a self-adhesive, elastic fabric, nanocomposite skin-strain sensor was 
developed, tested in controlled environments, and validated through human participant studies. It was found that these 
“Motion Tape” sensors were not only able to measure skin-strains during functional movements, but its measurements 
were also correlated with how muscles engage. In this study, Motion Tapes were worn at major joints and muscle 
groups, and subjects performed exercises that simulated military marksmanship training. Individuals (civilians) were 
first asked to perform a functional task, before being asked to repeat the task after specific instructions that targeted 
improved performance. Then, a machine learning model was implemented and trained to classify movement sequences 
that resulted in positive versus negative task outcomes (i.e., to classify correct versus incorrect movement sequences). 
The remaining datasets that were not used for model training were used for validation tests. Furthermore, the Motion 
Tape datasets that led to positive outcomes were further analyzed to reveal the primary movement and muscle 
engagement schemes that resulted in higher performance. The vision is that such “Warfighter Digital Twins” can one 
day be used for assessing the physical performance, health, and capabilities development of military service members. 
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INTRODUCTION  
 
Physical, tactical, and field training are critical for developing and improving warfighter physical performance and 
capabilities, especially to prepare these tactical athletes for a broad spectrum of operations and the theater of war 
(Scofield & Kardouni, 2015). The suite of training activities extends beyond strength and conditioning exercises such 
as push-ups, sit-ups, and endurance runs and includes close quarter combat, casualty extraction, marksmanship, 
performing various functional tasks while carrying an external load, and war-gaming (Clemente-Suárez, 2022; Öberg, 
2020). Exercises and training events are typically supervised; however, group/team training, field exercises, and war-
gaming lack personalized supervision. On the other hand, individual training such as marksmanship is time-
consuming, dangerous, and demanding for the trainer (Brown, Villa, Hussey, Ramsay, & Mitchell, 2020), since each 
trainee can exhibit unique deficiencies (i.e., associated with how they move and perform those tasks) that impact 
performance. Furthermore, in both military and sports sectors, trainer assessments are usually performed by visual 
observations (Jones, 2006), which can be subjective and inaccurate at times.  
 
To address these gaps in providing more personalized, effective, and accurate training feedback, the objective of this 
study was to test whether a prototype, self-adhesive, elastic fabric sensor, called Motion Tape (Lin, Zhao, Wang, et 
al., 2021), could differentiate between correct and incorrect postures during simulated marksmanship training 
exercises. Motion Tape was directly affixed onto the skin and could measure skin-strains associated with how muscles 
engage during movement. The direct skin attachment eliminated the issue of movement artifacts, which could be an 
issue for electronic textiles and compression garments (Yang, Isaia, Brown, & Beeby, 2019). In addition, Motion Tape 
was designed for assessing functional movements and human performance/limits with military-relevant training and 
applications in mind, which is in stark contrast to most commercial wearables that are geared towards consumer 
applications that only provide a general sense of physical activity (Friedl, 2018). Regardless, two human participant 
test protocols were designed and conducted to emulate marksmanship training. During the tests, Motion Tape 
measurements were acquired, as well as a full-body optical motion capture (mocap), to record the different postures 
and movement sequences. A machine learning algorithm was trained using Motion Tape data and validated using 
different datasets to show that incorrect movements at specific times during a movement sequence could be identified.  
 
The vision is that Motion Tape, and the unique muscle engagement and movement sensing streams that it provides, 
will be crucial for developing “Warfighter Digital Twins”, which is an individualized cyber representation of the 
“Human Warfighter.” With this added capability, the warfighter and its corresponding Warfighter Digital Twin will 
constitute a mutually interacting cyber-physical-human system that can assess tactical performance and provide 
individualized feedback to augment training activities that support improved performance. In relation to this work, the 
Warfighter Digital Twin can potentially and automatically identify movement deficiencies and relay detailed 
movement analysis that can be corrected or improved to achieve higher performance (e.g., marksmanship). In addition, 
future implementations of the Warfighter Digital Twin can acquire, aggregate, fuse, and analyze relevant sensing 
streams to minimize the risk of physical injuries and enable rapid and active rehabilitation, among many others.  
 
This paper begins with an overview and description of Motion Tape elastic fabric sensors and how they work. The 
human subject test protocols that emulated marksmanship training exercises are then described in detail, along with 
the different sensors that were used during the tests. Next, the machine learning algorithm that was implemented for 
analyzing Motion Tape data streams is explained. Then, the results from the two human subject test protocols are 
presented and discussed. The paper concludes with a summary and discussion of planned future work.  
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MOTION TAPE ELASTIC FABRIC SENSORS 
 
Motion Tape is a self-adhesive, elastic fabric, skin-strain sensor that was designed for functional movement assessment 
and muscle engagement monitoring. The wearable sensor was created by integrating strain-sensitive nanocomposite 
films with commercially available athletic or kinesiology tape (K-Tape). Its fabrication process is illustrated in Figure 
1(a) and was described in detail by Lin et al. (Lin, Zhao, Wang, et al., 2021) but is summarized here for completeness. 
In short, graphene nanosheets (GNS) were dispersed in an ethyl cellulose (EC) solution in ethyl alcohol. Upon 
adjusting the viscosity of the GNS-EC solution, an airbrush was used to spray-coat and deposit strain-sensitive 
nanocomposites onto masked K-Tape substrates. Electrodes were formed at opposite ends of the GNS-EC strain 
sensing element by soldering multi-strand wires onto conductive silver traces. These Motion Tape specimens could 
then be used as is by peeling off the adhesive backing and affixing them anywhere on the skin but typically over major 
muscle groups or joints, as shown in Figure 1(b). 
 
Extensive Motion Tape laboratory load frame and human participant tests were conducted in previous studies to verify 
their skin-strain sensing performance. First, tensile cyclic electromechanical tests conducted by mounting Motion 
Tape in a load frame confirmed their linear, repeatable, and low-hysteresis strain sensing properties (Lin, Zhao, Wang, 
et al., 2021). Their strain sensitivity (or gage factor) could be varied between 10 to 100 depending on the GNS-EC 
solution formulation and fabrication parameters. Second, human subject tests were also performed by affixing Motion 
Tape over major muscle groups (e.g., deltoids, triceps, and biceps) to show that unique skin-strain waveforms 
corresponding to different muscle groups could be observed when subjects performed different exercise movements 
(e.g., pushups and triceps dips) (Lin, Zhao, Wang, et al., 2021). Its sensing response is also sensitive to the effort or 
amount of weight being lifted, for instance, in the case of a subject performing biceps curls (Lin, schraefl, Chiang, & 
Loh, 2021). Third, Motion Tape could also be affixed at the wrist and ankle joints for capturing joint rotations, and 
the results were verified by comparing them to reference video and mocap kinematic measurements (Lin, Zhao, Silder, 
et al., 2021; Lin, Zhao, Wang, et al., 2021). Last, a more recent study by Lin et al. (Lin, Noble, Loh, & Loh, 2022) 
also showed that Motion Tape could be integrated with other elastic fabrics, such as a chest band, for measuring 
physiological parameters such as respiration. Overall, these previous studies not only demonstrated their versatility 
and diverse use cases but also verified skin-strain sensing on human participants undergoing typical daily-life and 
exercise movements.   
 
 
SIMULATED MARKSMANSHIP PARTICIPANT STUDY AND EXPERIMENTAL DETAILS 
 
Two human participant test protocols were designed and conducted to test the hypothesis that Motion Tape, as well 
as the machine learning algorithm, could differentiate between correct and incorrect postures when operating a rifle. 
In that regard, each test included movement sequences that were deemed “correct” and “incorrect.” Measurements 

 
(a) 

 
(b) 

 
Figure 1. (a) Fabrication of Motion Tape by spray-coating a graphene nanosheet ink and (b) Motion Tape 

specimen affixed onto skin for human subject testing 
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from mocap and Motion Tape sensors were simultaneously acquired during all the tests, and the datasets were 
processed accordingly. The human subject study protocol was approved by the University of California San Diego, 
Institutional Review Board (Project No. 191806X) in compliance with all applicable federal regulations governing the 
protection of human subjects. Informed written consent was obtained from every participant.  
 
Sensors and Motion Capture Measurements 
Each participant wore two separate Motion Tapes, one on each side of the body, over the trapezius muscles between 
the neck and shoulders as shown in Figure 2(a). The Motion Tapes were connected to the Vicon Lock Lab analog 
interface for acquiring their electrical resistance measurements through the use of a voltage divider. The voltages were 
conditioned and filtered using a low-pass fourth-order Butterworth filter with a cut-off frequency of 60 Hz. In addition, 
retroreflective markers were also placed on each subject for full-body optical motion capture using a 12-camera Vicon 
system, as is shown in Figure 2(b). The Vicon mocap system measured the absolute 3D positions of all retroreflective 
markers at 100 Hz. It should be mentioned that the Vicon Lock Lab enabled time-synchronized Motion Tape resistance 
measurements with mocap.    
 
Rifle Shooting Human Participant Experiments 
Two sets of human participant tests that emulated incorrect and correct rifle shooting postures were performed. For 
both tests, each subject held an M4/M16 rifle replica (i.e., a CYMA XM177E2 full metal airsoft rifle) that weighed ~ 
7 lb (3.2 kg) while standing in a comfortable position. Each set of tests consisted of two cases, specifically, a correct 
as well as an incorrect movement sequence or posture. All subjects repeated each case (i.e., correct and incorrect) 25 
times, while Motion Tape and mocap measurements were simultaneously recorded during every test.  
 
For Test #1, the subjects were asked to aim the rifle at a target directly in front and then fire (i.e., to pull the trigger 
without actually firing any rounds), before returning to the neutral (starting) position. Subjects were instructed to vary 
the position of the stock on the side of the chest in order to produce the correct and incorrect posture cases. For the 
correct posture, the position of the rifle (and stock) should be such that the head remained leveled with respect to the 
ground, and the subject could easily aim using the front and rear sights. Figure 3(a) shows a series of full-body mocap 
measurements corresponding to this correct rifle shooting posture. On the other hand, subjects were also asked to 
purposely position the rifle stock farther out towards the shoulder for the incorrect posture case. In doing so, once the 

 
(a) 

 
(b) 

 
Figure 2. (a) Two Motion Tapes affixed to the neck-shoulder region along with (b) a full body marker set 

for mocap 
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rifle was raised, the subject had to tilt their head in order to see the sights to aim at the target. Figure 3(b) shows the 
series of mocap snapshots acquired during an incorrect posture case. Therefore, the main difference between the two 

    
(a) 

    
(b) 

Figure 3. Test #1 – forward shooting posture: optical motion capture image frames of (a) correct rifle 
shooting posture (i.e., head in leveled position) versus (b) incorrect shooting posture (i.e., with head tilted 

to align eyes with rifle sights) 
 

    
(a) 

    
(b) 

Figure 4. Test #2 – 90° shooting posture: optical motion capture image frames of (a) correct rifle shooting 
posture (i.e., head in leveled position) versus (b) incorrect shooting posture (i.e., with head tilted to align 

eyes with rifle sights) 
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posture cases is the degree of head tilt, which can also be seen by comparing the red-boxed images in Figure 3.  
Test #2 considered a slightly more complicated marksmanship scenario, where the target was located 90° to the left 
of the subject. Figure 4 shows the series of mocap measurements obtained when a subject performed the correct and 
incorrect movement sequences for Test #2. Similar to Test #1, the goal was to move from the starting position to aim 
at the target and shoot, before returning to the neutral position.  For the correct movement sequence, the subject was 
instructed to first position the rifle in the forward shooting posture as in Test #1. The rifle stock should rest on the 
chest so that the subject could see and aim through the sights without any significant head tilt. Then, because the target 
is located 90° away, the correct movement sequence entailed the subject rotating his or her body to aim and shoot the 
target. It should be emphasized that the subject’s head would not turn or tilt during this movement, so the subject 
continues to look in the direction wherever the rifle is pointed, as can be seen from the mocap snapshots in Figure 
4(a). In contrast, Figure 4(b) shows the mocap movement sequence for the incorrect case. The subject began by 
bringing the rifle to a forward shooting position similar to the correct case. The difference was in the next movement, 
where the subject would turn to look at the target, before swinging the rifle around to aim and then shoot. These 
movement differences were also captured by mocap and is highlighted in the red-boxed images in Figure 4. The 
remainder of the movement sequence was the same as the correct case to return to the neutral position. Similar to Test 
#1, no rounds were fired when the subject “shot” the target.  
 
 
MACHINE LEARNING ALGORITHM BACKGROUND 
 
In this section, a deep learning model that could discriminate the different patterns between correct and incorrect 
movements is introduced. The deep convolutional autoencoder (CAE), proposed by Kwak and Kim (M. Kwak & Kim, 
2021), consists of an encoder, which extracts essential information from multiple channels of input signals to form the 
representation of data, and a decoder, which reconstructs the input signals by taking the low dimensional 
representation formed by the encoder as input. It has been shown that CAE can detect abnormal data streams across 
multiple channels in an unsupervised manner. Furthermore, this also means that only normal data streams are needed 
during the training process, and ground-truth values or data labels are not needed during training (M. Kwak & Kim, 
2021). The architecture of the proposed CAE model is shown in Figure 5. 
 
The core concept of CAE is identical to the one of a classical autoencoder. The only difference between CAE and the 
classical autoencoder is that convolutional layers are usually adopted to capture the temporal relationship of data 
across multiple channels. Convolutional neural networks (CNN) are one of the most frequently used artificial neural 
network (ANN) architectures for applications related to images or signal processing (Lecun, Bengio, & Hinton, 2015). 
The idea of CNN is that each neuron in each layer can be considered as a filter that detects unique features from the 
input data. Generally, the closer the convolutional layer is to the input layer, the easier the features detected can be 
interpreted. The overall training process of CAE is similar to training a typical deep learning model (e.g., training a 
CNN model for image classification), where the only difference is the formulation of the loss function. To train a 
typical deep learning model, the loss function is usually defined as some metric that indicate the error between the 
ground-truth values and model predictions. Those metrics are then minimized by training the trainable parameters 
with algorithms (e.g., “Adam”, which is a popular gradient descent-based approach) (Kingma & Ba, 2015). However, 
the loss function of CAE is formulated to minimize the discrepancy between the input data and output data, which can 
be defined as: 

 

𝓛𝓛(𝒙𝒙) =
𝟏𝟏
𝑵𝑵
�(𝒙𝒙𝒊𝒊 − 𝒙𝒙𝒊𝒊� )𝟐𝟐
𝑵𝑵

𝒊𝒊=𝟏𝟏

 
 

(1) 

 
where 𝑥𝑥𝑖𝑖 denotes the input data, and 𝑥𝑥𝚤𝚤�  denotes the output obtained from the model of the ith observation among a total 
of 𝑁𝑁 observations. In Equation (1), although the mean squared error (MSE) was used as a metric to represent the error 
between the input data and output data, the formulation of the loss function used during the training process should be 
chosen based on different tasks and domain knowledge (J. Kwak & Cho, 2005). After the input data was fed into the 
CAE and the output of CAE was obtained, the channel-wise reconstruction error vector 𝜀𝜀 , which contains the 
reconstruction errors of a total number of 𝐾𝐾 channels, was then calculated to represent the discrepancy between the 
input and output data: 
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(2) 

 
where 𝜀𝜀 = (𝜀𝜀1, 𝜀𝜀2,⋯ , 𝜀𝜀𝑘𝑘) ∈ ℝ𝐾𝐾 denotes the channel-wise reconstruction error vector that calculates the discrepancy 
between the input data and the output of CAE over a time window containing a total of 𝑇𝑇 observations. To identify 
the abnormal data stream based on the reconstruction error 𝜀𝜀, an algorithm, namely, the Local Outlier Factor (LOF), 
was utilized in this study to identify outliers by comparing the data distribution of reconstruction errors of each channel 
between normal data streams (i.e., good movements) and abnormal data streams (i.e., incorrect movements) (Breuniq, 
Kriegel, Ng, & Sander, 2000).  
 
Dataset Construction 
Motion Tape resistance measurements from the human participant tests were used to the normalized change in 
resistance (∆Rn) using Equation (3):  
 

∆𝑹𝑹𝒏𝒏 =
𝑹𝑹𝒊𝒊 − 𝑹𝑹𝟎𝟎
𝑹𝑹𝟎𝟎

  
(3) 

 
where 𝑅𝑅𝑖𝑖 is the resistance of Motion Tapes at each time instance i, and 𝑅𝑅0 is the nominal (baseline) resistance of 
Motion Tape. In this case, 𝑅𝑅0 corresponds to the Motion Tape resistance when each subject was standing still prior to 
the beginning of each test. 
 
The ∆Rn datasets from each trial were prepared for the CAE algorithm to perform unsupervised abnormal sensor signal 
detection. Instead of taking the entire time history of each trial as input, each trial was split into ~0.5 s time windows 
(i.e., 600 frames) with a specific stride, which controls the percentage of data overlap of adjacent time windows. A 
stride of 10 frames was used to ensure that there were enough training samples for each trial and that the CAE model 
could capture spatial and temporal features of input data streams within a proper time interval. It should be mentioned 

 
(a) 

 
(b) 

 
Figure 5. (a) A “ResBlock (C)” layer consists of the dropout layer, PReLU layer, and two one-dimensional 

convolutional layers with C kernel. Skip-connection was implemented in each ResBlock. (b) The CAE 
architecture consists of the encoder and decoder that reconstructed the input signal. 
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that an advantage of using a time window input is that real-time abnormal (or incorrect) movements can be achieved, 
although it was not a focus of this study. As mentioned earlier, a total of 25 correct and 25 incorrect movement 
sequences were recorded for each Test. Of these, 60% of the data was used for CAE training, 20% for validation, and 
20% for testing.  
 
Model Architecture and Hyperparameters 
The CAE model architecture is shown in Figure 5. For all the one-dimensional convolution layers in the CAE model, 
zero-paddings were used to ensure that the operation of the convolutional layer did not change the length of time 
windows (i.e., the number of time frames). To reduce the dimension of input data in the encoder, bilinear interpolation 
was used to downsize the feature by half. Conversely, the dimension of feature in the decoder was doubled after the 
bilinear interpolation. Because a deep CAE model was implemented to extract features from the input signal, it was 
imperative to use the skip-connection, which is a widely used technique to prevent gradient vanishing when the deep 
learning model is too deep. This was achieved by simply adding the feature map of the current layer with that of 
previous layer before passing the feature map to the next layer, which not only prevented the updates of the gradient 
from gradually becoming negligible but also made the search of the optimal set of parameters easier (Mao, Shen, & 
Yang, 2016).  
 
Apart from the model architecture design, some techniques were also used to facilitate training and improve model 
performance. First, Motion Tape measurements were normalized by Equation (4) to ensure the scales of input features 
were comparable with each other.  
 

𝒛𝒛𝒊𝒊 =
𝒙𝒙𝒊𝒊 − 𝝁𝝁
𝝈𝝈

  
(4) 

 
where 𝑥𝑥𝑖𝑖 is the ith sample in the ∆Rn training data, while 𝜇𝜇 and 𝜎𝜎 are the mean and the standard deviation of N training 
data selected, respectively. Second, L2 regularization and dropout were also adopted to mitigate the occurrence of 
overfitting, which is essential for a CAE model, because failure to generalize the data could lead to excessive false 
detections of abnormal signals (Adelina, Kusumastuti, & Ying, 2019). Eventually, Parametric Rectifies Linear Unit 
(PReLU) was selected to be the activation function of the CAE model, because it has been shown that PReLU could 
improve performance at no extra computational cost (He, Zhang, Ren, & Sun, 2015). A full list of the hyperparameters 
and techniques used for training the proposed CAE model is shown in Table 1.  

Table 1. Hyperparameters and Techniques Used for CAE Training 
 

Hyperparameters/Techniques Value/Method 
Number of Epoch 400 

Number of batch size  64 
Optimizer Adam 

Learning rate 10-3 
Regularization coefficient 10-3 
Patience of early stopping 20 

Loss function Mean square error (MSE) 
Activation function PReLU 

Kernel size of CNN layer 3 
Dropout rate (probability of a neuron to be omitted) 0.2 

Learning rate scheduler ExponentialLR provided by Pytorch, γ=0.9 
Scaler Standard 

 



 
 
 

2022 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 

I/ITSEC 2022 Paper No. 22381 Page 9 of 12 

 
 
 
RESULTS AND DISCUSSION 
 
Motion Tape Time History Analysis 
As was mentioned earlier, two sets of human participant test protocols that emulated marksmanship training were 
designed and conducted. First, the forward shooting posture test was performed with participants aiming the rifle in a 
way that their heads were either leveled (i.e., correct) or tilted (i.e., incorrect) with respect to the ground (Figure 3). 
Second, the 90° shooting test involved the participants rotating their body to aim and shoot at the target. The correct 
movement sequence consisted of head, rifle, and body rotation in unison so that the subject continuously looked where 
the rifle was pointed. In contrast, the incorrect movement sequence involved participants turning their head to look at 
the target prior to rotating the body and rifle to aim and shoot the target (Figure 4). 
 
Motion Tape measurements near the trapezius muscles on both sides of each participant were obtained, and 
representative normalized change in resistance time histories for Tests #1 and #2 are shown in Figure 6(a) and 6(b), 
respectively. First, it should be noted that the data in Figure 6 all correspond to the same individual, so that the results 
can be directly compared. Second, the results also show that Motion Tape was able to measure skin-strain changes 
associated with these different movement sequences. The ∆Rn time histories in Figure 6 exhibited high signal-to-noise 
ratios and did not seem to have baseline drift issues. Third, even though the movements emphasized the neck for Test 
#1 and torso and neck for Test #2, it is known that the execution of functional movements involve many different 
muscle groups all over the body. The trapezius muscles sufficiently engaged during these movements, and how these 
muscles engaged over time were successfully captured by the use of two Motion Tapes.  
 
Furthermore, a qualitative assessment of the results shown in Figure 6 suggest that the Motion Tape ∆Rn time histories 
do not exhibit major differences. This is especially true for Test #1, where the measurement waveforms between 
correct and incorrect postures look similar. One can possibly say that the magnitude of change of ∆Rn may be larger 
for incorrect movements. In addition, it can be observed from Figure 6(a) that the left Motion Tape experienced 
compression, while the right was in tension, since ∆Rn decreased and increased, respectively. On the other hand, for 
Test #2, there is a more distinct difference in the Motion Tape sensing streams, where the incorrect case shows a peak-
like waveform due to the head turn prior to body movement. Overall, while differences are present in the time history 
measurements, identifying movement deficiencies from these results, especially in an autonomous way, may not be 
accurate nor straightforward or may require certain assumptions be made (e.g., pre-defining a ∆Rn threshold).  
 
Machine Learning Results 
A deep learning model was implemented and trained with the objective of automatically characterizing Motion Tape 
measurements and identifying abnormalities in the sensing streams that suggest movement deficiencies. Figure 7 

 
(a) 

 
(b) 

 
Figure 6. Motion Tape measurements during (a) Test #1 forward shooting posture and (b) Test #2 90° 

shooting posture 
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presents a set of representative results for Tests #1 and #2; these results correspond to the same datasets presented in 
Figure 6 to facilitate direct comparisons. In addition to plotting the ∆Rn time histories of the incorrect cases, the deep 
convolutional autoencoder successfully labeled which data points corresponded to normal (i.e., in blue) versus 
abnormal (i.e., in orange) movements.  
 
The results in Figure 7 can be directly compared with the ∆Rn time history overlays of correct versus incorrect 
movements in Figure 6. First, for the forward shooting posture, the CAE-labeled abnormal sensing streams of Figure 
7(a) corresponded to when the ∆Rn time history of the incorrect case exhibited a greater magnitude of change relative 
to the correct posture in Figure 6(a). Second, the deep learning model successfully labeled the peak-like waveform in 
Figure 7(b) as abnormal during the 90° shooting test. As was mentioned earlier, this peak-like response during the 
incorrect case was due to the head turning prior to the body, which caused engagement of the trapezius muscles to 
execute the head turn, which was successfully measured by the two Motion Tapes. Overall, the ability of the deep 
learning model to automatically process Motion Tape sensing streams and identify abnormalities was successfully 
demonstrated through these two human participant test protocols.  
 
 
CONCLUSIONS 
 
The goal of this study was two-fold. The first objective was to test whether self-adhesive elastic fabric sensors called 
Motion Tape could measure and differentiate skin-strains corresponding to differences in body posture and 
movements. The second objective was to validate a deep learning model in identifying abnormalities in Motion Tape 
sensing streams that corresponded to incorrect movements in military relevant settings. These objectives were tested 
by conducting two sets of human participant tests that emulated basic marksmanship training. Test #1 involved a 
forward shooting posture, while Test #2 was to aim and shoot at a target 90° relative to the individual. The test results 
showed that Motion Tape was sufficiently sensitive to changes in skin-strains near the trapezius muscles (i.e., between 
the neck and shoulder) when different postures and movement sequences were performed. The sensing streams were 
also stable and exhibited high signal-to-noise ratios. Even more significant was the deep learning results, where the 
trained model was able to automatically process Motion Tape sensing streams and label instances in the measurements 
that corresponded to abnormalities or incorrect movements. Future work will include more test scenarios associated 
with typical military marksmanship training. Reference sensor measurements (e.g., mocap) will also be used as a 
reference so that a more detailed quantitative assessment of the results can be performed to verify Motion Tape results. 
The long-term vision is that Warfighter Digital Twins powered by Motion Tape sensing streams and machine learning 
models can be used for assessing the performance, training, and health of military service members. 

 
(a) 

 
(b) 

 
Figure 7. Trained deep learning algorithm identified abnormal muscle engagement during (a) Test #1 

forward shooting posture and (b) Test #2 90° shooting posture 
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