

2022 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

I/ITSEC 2022 Paper No. 22380 Page 1 of 12

Building a Cloud-Native Toolset for

Flexible, Continuous, Automated Simulation-Based Testing

Jeremy Loomis, Alex Matthews

NextGen Federal Systems

Morgantown, WV

jloomis@nextgenfed.com, amatthews@nextgenfed.com

ABSTRACT

The discipline of software testing is changing to align with the automated processes of Agile DevSecOps. In a

DevSecOps environment, automated testing is executed by running test scripts or scenarios against the System Under

Test (SUT) without human intervention. With many types of software (such as military applications), a challenging

aspect of this testing is generating synthetic data and activity to stimulate the SUT.

Modeling and simulation (M&S) can help by providing representative test data from synthetic actors in a synthetic

environment. Building on current M&S tools, a Simulation-Based Testing (SBT) approach can inject synthetic test

data into a Continuous Integration / Continuous Deployment (CI/CD) pipeline. SBT requires two interconnected

elements: M&S-as-a-Service (MSaaS) services and an Automation & Orchestration ecosystem.

This paper describes our Simulation And DevOps Integration Environment (SADIE) project, which built a proof-of-

concept SBT toolset using existing COTS/GOTS software. SADIE is a cloud-native (deployable to any Kubernetes

cluster) modular toolset that works with any SUT and CI/CD toolchain. It provides continuous automated testing

based on a flexible architecture (users can author scenarios, jobs, and pipelines).

MSaaS is implemented with cloud-hosted microservices aligned with the NATO MSaaS Reference Architecture. A

Scenario Editor is used to author relevant scenarios and a Scenario Repository stores and catalogs versioned scenarios.

SADIE wraps existing Simulation Engines (STK, AFSIM, NGTS, OneSAF) into Simulation Service microservices.

The Automation & Orchestration ecosystem centers on the SBT Job Manager which coordinates execution of SBT

jobs. The Job Manager connects Simulation Service Adapters (for configuration and control of Simulation Services)

to SUT Adapters (to translate data into the required formats/schema and protocols for injection). It can be controlled

from any build orchestrator (e.g., Jenkins) using a REST API.

We conclude with an end-to-end use case showing how SBT can use M&S to provide CI/CD quality gates based on

regression testing results.

ABOUT THE AUTHORS

Jeremy Loomis is the Vice President of Engineering at NextGen, providing overall technical direction, guidance and

mentoring across internal and external projects. Mr. Loomis has ~25 years of experience applying advanced

technologies to meet the needs of diverse customers in commercial, civilian, DoD, and Intelligence Community (IC)

organizations. Areas of interest include Modeling & Simulation, 3D Visualization, Artificial Intelligence, Software

Factories, and Cloud Computing. He works with agile research teams to leverage COTS, GOTS, and FOSS

technologies to develop innovative solutions using novel architectures and pragmatic software methodologies.

Alex Matthews is a Technical Director at NextGen, focusing on Digital Transformation related solutions. He

evangelizes Digital Trinity concepts, including Digital Engineering, DevSecOps, Agile Transformation, Architecture

Modernization, and Cloud/Kubernetes implementations. As a technical lead and architect, he is responsible for the

technical execution of solutions across the systems/software lifecycles for AFLCMC, AFRL, DIA/NASIC,

NAVAIR/NAWC, and Army PEO IEW&S. He has employed multiple M&S tools and technologies for these

customers including AFSIM, STK, NGTS, EWIRDB, and TMAP.

2022 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

I/ITSEC 2022 Paper No. 22380 Page 2 of 12

Building a Cloud-Native Toolset for

Flexible, Continuous, Automated Simulation-Based Testing

Jeremy Loomis, Alex Matthews

NextGen Federal Systems

Morgantown, WV

jloomis@nextgenfed.com, amatthews@nextgenfed.com

INTRODUCTION

The discipline of software testing is changing to align with the automated processes of Agile DevSecOps. In a

DevSecOps environment, automated testing is executed by running test scripts or scenarios against the System Under

Test (SUT) without human intervention. With many types of software (such as military applications), a challenging

aspect of this testing is generating synthetic data and activity to stimulate the SUT.

Modeling and simulation (M&S) can help by providing representative test data from synthetic actors in a synthetic

environment. However, current M&S tools and process operate in silos that are independent of the software systems

lifecycle. As a results of this separation, M&S cannot be easily applied to the testing process to shorten acquisition

cycles and accelerate deployment of software solutions to the field

To address this problem, we propose building on current M&S tools to implement a Simulation-Based Testing (SBT)

approach which can inject synthetic test data into a Continuous Integration / Continuous Deployment (CI/CD)

pipeline. Implementation of an SBT system requires two interconnected elements: M&S-as-a-Service (MSaaS)

services and an Automation & Orchestration ecosystem.

BACKGROUND AND RELATED WORK

To provide context for our Simulation-Based Testing research, we first provide some background information on:

• Software Testing Activities • CI/CD and Automated Testing

• Unique Testing Needs for Military Applications • M&S-as-a-Service (MSaaS)

Software Testing Activities

Software testing takes many forms. Per (DoD CIO, 2021a), “Test activities may include, but are not limited to:

• unit test

• functional test

• integration test

• system test

• regression test

• performance test

All tests start with test planning and test development, which includes detailed test procedures, test scenarios, test

scripts, and test data.” As described in Table 1, these activities are implemented using test development tools, test

data generation tools, and test execution tools.

Table 1. Testing Tools (DoD CIO, 2021a)

Tool Features Benefits Inputs Outputs

Test

development

tool

Assists test scenario, test script, and test

data development. The specific tool

varies, depending on the test activity

and the application type.

Increase the

automation and

rate of testing

Test plan test scenarios,

test scripts,

test data

Test data

generator

Generates test data for the system (such

as network traffic, web requests)

Increase test

fidelity

Test scenario,

test data

Input data for

the SUT

Test tool suite A set of test tools to perform unit test,

interface test, system test, integration

test, performance test and acceptance

test of the software system.

Increase test

automation, speed

Test scenario,

test scripts,

test data

Test results,

test report

2022 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

I/ITSEC 2022 Paper No. 22380 Page 3 of 12

An SBT approach applies M&S technologies to support multiple test activities for all three of these tool categories:

• test development is done by assembling M&S scenarios, models, and environments

• test data is generated by running dynamic simulations with synthetic actors

• tests are executed by feeding the resulting data through a tool suite that can stimulate the SUT

CI/CD and Automated Testing

The discipline of software testing is changing to

align with the automated processes of Agile

DevSecOps. In a DevSecOps environment,

automated testing is executed by running test scripts

or scenarios against the System Under Test (SUT)

without human intervention.

As shown in Figure 1, Test Tools (green outlines)

are part of a CI/CD toolchain and are used to run

automated tests on software that is built and scanned

in a CI/CD pipeline. The test tool can be run in a

“test environment” and/or “integration environment.”

To support rapid testing of multiple ‘candidate

builds’, the deployment step for the SUT must itself

be automated using Infrastructure as Code (IaC)

techniques, such as automated provisioning and

scripted installation, so that new SUT instances can

be instantiated on-demand.

Unique Testing Needs for Military Applications

The Joint Staff established Joint Capability Areas (JCAs) as a standardized set of definitions that cover the complete

range of military activities (Joint Staff, 2021). The JCAs are organized in a multi-level hierarchy covering 500+

distinct areas/domains. Some example JCA functions:

• JCA 2.3: “Battlespace Awareness | Processing / Exploitation”

• JCA 2.4: “Battlespace Awareness | Analysis, Prediction and Production”

• JCA 4.3: “Logistics | Maintain”

• JCA 5.3: “Command and Control | Planning”

• JCA 5.6: “Command and Control | Monitor”

DoD software systems support many of these military functions, in the form of intelligence processing tools,

logistics information systems, command and control applications, etc. They are complex systems that process

unique datasets and support a range of military tactics, techniques, and procedures (TTPs), such as Intelligence Prep

of the Battlefield (IPB) or Air Battle Planning (ABP). This complexity requires extensive testing so that the

software systems can be trusted for use by warfighters and intelligence analysts.

In addition to performing unique military functions, these software systems are often composed of multiple modules

based on Modular Open Systems Approach (MOSA) principles. As such, testing can be needed at multiple

architectural levels, to include System, Subsystem, Component, Service, and Application levels. The corresponding

test activities and tools can also vary across these levels; for example, API tests can be an appropriate mechanism

for verifying individual services that are composed into a larger system. Additionally, the data that flows through

DoD systems often adheres to unique DoD schemas, formats, and protocols.

As an illustration, picture a notional all-source intelligence production system. The system supports military

function JCA 2.4 by providing intelligence analytics functions including data ingestion, content extraction,

normalization, and correlation. In addition to user-facing applications, the system includes an “analytics service”

that performs initial content extraction from available data. In this case, one testing goal would be to evaluate the

analytics service for performance (speed and accuracy) as well as regression (consistency with prior versions). Data

that is processed by the analytics service might include structured (e.g., MIDB), semi-structured (e.g., USMTF), and

Figure 1. Automated Test Tools running in CI/CD

Pipelines (adapted from DoD CIO, 2021b)

2022 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

I/ITSEC 2022 Paper No. 22380 Page 4 of 12

unstructured (e.g., imagery/video) data. These data would represent the complex behaviors of friendly and

adversary actors as reflected in intel feeds, sensor collection, blue force tracking, cyberspace actions, etc.

To properly perform software testing on such a service, ‘representative’ test data must be available that has:

• appropriate size/complexity (large data sets with realistic content)

• appropriate data formats (structured & unstructured text, motion imagery, still imagery)

• appropriate “signal-to-noise” ratio (to reflect non-perfect sources and networks)

• appropriate context/coherency (product of an operationally relevant scenario)

The testing process would involve feeding the test data into the analytics service, measuring execution time, and

collecting the results. The results would be compared both to ‘ground truth’ (how did the service do at extracting

expected entities from the synthetic data provided) and to ‘prior results’ (do extracted entities match those from a

previous version of the analytics service).

M&S-as-a-Service (MSaaS)

According to the NATO MSaaS Reference Architecture (STO/NATO, 2019), MSaaS is defined as:

“a new concept that includes service orientation and the provision of M&S applications via the as-a-service

model of cloud computing to enable more composable simulation environments that can be deployed and

executed on-demand. The MSaaS paradigm supports stand-alone use as well as integration of multiple

simulated and real systems into a unified cloud-based simulation environment whenever the need arises.”

Table 2 lists some of the MSaaS Architectural Building Blocks (ABBs) described in the Reference Architecture.

Table 2. Architectural Building Blocks (ABBs) for MSaaS. (STO/NATO, 2019).

M&S Enabling Services

M&S Integration Services
Provide the infrastructure to connect producers and consumers of information and

support an efficient and time-coherent exchange of simulation data

M&S Mediation Services
Provide broker and gateway services between incompatible producers and consumers

of simulation-pertinent information

M&S Message-Oriented

Middleware Services

Provide the capabilities for … exchange of data between producing and consuming

Simulation Services, independent of data format and data content.

M&S Composition Services
Provide the capabilities to compose and execute a simulation from existing simulation

services [using choreography or orchestration approaches].

Simulation Control Services
Provide the capability to provide input to a simulation execution, control the

simulation execution, and collect output from the simulation execution.

Simulation Scenario Services
Provide the technical capabilities to define a scenario, to initialize the simulation

environment with a scenario, and to handle simulation scenario events

M&S Information Services
Provides the capabilities to manage repositories of simulation service components and

to manage references to [information required for execution]

M&S Repository Services
Provides the capabilities to store, retrieve and manage simulation resources and

associations with / references to metadata managed by M&S Registry Services

M&S Registry Services
Provide the capabilities to store, manage, search and retrieve data about (i.e.,

metadata) simulation resources stored by the M&S Repository Services,

M&S Services

Simulation Services
Set of capabilities for synthetic representation of (real-world) objects and events.

Simulation Services are the service-oriented building blocks of simulations

Modelling Services
Category of services that encompass the entire suite of [tools], methodologies, … and

publishing mechanisms needed to construct a Simulation Service

Composed Simulation Services
Results of composing simulation services. They offer entire simulations as services …

that are generic enough to be used across many situations and/or occasions

Existing simulation packages offer modeling and simulation functions, but often require complex IT configuration to

access the functions. By ‘wrapping’ those functions into Modeling Services and Simulation Services, the benefits

2022 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

I/ITSEC 2022 Paper No. 22380 Page 5 of 12

of a services-oriented architecture (SOA) can be realized. By adding an M&S Registry, Simulation Control

Services, and M&S Mediation Services, several disparate capabilities can be orchestrated into cohesive workflows.

SIMULATION-BASED TESTING (SBT) APPROACH

The goal of SBT is to generate synthetic data and activity to stimulate the SUT. To be valuable for testing, the data

must be representative of the data that is expected to be providing to the SUT in operational use. Depending on the

goals for a given testing activity, the data required can be of varying fidelity, ranging from coarse inputs for basic

interface testing, to more robust and high-fidelity datasets approaching a full “digital twin” (Roper, 2021) of the

stimulating system for the SUT.

An SBT approach builds on current M&S tools, operating in a constructive-simulation mode. SBT leverages the

proven ability of M&S to provide high-fidelity synthetic environments, synthetic systems (platforms, sensors), and

synthetic actors (with complex sense-and-react behaviors) that can interact together without user intervention.

Using synthetic data (as opposed to data collected from the field or from controlled exercises), also allows testing of

a system with ‘edge cases’: unique scenarios that could be difficult to capture in real life, but that are of keen interest

to military planners. Simulating dynamic and unique use cases can give developers additional confidence that the

operational system will robustly handle a range of scenarios when fielded.

Example M&S tools that could be used by an SBT system include GOTS simulation engines such as OneSAF and

AFSIM that allow for the modeling of multi-domain sensors (space and high altitude, aerial, and terrestrial layer) as

they attempt to detect and identify multiple dynamic targets. The simulated targets have representative attributes and

relationships and exhibit realistic behaviors through the use of Computer Generated Forces (CGF) algorithms. COTS

simulation engines such as STK could provide additional physics-based modeling of geodynamics and sensor

performance (for example, detailed geometric and radiometric models of aerial and space ISR systems).

With SBT, the representative test data (from synthetic actors in a synthetic environment) is provided to the SUT using

existing interfaces and protocols. In cases where the SUT operates on ‘real time’ information, the SBT system must

be able to deliver the test data with realistic latency, velocity, and timing.

The goal for SBT is to integrate into the CI/CD process for the SUT software as another ‘automated test tool’ alongside

existing tools such as UI test tools (e.g., Selenium), API test tools (e.g., Soap UI), and performance tools (e.g.,

LoadRunner). An SBT approach can be used in isolation or in concert with these other tools. For example, synthetic

data can be fed into the SUT while a UI test is performed to simulate operator actions.

Desired system attributes for a SBT system:

• Cloud-Native: Scalable deployment to any Kubernetes cluster; supports public/private clouds

• Modular: Modular system works with any SUT and any CI/CD Factory with varied tech stacks

• Flexible: Allow users to author their own SBT scenarios, jobs, and pipelines

• Continuous: Tied into the CI/CD process for ‘continuous testing’ enabling rapid deployments and fielding

• Automated: Simulation execution does not require ‘man-in-the-loop’ steps during testing

• Cross-Functional: Brings M&S engineers and SMEs directly into the software lifecycle

PROOF-OF-CONCEPT SBT TOOLSET

We now describe our Simulation And DevOps Integration Environment (SADIE) project, which built a proof of

concept SBT toolset using existing COTS/GOTS software. SADIE is a cloud-native (deployable to any Kubernetes

cluster) modular toolset that works with any SUT and CI/CD toolchain. It provides continuous automated testing

based on a flexible architecture (users can author scenarios, jobs, and pipelines).

Figure 2 illustrates the logical system architecture for SADIE, consisting of an Analysis Ecosystem, an Automation

Ecosystem, and an MSaaS Ecosystem working together to provide SBT of a SUT Instance.

2022 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

I/ITSEC 2022 Paper No. 22380 Page 6 of 12

Figure 2. Logical System Architecture for SADIE

SADIE is implemented with cloud-hosted microservices aligned with the NATO MSaaS Reference Architecture. The

system design for SADIE focuses on the following ABBs:

• M&S Mediation Services: included as Sim Service Adapters in the automation ecosystem as part of SBT jobs

• Simulation Control Services: each simulation service offers control endpoints used by the job manager.

• Simulation Scenario Services: the overall simulation scenario is defined by the SBT job

• M&S Repository/Registry Service: the Scenario Repository will hold M&S resources and metadata tags

• Simulation Services: a key element of SADIE is wrapping existing Simulation Engines into services

• Modelling Services: in the current version of SADIE, modeling occurs in desktop Scenario Editor tools

The SBT Job Manager is the central coordination point for the end-to-end SBT lifecycle. As an SBT job is

executed, Simulation Services are launched, simulation inputs/outputs are configured, data is streamed to/from the

SUT, results are analyzed, and analysis is performed in support of testing goals.

The SUT Instance is hosted in an appropriate runtime environment (potentially distinct from the runtime

environment for SADIE itself). During execution of a SBT job, the SUT Instance is stimulated by the SADIE

system to collect results. Depending on the type of test activity being executed, the SUT Instance itself can be

‘ephemeral’ (for example, when running SBT-based regression tests against a ‘candidate’ build produced by a

developer branch in the SUT Code Repository).

MSaaS Ecosystem

For SADIE, a Scenario Editor is used to author relevant scenarios. We

are using existing desktop scenario editing tools provided for each core

simulation technology, such as AFSIM Wizard, OneSAF MTC and STK

Desktop.

The Scenario Repository will store and catalog versioned scenarios. The

Repository will be built on an open-source data management framwork.

This will allow for a repository with CRUD (Create, Retrieve, Update,

Delete) functions defined through REST API interfaces. For the initial

version of SADIE, we store scenario resources in a simple web server to

allow access from the SBT Job Manager.

SADIE wraps existing Simulation Engines (STK, AFSIM, NGTS,

OneSAF) into Simulation Service microservices. As shown in Figure 3,

a Simulation Service microservice provides a standardized interface that

includes functions for simulation control, clock management, data input,

and data outputs. The REST API for each Simulation Service is defined

using the OpenAPI (formerly SwaggerUI) specification to allow for self-

documenting and easy to implement service endpoints.
Figure 3. Each Simulation Service

implements an OpenAPI interface

2022 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

I/ITSEC 2022 Paper No. 22380 Page 7 of 12

Automation Ecosystem

The Automation ecosystem centers on the SBT Job Manager which coordinates execution of SBT jobs. The Job

Manager connects Simulation Service Adapters (for configuration and control of Simulation Services) to SUT

Adapters (to translate data into the required formats/schema and protocols for injection).

Orchestration & Mediation Services are used within job steps to achieve stimulation (injecting data into the SUT) and

data collection (retrieving data from the SUT). Each SBT Job includes a test stimulation driver and a mechanism to

record test outcomes. The SADIE Job Manager also includes several example ‘SBT job templates’ that can be

customized for new use cases.

Data injection into a SUT typically follows one of three pathways:

• delivery of data via ‘sensor feeds’ (e.g., GEOINT, MTI, SAR, SIGINT, FMV, IBS, USMTF)

• providing data using ‘interoperability interfaces’ (e.g., JMPS, CoT, PASS, ISA, DDS)

• inserting data using a ‘system training interface’ (as used by IEWPTPT, for example)

Collecting data from a SUT (raw and processed) follows similar patterns:

• gathering ‘export files’ created by the SUT (such as Excel, free text, or USMTF documents)

• connecting using ‘interoperability interfaces’ (e.g., MIDB or OGC data discovery services)

• direct access to ‘internal databases or APIs’ (such as the Army’s Tactical Entity Database)

Analysis Ecosystem

Within SADIE, Analysis & Reporting Services create test reports based on the results from an SBT job. The

Analysis Modules compute metrics such as accuracy, performance, and capacity. For example, to compute system

accuracy for feature extraction functions of a SUT, an analysis module can compare extracted features (produced by

the SUT in response to synthetic inputs) to a ground-truth “answer key” represented by the simulation.

SADIE is also designed to allow plug-ins that provide 3rd party analytics for different forms of V&V. To be

integrated into SADIE, an analysis plug-in is typically provided as a container image that can be instantiated by the

Job Manager. At runtime the container is connected to data outputs generated by the Simulation Service and

(optionally) to ‘reference’ data configured within the SBT job. The analysis is triggered by the Job Manager and the

results are collected as artifacts from each SBT job execution.

The resulting reports and metrics can then be collected in a database and presented in an intuitive dashboard. For

example, existing CI/CD dashboards such as Jenkins Job dashboards and GitLab CI Pages can be used to associate

SBT analysis results with a specific pipeline execution.

CI/CD Integration

To allow SADIE to be integrated

within a CI/CD toolchain, the SBT

Job Manager and Analysis Services

can be controlled from any build

orchestrator (e.g., Jenkins, as in

Figure 4) using a REST API.

This integration allows for a CI/CD

pipeline to now include customized

SBT steps/stages that run as part of

an overall pipeline execution

process. For example, after the

CI/CD pipeline compiles, scans, and deploys the SUT to a test server, the SBT job can be launched to execute runtime

SBT testing against the SUT instance.

Figure 4. Installing the SADIE plugin into a Jenkins CI/CD Server

2022 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

I/ITSEC 2022 Paper No. 22380 Page 8 of 12

Cloud Hosting

SADIE can be deployed into any Cloud Native Computing Foundation (CNCF)-compliant Kubernetes platform

(such as AWS EKS or Rancher RKE2). SADIE’s components and microservices (defined via OCI container images)

are run in multiple Kubernetes pods, which can be distributed across a multi-node Kubernetes cluster. This requires

that any Simulation Engines being used by SADIE be deployable into base containers before service-wrapping.

With this Kubernetes-based architecture, SADIE is portable and scalable for various environments: the cluster can

be instantiated using fixed (on-prem) servers or in a commercial cloud environment (such as AWS).

CASE STUDY

We conclude with an end-to-end use case showing how SBT can use M&S to provide CI/CD quality gates based on

regression testing results. Figure 5 provides an overview of the SBT process for the case study.

Figure 5. Overview of SBT Case Study

The various components of the case study are further described in the sections below.

System Under Test (SUT)

The Intelligent Multirotor Autonomous Ground Relocatable Sensor (IMAGRS) system developed by NextGen Federal

Systems is an advanced small Unmanned Aerial System (sUAS) for persistent autonomous surveillance. It has an

integrated EO/IR payload and includes state-of-the-art onboard Machine Learning (ML) and Computer Vision (CV)

algorithms running on a small-board computer (SBC).

The “IMAGRS Extractor” is the subsystem of IMAGRS that processes a georeferenced video stream and attempts to

detect and localize targets of interest in the video scene.

• Inputs: timestamped UAV video frames and platform telemetry (GPS location, IMU orientation)

• Output: timestamped target detections (time, latitude, longitude, altitude)

The Extractor subsystem is implemented as a Python library (wrapped in a command-line program for testing).

Using SBT to test the Extractor module in isolation using synthetic video data reduces the need to perform full

integration testing with the IMAGRS hardware platform. To simplify subsystem testing, the Extractor was wrapped

in a simple Docker container so that the SUT could be easily deployed by an SBT job for stimulation (providing

required inputs) and collection of results (capturing target detections).

Desired Testing

For this case study, the primary desired testing was functional testing to measure ‘accuracy’: to determine how well

the Extractor can correctly detect and locate targets in a synthetic video stream. An alternate metric would be to

measure performance (how long does the system take to perform localization), since latency in this stage influences

the downstream performance of other IMAGRS components for target tracking and mission planning.

2022 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

I/ITSEC 2022 Paper No. 22380 Page 9 of 12

Either of these tests could be used for determining if a regression has occurred: ‘does build N of the system provide

the same/better accuracy and performance compared to build N-1?’ For this case study, which focused on functional

accuracy, a regression was judged to occur when build N detected fewer targets than the previous build.

Scenario Editor

The Systems Tool Kit (STK) (AGI, 2022) is a digital mission engineering application that “features an accurate,

physics-based modeling environment to analyze platforms and payloads in a realistic mission context.” STK was

selected because of its ability to analyze complex systems with a focus on their operational environments.

For this case study, we needed a realistic and time-dynamic three-dimensional simulation that included high-resolution

terrain, imagery, and precise models of ground and air platforms. With STK, we could simulate the entire system-of-

systems in action, at any location and at any time, to gain a clear understanding of its behavior and mission

performance.

Simulation Scenario

A synthetic environment was created in STK using terrain data and satellite imagery. In the environment, two moving

entities were simulated:

• A synthetic model of the UAV with a representative field of view (FOV)

• A synthetic model of a target vehicle (truck) driving on the terrain surface.

Using the STK 3D graphics capability, one window was designated as the virtual ‘camera view’: the 3D camera was

tethered to the boresight of the virtual camera and during scenario animation, this window was used to collect a series

of synthetic video frames. At the same time, an STK report was used to capture telemetry for both the UAV system

(including position and camera orientation), and the target vehicle (to be used as ‘ground truth’).

An STK visualization of the overall scenario, including the virtual camera, is shown in Figure 6.

Figure 6. Visualization of the simulation scenario used for Extractor testing

Simulation Service

The STK Engine Java library was wrapped into a RESTful STK Service running in Apache Tomcat. The STK Service

implemented the required SADIE endpoints (for simulation control, clock management, data input, and data outputs).

The web service was then containerized into a Docker image by adding the service WAR to a Tomcat base image.

The REST invocation sequence used by the SBT job to execute the simulation was:

1) POST Control/Signals/Reserve 2) GET Control/States/Active [poll until State = ‘Reserved’]

3) POST Control/Signals/Initialize; 4) GET Control/States/Active [poll until State = ‘Active:Ready’]

5) POST Control/Signals/Start 6) GET Control/States/Active [poll until State = ‘Idle’]

2022 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

I/ITSEC 2022 Paper No. 22380 Page 10 of 12

This sequence of calls did the following: initialized the STK service with the selected scenario file, specified which

outputs were desired, began the simulation/animation, and waited until the simulation was complete.

Analysis Module

For this case study, we used the py-motmetrics library (Heindl, 2022), which provides a Python implementation of

metrics for benchmarking multiple object trackers (MOT). It measures “the performance of multiple object trackers

[using] CLEAR-MOT metrics and ID metrics. Both metrics attempt to find a minimum cost assignment between

ground truth objects and predictions.” This provides an appropriate metric for comparison of the synthetic target

vehicle track and the localized detections produced by the IMAGRS Extractor.

Since we were interested in just detection (not identification), the detection/tracking metrics listed in Table 3 applied.

Table 3. Metrics for object detection and tracking

Name Description

num_frames Total number of frames.

num_matches Total number matches.

num_switches Total number of track switches.

num_false_positives Total number of false positives (false-alarms).

num_misses Total number of misses.

num_detections Total number of detected objects including matches and switches.

num_objects Total number of unique object appearances over all frames.

num_predictions Total number of unique prediction appearances over all frames.

num_unique_objects Total number of unique object ids encountered.

mostly_tracked Number of objects tracked for at least 80 percent of lifespan.

partially_tracked Number of objects tracked between 20 and 80 percent of lifespan.

mostly_lost Number of objects tracked less than 20 percent of lifespan.

num_fragmentations Total number of switches from tracked to not tracked.

motp Multiple object tracker precision.

mota Multiple object tracker accuracy.

precision Number of detected objects over sum of detected and false positives.

recall Number of detections over number of objects.

SBT Job Structure

The high-level workflow for the SBT job

in this use case is shown in Figure 7. In

Step #3, the Sim Service (STK Service)

is initialized with the pre-prepared

Scenario along with ‘instructions’ to

publish UAV video, telemetry, and

ground tracks to the Workspace. This

allows for the data exchange with the

SUT (IMAGRS Extractor) in Step #7

and with the Analysis Module (MOT

Metrics) in Step #10.

Build Orchestration

The entire end-to-end flow for SBT testing

of the IMAGRS Extractor was orchestrated by a Jenkins pipeline (Figure 8) that deployed the SUT, ran the SBT job

(including analysis), and collected the analysis results.

Figure 7. High-level sequence diagram for IMAGRS SBT Job

2022 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

I/ITSEC 2022 Paper No. 22380 Page 11 of 12

The overall CI/CD process is

initiated when a developer checks in

code that modifies part of the SUT

(IMAGRS Extractor). At this point,

Jenkins detects the code check-in

and initiates the CI/CD pipeline.

The pipeline includes stages that

build the code, run static (SAST)

code checks, build a Docker image,

deploy the container to a test

environment, and run dynamic (DAST) tests. During the “Run SBT Job” stage, the following occurs:

1. The SUT Instance is exposed to the SBT Job Manager

2. The SBT Job is launched, and the CI/CD pipeline waits for completion

3. The SBT Job results (MOT Metrics) are published as CI/CD artifacts

When the CI/CD pipeline completes, the MOT Metrics are available in the Jenkins dashboard as a custom HTML

page. Optionally, a check can be added to the pipeline that compares the MOT Metrics to prior results to detect any

potential differences (if the current build does not result in the same detection outputs). In most cases, the change

would be considered a ‘regression error.’ Based on this, the metric check can be used as a “quality gate:” if a

regression occurs, the pipeline can be “failed”, alerting the developer to investigate the root cause of the error.

By integrating SBT testing into the overall build orchestration process defined in a Jenkins pipeline, the SBT

capability adds an additional dimension to other automated tests that are run as part of the CI/CD pipeline. All test

categories are triggered by each code change that is committed during SUT development.

CONCLUSION

Results

For IMAGRS, the SADIE SBT capability provided a unique ability to evaluate the Extractor subsystem without

integrating the software into the onboard computer and taking the sUAS into the field for testing. This saved

numerous staff hours of travel to the testing facility and reduced the level of physical risk to the platform by

reducing the number of flight hours required to evaluate the target detection functions of IMAGRS,

Based on this case study and other similar use cases, SBT shows great value as a new technique for automated

testing of military applications. The SADIE proof-of-concept has shown the feasibility of using an SBT system to

apply powerful M&S technologies in a new way.

Some of the anticipated benefits from SBT that were demonstrated by this project include:

• Making subsystem testing feasible without full system deployment to the field

• Providing quantitative and repeatable metrics of subsystem performance

• Ability to perform high volumes of testing using different variations of synthetic environments/actors.

Future Work

Some areas for future capabilities of the SADIE proof-of-concept system include:

• Implementation of the Scenario Repository component

• Documented SDK for implementing new Scenario Services

• Genericizing each step of the SBT workflow to allow for easier authoring of SBT jobs

We are ready to work with stakeholders in the M&S and software testing communities to show how SBT can add

value to automated software testing.

Figure 8. Notional Jenkins CI/CD pipeline with an SBT stage

2022 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

I/ITSEC 2022 Paper No. 22380 Page 12 of 12

REFERENCES

AGI (2022). AGI: Systems Toolkit (STK). Retrieved from https://www.agi.com/products/stk

DoD CIO (2021a). DevSecOps Fundamentals Guidebook: DevSecOps Tools & Activities. September 2021,

Version 2.1. Retrieved April 22, 2022 from https://dodcio.defense.gov/Portals/0/Documents/Library/DevSecOps

Fundamentals Guidebook-DevSecOps Tools and Activities_DoD-CIO_20211019.pdf

DoD CIO (2021b). DoD Enterprise DevSecOps Reference Design: CNCF Kubernetes. March 2021, Version 2.0

Heindl, Christoph (2022). Py-motmetrics Readme. Retrieved from https://github.com/cheind/py-motmetrics.

Joint Staff (2021). Charter Of The Joint Requirements Oversight Council And Implementation Of The Joint

Capabilities Integration And Development System. CJCSI 5123.01I, 30 October 2021

Roper, Will (2021). Bending the spoon: Guidebook for digital engineering and e-series. United States Air Force.

https://www.af.mil/Portals/1/documents/2021SAF/01_Jan/Bending_the_Spoon.pdf

STO/NATO (2019). Modelling and Simulation as a Service, Volume 1: MSaaS Technical Reference Architecture.

TR-MSG-136-Part-IV. May 2019

https://www.agi.com/products/stk
https://dodcio.defense.gov/Portals/0/Documents/Library/DevSecOps%20Fundamentals%20Guidebook-DevSecOps%20Tools%20and%20Activities_DoD-CIO_20211019.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/DevSecOps%20Fundamentals%20Guidebook-DevSecOps%20Tools%20and%20Activities_DoD-CIO_20211019.pdf
https://github.com/cheind/py-motmetrics
https://www.af.mil/Portals/1/documents/2021SAF/01_Jan/Bending_the_Spoon.pdf

