2022 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

Building a Cloud-Native Toolset for
Flexible, Continuous, Automated Simulation-Based Testing

Jeremy Loomis, Alex Matthews
NextGen Federal Systems
Morgantown, WV
jloomis@nextgenfed.com, amatthews@nextgenfed.com

ABSTRACT

The discipline of software testing is changing to align with the automated processes of Agile DevSecOps. In a
DevSecOps environment, automated testing is executed by running test scripts or scenarios against the System Under
Test (SUT) without human intervention. With many types of software (such as military applications), a challenging
aspect of this testing is generating synthetic data and activity to stimulate the SUT.

Modeling and simulation (M&S) can help by providing representative test data from synthetic actors in a synthetic
environment. Building on current M&S tools, a Simulation-Based Testing (SBT) approach can inject synthetic test
data into a Continuous Integration / Continuous Deployment (CI/CD) pipeline. SBT requires two interconnected
elements: M&S-as-a-Service (MSaaS) services and an Automation & Orchestration ecosystem.

This paper describes our Simulation And DevOps Integration Environment (SADIE) project, which built a proof-of-
concept SBT toolset using existing COTS/GOTS software. SADIE is a cloud-native (deployable to any Kubernetes
cluster) modular toolset that works with any SUT and CI/CD toolchain. It provides continuous automated testing
based on a flexible architecture (users can author scenarios, jobs, and pipelines).

MSaaS is implemented with cloud-hosted microservices aligned with the NATO MSaaS Reference Architecture. A
Scenario Editor is used to author relevant scenarios and a Scenario Repository stores and catalogs versioned scenarios.
SADIE wraps existing Simulation Engines (STK, AFSIM, NGTS, OneSAF) into Simulation Service microservices.

The Automation & Orchestration ecosystem centers on the SBT Job Manager which coordinates execution of SBT
jobs. The Job Manager connects Simulation Service Adapters (for configuration and control of Simulation Services)
to SUT Adapters (to translate data into the required formats/schema and protocols for injection). It can be controlled
from any build orchestrator (e.g., Jenkins) using a REST API.

We conclude with an end-to-end use case showing how SBT can use M&S to provide CI/CD quality gates based on
regression testing results.

ABOUT THE AUTHORS

Jeremy Loomis is the Vice President of Engineering at NextGen, providing overall technical direction, guidance and
mentoring across internal and external projects. Mr. Loomis has ~25 years of experience applying advanced
technologies to meet the needs of diverse customers in commercial, civilian, DoD, and Intelligence Community (IC)
organizations. Areas of interest include Modeling & Simulation, 3D Visualization, Artificial Intelligence, Software
Factories, and Cloud Computing. He works with agile research teams to leverage COTS, GOTS, and FOSS
technologies to develop innovative solutions using novel architectures and pragmatic software methodologies.

Alex Matthews is a Technical Director at NextGen, focusing on Digital Transformation related solutions. He
evangelizes Digital Trinity concepts, including Digital Engineering, DevSecOps, Agile Transformation, Architecture
Modernization, and Cloud/Kubernetes implementations. As a technical lead and architect, he is responsible for the
technical execution of solutions across the systems/software lifecycles for AFLCMC, AFRL, DIA/NASIC,
NAVAIR/NAWC, and Army PEO IEW&S. He has employed multiple M&S tools and technologies for these
customers including AFSIM, STK, NGTS, EWIRDB, and TMAP.

I/ITSEC 2022 Paper No. 22380 Page 1 of 12

2022 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

Building a Cloud-Native Toolset for
Flexible, Continuous, Automated Simulation-Based Testing

Jeremy Loomis, Alex Matthews
NextGen Federal Systems
Morgantown, WV
jloomis@nextgenfed.com, amatthews@nextgenfed.com

INTRODUCTION

The discipline of software testing is changing to align with the automated processes of Agile DevSecOps. In a
DevSecOps environment, automated testing is executed by running test scripts or scenarios against the System Under
Test (SUT) without human intervention. With many types of software (such as military applications), a challenging
aspect of this testing is generating synthetic data and activity to stimulate the SUT.

Modeling and simulation (M&S) can help by providing representative test data from synthetic actors in a synthetic
environment. However, current M&S tools and process operate in silos that are independent of the software systems
lifecycle. As a results of this separation, M&S cannot be easily applied to the testing process to shorten acquisition
cycles and accelerate deployment of software solutions to the field

To address this problem, we propose building on current M&S tools to implement a Simulation-Based Testing (SBT)
approach which can inject synthetic test data into a Continuous Integration / Continuous Deployment (CI/CD)
pipeline. Implementation of an SBT system requires two interconnected elements: M&S-as-a-Service (MSaaS)
services and an Automation & Orchestration ecosystem.

BACKGROUND AND RELATED WORK

To provide context for our Simulation-Based Testing research, we first provide some background information on:
e Software Testing Activities e CI/CD and Automated Testing
e Unique Testing Needs for Military Applications o M&S-as-a-Service (MSaaS)

Software Testing Activities

Software testing takes many forms. Per (DoD CIlO, 2021a), “Test activities may include, but are not limited to:

e unit test e integration test e regression test

o functional test e system test e performance test
All tests start with test planning and test development, which includes detailed test procedures, test scenarios, test
scripts, and test data.” As described in Table 1, these activities are implemented using test development tools, test
data generation tools, and test execution tools.

Table 1. Testing Tools (DoD CIO, 2021a)

Tool Features Benefits Inputs Outputs
Test Assists test scenario, test script, and test | Increase the Test plan test scenarios,
development data development. The specific tool automation and test scripts,
tool varies, depending on the test activity rate of testing test data
and the application type.
Test data Generates test data for the system (such | Increase test Test scenario, | Input data for
generator as network traffic, web requests) fidelity test data the SUT
Test tool suite | A set of test tools to perform unit test, Increase test Test scenario, | Test results,
interface test, system test, integration automation, speed | test scripts, test report
test, performance test and acceptance test data
test of the software system.

I/ITSEC 2022 Paper No. 22380 Page 2 of 12

2022 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

An SBT approach applies M&S technologies to support multiple test activities for all three of these tool categories:

e test development is done by assembling M&S scenarios, models, and environments
e test data is generated by running dynamic simulations with synthetic actors
e tests are executed by feeding the resulting data through a tool suite that can stimulate the SUT

CI/CD and Automated Testing

The discipline of software testing is changing to Tools Workflows
align with the automated processes of Agile
DevSecOps. In a DevSecOps environment,
automated testing is executed by running test scripts
or scenarios against the System Under Test (SUT)
without human intervention.

CI/CD Pipelinesrun
Automated Test Tools

__ Dev Environment
Test

As shown in Figure 1, Test Tools (green outlines)
are part of a CI/CD toolchain and are used to run
automated tests on software that is built and scanned
in a CI/CD pipeline. The test tool can be runin a L
“test environment” and/or “integration environment.” oty T e eber
To support rapid testing of multiple ‘candidate ‘

builds’, the deployment step for the SUT must itself e
be automated using Infrastructure as Code (laC)

techniques, such as automated provisioning and Figure 1. Automated Test Tools running in CI/CD
scripted installation, so that new SUT instances can Pipelines (adapted from DoD CIO, 2021b)

be instantiated on-demand.

Unique Testing Needs for Military Applications

The Joint Staff established Joint Capability Areas (JCAS) as a standardized set of definitions that cover the complete
range of military activities (Joint Staff, 2021). The JCAs are organized in a multi-level hierarchy covering 500+
distinct areas/domains. Some example JCA functions:

o JCA 2.3: “Battlespace Awareness | Processing / Exploitation”

o JCA 2.4: “Battlespace Awareness | Analysis, Prediction and Production”

e JCA 4.3: “Logistics | Maintain”

e JCA 5.3: “Command and Control | Planning”

e JCA 5.6: “Command and Control | Monitor”
DoD software systems support many of these military functions, in the form of intelligence processing tools,
logistics information systems, command and control applications, etc. They are complex systems that process
unique datasets and support a range of military tactics, techniques, and procedures (TTPs), such as Intelligence Prep
of the Battlefield (IPB) or Air Battle Planning (ABP). This complexity requires extensive testing so that the
software systems can be trusted for use by warfighters and intelligence analysts.

In addition to performing unique military functions, these software systems are often composed of multiple modules
based on Modular Open Systems Approach (MOSA) principles. As such, testing can be needed at multiple
architectural levels, to include System, Subsystem, Component, Service, and Application levels. The corresponding
test activities and tools can also vary across these levels; for example, API tests can be an appropriate mechanism
for verifying individual services that are composed into a larger system. Additionally, the data that flows through
DoD systems often adheres to unique DoD schemas, formats, and protocols.

As an illustration, picture a notional all-source intelligence production system. The system supports military
function JCA 2.4 by providing intelligence analytics functions including data ingestion, content extraction,
normalization, and correlation. In addition to user-facing applications, the system includes an “analytics service”
that performs initial content extraction from available data. In this case, one testing goal would be to evaluate the
analytics service for performance (speed and accuracy) as well as regression (consistency with prior versions). Data
that is processed by the analytics service might include structured (e.g., MIDB), semi-structured (e.g., USMTF), and

I/ITSEC 2022 Paper No. 22380 Page 3 of 12

2022 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

unstructured (e.g., imagery/video) data. These data would represent the complex behaviors of friendly and
adversary actors as reflected in intel feeds, sensor collection, blue force tracking, cyberspace actions, etc.

To properly perform software testing on such a service, ‘representative’ test data must be available that has:
e appropriate size/complexity (large data sets with realistic content)
e appropriate data formats (structured & unstructured text, motion imagery, still imagery)
e appropriate “signal-to-noise” ratio (to reflect non-perfect sources and networks)
e appropriate context/coherency (product of an operationally relevant scenario)

The testing process would involve feeding the test data into the analytics service, measuring execution time, and
collecting the results. The results would be compared both to ‘ground truth’ (how did the service do at extracting
expected entities from the synthetic data provided) and to ‘prior results’ (do extracted entities match those from a
previous version of the analytics service).

M&S-as-a-Service (MSaaS)

According to the NATO MSaaS Reference Architecture (STO/NATO, 2019), MSaaS is defined as:
“a new concept that includes service orientation and the provision of M&S applications via the as-a-service
model of cloud computing to enable more composable simulation environments that can be deployed and
executed on-demand. The MSaa$S paradigm supports stand-alone use as well as integration of multiple
simulated and real systems into a unified cloud-based simulation environment whenever the need arises.”

Table 2 lists some of the MSaaS Architectural Building Blocks (ABBs) described in the Reference Architecture.

Table 2. Architectural Building Blocks (ABBs) for MSaaS. (STO/NATO, 2019).

M&S Enabling Services

Provide the infrastructure to connect producers and consumers of information and

M&S Integration Services support an efficient and time-coherent exchange of simulation data

Provide broker and gateway services between incompatible producers and consumers

M&S Mediation Services . . : . .
of simulation-pertinent information

M&S Message-Oriented Provide the capabilities for ... exchange of data between producing and consuming
Middleware Services Simulation Services, independent of data format and data content.

Provide the capabilities to compose and execute a simulation from existing simulation

M&S Composition Services services [using choreography or orchestration approaches].

Provide the capability to provide input to a simulation execution, control the

Simulation Control Services . ' - . ; .
simulation execution, and collect output from the simulation execution.

Provide the technical capabilities to define a scenario, to initialize the simulation

Simulation Scenario Services . . - ; . :
environment with a scenario, and to handle simulation scenario events

Provides the capabilities to manage repositories of simulation service components and

M&S Information Services - A ; .
to manage references to [information required for execution]

Provides the capabilities to store, retrieve and manage simulation resources and

M&S Repository Services associations with / references to metadata managed by M&S Registry Services

Provide the capabilities to store, manage, search and retrieve data about (i.e.,

M&S Registry Services metadata) simulation resources stored by the M&S Repository Services,

M&S Services

Set of capabilities for synthetic representation of (real-world) objects and events.

Simulation Services Simulation Services are the service-oriented building blocks of simulations

Category of services that encompass the entire suite of [tools], methodologies, ... and

Modelling Services publishing mechanisms needed to construct a Simulation Service

Results of composing simulation services. They offer entire simulations as services ...
that are generic enough to be used across many situations and/or occasions

Composed Simulation Services

Existing simulation packages offer modeling and simulation functions, but often require complex IT configuration to
access the functions. By ‘wrapping’ those functions into Modeling Services and Simulation Services, the benefits

I/ITSEC 2022 Paper No. 22380 Page 4 of 12

2022 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

of a services-oriented architecture (SOA) can be realized. By adding an M&S Registry, Simulation Control
Services, and M&S Mediation Services, several disparate capabilities can be orchestrated into cohesive workflows.

SIMULATION-BASED TESTING (SBT) APPROACH

The goal of SBT is to generate synthetic data and activity to stimulate the SUT. To be valuable for testing, the data
must be representative of the data that is expected to be providing to the SUT in operational use. Depending on the
goals for a given testing activity, the data required can be of varying fidelity, ranging from coarse inputs for basic
interface testing, to more robust and high-fidelity datasets approaching a full “digital twin” (Roper, 2021) of the
stimulating system for the SUT.

An SBT approach builds on current M&S tools, operating in a constructive-simulation mode. SBT leverages the
proven ability of M&S to provide high-fidelity synthetic environments, synthetic systems (platforms, sensors), and
synthetic actors (with complex sense-and-react behaviors) that can interact together without user intervention.

Using synthetic data (as opposed to data collected from the field or from controlled exercises), also allows testing of
a system with ‘edge cases’: unique scenarios that could be difficult to capture in real life, but that are of keen interest
to military planners. Simulating dynamic and unique use cases can give developers additional confidence that the
operational system will robustly handle a range of scenarios when fielded.

Example M&S tools that could be used by an SBT system include GOTS simulation engines such as OneSAF and
AFSIM that allow for the modeling of multi-domain sensors (space and high altitude, aerial, and terrestrial layer) as
they attempt to detect and identify multiple dynamic targets. The simulated targets have representative attributes and
relationships and exhibit realistic behaviors through the use of Computer Generated Forces (CGF) algorithms. COTS
simulation engines such as STK could provide additional physics-based modeling of geodynamics and sensor
performance (for example, detailed geometric and radiometric models of aerial and space ISR systems).

With SBT, the representative test data (from synthetic actors in a synthetic environment) is provided to the SUT using
existing interfaces and protocols. In cases where the SUT operates on ‘real time’ information, the SBT system must
be able to deliver the test data with realistic latency, velocity, and timing.

The goal for SBT is to integrate into the CI/CD process for the SUT software as another ‘automated test tool” alongside
existing tools such as Ul test tools (e.g., Selenium), API test tools (e.g., Soap Ul), and performance tools (e.g.,
LoadRunner). An SBT approach can be used in isolation or in concert with these other tools. For example, synthetic
data can be fed into the SUT while a Ul test is performed to simulate operator actions.

Desired system attributes for a SBT system:

e Cloud-Native: Scalable deployment to any Kubernetes cluster; supports public/private clouds
Modular: Modular system works with any SUT and any CI/CD Factory with varied tech stacks
Flexible: Allow users to author their own SBT scenarios, jobs, and pipelines
Continuous: Tied into the CI/CD process for ‘continuous testing’ enabling rapid deployments and fielding
Automated: Simulation execution does not require ‘man-in-the-loop’ steps during testing
Cross-Functional: Brings M&S engineers and SMEs directly into the software lifecycle

PROOF-OF-CONCEPT SBT TOOLSET

We now describe our Simulation And DevOps Integration Environment (SADIE) project, which built a proof of
concept SBT toolset using existing COTS/GOTS software. SADIE is a cloud-native (deployable to any Kubernetes
cluster) modular toolset that works with any SUT and CI/CD toolchain. It provides continuous automated testing
based on a flexible architecture (users can author scenarios, jobs, and pipelines).

Figure 2 illustrates the logical system architecture for SADIE, consisting of an Analysis Ecosystem, an Automation
Ecosystem, and an MSaaS Ecosystem working together to provide SBT of a SUT Instance.

I/ITSEC 2022 Paper No. 22380 Page 5 of 12

2022 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

Analysis Ecosystem

Analysis Report
Dashboard Repository

Analysis &
Reporting
Services

Test
Reports.
Iy

Modules

Runtime

Automation Ecosystem

Orchestration
& Mediation
Services

SBT Job Jobs & l Sim Service
Manager Executions Adapters

l SuT
Adapters

Environment

| SuT
Instance

Response

Stimulus

MSaaS Ecosystem

Scenario
Repository

Scenario
Editor (CRUD)

Simulation Simulation Services
Scenarios
’

Engines

EDITIY

——
SUT Code
Repository

Figure 2. Logical System Architecture for SADIE

SADIE is implemented with cloud-hosted microservices aligned with the NATO MSaaS Reference Architecture. The

system design for SADIE focuses on the following ABBs:

M&S Mediation Services: included as Sim Service Adapters in the automation ecosystem as part of SBT jobs
Simulation Control Services: each simulation service offers control endpoints used by the job manager.
Simulation Scenario Services: the overall simulation scenario is defined by the SBT job

M&S Repository/Registry Service: the Scenario Repository will hold M&S resources and metadata tags
Simulation Services: a key element of SADIE is wrapping existing Simulation Engines into services
Modelling Services: in the current version of SADIE, modeling occurs in desktop Scenario Editor tools

The SBT Job Manager is the central coordination point for the end-to-end SBT lifecycle. Asan SBT job is
executed, Simulation Services are launched, simulation inputs/outputs are configured, data is streamed to/from the
SUT, results are analyzed, and analysis is performed in support of testing goals.

The SUT Instance is hosted in an appropriate runtime environment (potentially distinct from the runtime

environment for SADIE itself). During execution of a SBT job, the SUT Instance is stimulated by the SADIE
system to collect results. Depending on the type of test activity being executed, the SUT Instance itself can be
‘ephemeral’ (for example, when running SBT-based regression tests against a ‘candidate’ build produced by a

developer branch in the SUT Code Repository).
MSaaS Ecosystem

For SADIE, a Scenario Editor is used to author relevant scenarios. We
are using existing desktop scenario editing tools provided for each core
simulation technology, such as AFSIM Wizard, OneSAF MTC and STK
Desktop.

The Scenario Repository will store and catalog versioned scenarios. The
Repository will be built on an open-source data management framwork.
This will allow for a repository with CRUD (Create, Retrieve, Update,
Delete) functions defined through REST API interfaces. For the initial
version of SADIE, we store scenario resources in a simple web server to
allow access from the SBT Job Manager.

SADIE wraps existing Simulation Engines (STK, AFSIM, NGTS,
OneSAF) into Simulation Service microservices. As shown in Figure 3,
a Simulation Service microservice provides a standardized interface that
includes functions for simulation control, clock management, data input,
and data outputs. The REST API for each Simulation Service is defined
using the OpenAPI (formerly SwaggerUI) specification to allow for self-
documenting and easy to implement service endpoints.

I/ITSEC 2022 Paper No. 22380 Page 6 of 12

SADIE Simulation Service ® %

https://sadie-devivi/sim-service v

Control

/Control/States/Diagram

/Control/States/Active

/Control/Signals/Reserve

/Control/Reservation

/Control/Signals/Release

/Control/signals/Initialize

/Centrol/Instructions

/Control/Signals/Start

Figure 3. Each Simulation Service
implements an OpenAPI interface

2022 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

Automation Ecosystem

The Automation ecosystem centers on the SBT Job Manager which coordinates execution of SBT jobs. The Job
Manager connects Simulation Service Adapters (for configuration and control of Simulation Services) to SUT
Adapters (to translate data into the required formats/schema and protocols for injection).

Orchestration & Mediation Services are used within job steps to achieve stimulation (injecting data into the SUT) and
data collection (retrieving data from the SUT). Each SBT Job includes a test stimulation driver and a mechanism to
record test outcomes. The SADIE Job Manager also includes several example ‘SBT job templates’ that can be
customized for new use cases.

Data injection into a SUT typically follows one of three pathways:
o delivery of data via ‘sensor feeds’ (e.g., GEOINT, MTI, SAR, SIGINT, FMV, IBS, USMTF)
e providing data using ‘interoperability interfaces’ (e.g., IMPS, CoT, PASS, ISA, DDS)
e inserting data using a ‘system training interface’ (as used by IEWPTPT, for example)

Collecting data from a SUT (raw and processed) follows similar patterns:
e gathering ‘export files’ created by the SUT (such as Excel, free text, or USMTF documents)
e connecting using ‘interoperability interfaces’ (e.g., MIDB or OGC data discovery services)
e direct access to ‘internal databases or APIs’ (such as the Army’s Tactical Entity Database)

Analysis Ecosystem

Within SADIE, Analysis & Reporting Services create test reports based on the results from an SBT job. The
Analysis Modules compute metrics such as accuracy, performance, and capacity. For example, to compute system
accuracy for feature extraction functions of a SUT, an analysis module can compare extracted features (produced by
the SUT in response to synthetic inputs) to a ground-truth “answer key” represented by the simulation.

SADIE is also designed to allow plug-ins that provide 3rd party analytics for different forms of V&V. To be
integrated into SADIE, an analysis plug-in is typically provided as a container image that can be instantiated by the
Job Manager. At runtime the container is connected to data outputs generated by the Simulation Service and
(optionally) to ‘reference’ data configured within the SBT job. The analysis is triggered by the Job Manager and the
results are collected as artifacts from each SBT job execution.

The resulting reports and metrics can then be collected in a database and presented in an intuitive dashboard. For
example, existing CI/CD dashboards such as Jenkins Job dashboards and GitLab CI Pages can be used to associate
SBT analysis results with a specific pipeline execution.

CI/CD Integration

Q search
o allow SADIE 10 be integraer IR -

within a CI/CD toolchain, the SBT | e - Puainbiomser
Job Manager and Analysis Services | # sitcounons

can be controlled from any build 4 Manage Jenkins
orchestrator (e.g., Jenkins, as in
Figure 4) using a REST API.

| Q, SADIE Job| |

Updates Available Installed Advanced
Enabled Name |

Caffeine API Plugin

Caffeine api plugin for use by other Jenkins plugins.

This integration allows for a CI/CD SADIE b Manager plagin

pipeline to now include customized g e

SBT steps/stages that run as part of

an overall pipeline execution Figure 4. Installing the SADIE plugin into a Jenkins CI/CD Server

process. For example, after the
CI/CD pipeline compiles, scans, and deploys the SUT to a test server, the SBT job can be launched to execute runtime
SBT testing against the SUT instance.

I/ITSEC 2022 Paper No. 22380 Page 7 of 12

2022 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

Cloud Hosting

SADIE can be deployed into any Cloud Native Computing Foundation (CNCF)-compliant Kubernetes platform
(such as AWS EKS or Rancher RKE2). SADIE’s components and microservices (defined via OCI container images)
are run in multiple Kubernetes pods, which can be distributed across a multi-node Kubernetes cluster. This requires
that any Simulation Engines being used by SADIE be deployable into base containers before service-wrapping.

With this Kubernetes-based architecture, SADIE is portable and scalable for various environments: the cluster can
be instantiated using fixed (on-prem) servers or in a commercial cloud environment (such as AWS).

CASE STUDY

We conclude with an end-to-end use case showing how SBT can use M&S to provide CI/CD quality gates based on
regression testing results. Figure 5 provides an overview of the SBT process for the case study.

Legend (
- SBT Orchestration SADIE Job Manager
Analysis
(Automation |
‘4J IMAGRS SBT Job
MSaaS
System Under
Scenario Simulation Test (SUT)
Editor - . Lo & Localized Analysis Analysis
Scenario Simulation telemety detections
Servi IMAGRS Module Report
ervice
—— - - Extractor p
STK MOT Metrics =
STK , . | serice | Evaluator -
Desktop | ground truth track(s) —_—
synthetic UAV, camera,
target, environment

Figure 5. Overview of SBT Case Study

The various components of the case study are further described in the sections below.
System Under Test (SUT)

The Intelligent Multirotor Autonomous Ground Relocatable Sensor (IMAGRS) system developed by NextGen Federal
Systems is an advanced small Unmanned Aerial System (SUAS) for persistent autonomous surveillance. It has an
integrated EO/IR payload and includes state-of-the-art onboard Machine Learning (ML) and Computer Vision (CV)
algorithms running on a small-board computer (SBC).

The “IMAGRS Extractor” is the subsystem of IMAGRS that processes a georeferenced video stream and attempts to
detect and localize targets of interest in the video scene.

e Inputs: timestamped UAV video frames and platform telemetry (GPS location, IMU orientation)

e Output: timestamped target detections (time, latitude, longitude, altitude)
The Extractor subsystem is implemented as a Python library (wrapped in a command-line program for testing).

Using SBT to test the Extractor module in isolation using synthetic video data reduces the need to perform full
integration testing with the IMAGRS hardware platform. To simplify subsystem testing, the Extractor was wrapped
in a simple Docker container so that the SUT could be easily deployed by an SBT job for stimulation (providing
required inputs) and collection of results (capturing target detections).

Desired Testing
For this case study, the primary desired testing was functional testing to measure ‘accuracy’: to determine how well
the Extractor can correctly detect and locate targets in a synthetic video stream. An alternate metric would be to

measure performance (how long does the system take to perform localization), since latency in this stage influences
the downstream performance of other IMAGRS components for target tracking and mission planning.

I/ITSEC 2022 Paper No. 22380 Page 8 of 12

2022 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

Either of these tests could be used for determining if a regression has occurred: ‘does build N of the system provide
the same/better accuracy and performance compared to build N-1?” For this case study, which focused on functional
accuracy, a regression was judged to occur when build N detected fewer targets than the previous build.

Scenario Editor

The Systems Tool Kit (STK) (AGI, 2022) is a digital mission engineering application that “features an accurate,
physics-based modeling environment to analyze platforms and payloads in a realistic mission context.” STK was
selected because of its ability to analyze complex systems with a focus on their operational environments.

For this case study, we needed a realistic and time-dynamic three-dimensional simulation that included high-resolution
terrain, imagery, and precise models of ground and air platforms. With STK, we could simulate the entire system-of-
systems in action, at any location and at any time, to gain a clear understanding of its behavior and mission
performance.

Simulation Scenario

A synthetic environment was created in STK using terrain data and satellite imagery. In the environment, two moving
entities were simulated:

e A synthetic model of the UAV with a representative field of view (FOV)

e A synthetic model of a target vehicle (truck) driving on the terrain surface.
Using the STK 3D graphics capability, one window was designated as the virtual ‘camera view’: the 3D camera was
tethered to the boresight of the virtual camera and during scenario animation, this window was used to collect a series
of synthetic video frames. At the same time, an STK report was used to capture telemetry for both the UAV system
(including position and camera orientation), and the target vehicle (to be used as ‘ground truth’).

An STK visualization of the overall scenario, including the virtual camera, is shown in Figure 6.

ORGP RV //LQ, 0. 4, ©carenion v
HOA0E, P BRTR- D20, V.0, 4.
MU I DTRDOD o «

PR TR B " Tiom Siap 0.8 sev
Figure 6. Visualization of the simulation scenario used for Extractor testing

Simulation Service

The STK Engine Java library was wrapped into a RESTful STK Service running in Apache Tomcat. The STK Service
implemented the required SADIE endpoints (for simulation control, clock management, data input, and data outputs).
The web service was then containerized into a Docker image by adding the service WAR to a Tomcat base image.

The REST invocation sequence used by the SBT job to execute the simulation was:
1) POST Control/Signals/Reserve 2) GET Control/States/Active [poll until State = ‘Reserved’]
3) POST Control/Signals/Initialize; 4) GET Control/States/Active [poll until State = ‘Active:Ready’]
5) POST Control/Signals/Start 6) GET Control/States/Active [poll until State = ‘Idle’]

I/ITSEC 2022 Paper No. 22380 Page 9 of 12

2022 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

This sequence of calls did the following: initialized the STK service with the selected scenario file, specified which
outputs were desired, began the simulation/animation, and waited until the simulation was complete.

Analysis Module

For this case study, we used the py-motmetrics library (Heindl, 2022), which provides a Python implementation of
metrics for benchmarking multiple object trackers (MOT). It measures “the performance of multiple object trackers
[using] CLEAR-MOT metrics and ID metrics. Both metrics attempt to find a minimum cost assignment between
ground truth objects and predictions.” This provides an appropriate metric for comparison of the synthetic target
vehicle track and the localized detections produced by the IMAGRS Extractor.

Since we were interested in just detection (not identification), the detection/tracking metrics listed in Table 3 applied.

Table 3. Metrics for object detection and tracking

Name Description
num_frames Total number of frames.
num_matches Total number matches.
num_switches Total number of track switches.
num_false positives | Total number of false positives (false-alarms).
num_misses Total number of misses.
num_detections Total number of detected objects including matches and switches.
num_objects Total number of unique object appearances over all frames.
num_predictions Total number of unique prediction appearances over all frames.
num_unique_objects | Total number of unique object ids encountered.
mostly tracked Number of objects tracked for at least 80 percent of lifespan.
partially tracked Number of objects tracked between 20 and 80 percent of lifespan.
mostly lost Number of objects tracked less than 20 percent of lifespan.
num_fragmentations | Total number of switches from tracked to not tracked.
motp Multiple object tracker precision.
mota Multiple object tracker accuracy.
precision Number of detected objects over sum of detected and false positives.
recall Number of detections over number of objects.

SBT Job Structure

The high-level workflow for the SBT job

- - - - - SUT Instance SADIE Sim Service Analysis Module
in this use case is shown in Figure 7. In

Step #3, the Sim Service (STK Service) ! 1 Frepare Workspace | !
is initialized with the pre-prepared ! 2 Deploy Servica i !
Scenario along with ‘instructions’ to 3 nfiaize (Scenaria)
publish UAV video, telemetry, and : “ ZSWH !
ground tracks to the Workspace. This : T 6 UnDeploy Service :
allows for the data exchange with the |f S e— |
SUT (IMAGRS Extractor) in Step #7 s

|
9. Deploy Module T !

and With the AnaIySis MOdUIe (MOT i 10: Analyze (Detections, Grnu'[m Truth)
MetrICS) |n Step #10 : : 11: Evauation Metrics

! |
! T
! |
i 13: Publish Metrics & i
| Tear Down Workspace |
! |
! |

Figure 7. High-level sequence diagram for IMAGRS SBT Job

Build Orchestration
The entire end-to-end flow for SBT testing

of the IMAGRS Extractor was orchestrated by a Jenkins pipeline (Figure 8) that deployed the SUT, ran the SBT job
(including analysis), and collected the analysis results.

I/ITSEC 2022 Paper No. 22380 Page 10 of 12

2022 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

Build Build Deploy to Un-Deploy

The overall CI/CD process is
initiated when a developer checks in FED e RNt RN T RN e
code that modifies part of the SUT — - ‘ . - 5 1
(IMAGRS Extractor). At this point, (eage il mes 119 # - - - : :
Jenkins detects the code check-in Do
and initiates the CI/CD pipeline.
The pipeline includes stages that
build the code, run static (SAST)
code checks, build a Docker image, Figure 8. Notional Jenkins CI/CD pipeline with an SBT stage
deploy the container to a test
environment, and run dynamic (DAST) tests. During the “Run SBT Job” stage, the following occurs:

1. The SUT Instance is exposed to the SBT Job Manager

2. The SBT Job is launched, and the CI/CD pipeline waits for completion

3. The SBT Job results (MOT Metrics) are published as CI/CD artifacts

10s

When the CI/CD pipeline completes, the MOT Metrics are available in the Jenkins dashboard as a custom HTML
page. Optionally, a check can be added to the pipeline that compares the MOT Metrics to prior results to detect any
potential differences (if the current build does not result in the same detection outputs). In most cases, the change
would be considered a ‘regression error.” Based on this, the metric check can be used as a “quality gate:” if a
regression occurs, the pipeline can be “failed”, alerting the developer to investigate the root cause of the error.

By integrating SBT testing into the overall build orchestration process defined in a Jenkins pipeline, the SBT
capability adds an additional dimension to other automated tests that are run as part of the CI/CD pipeline. All test
categories are triggered by each code change that is committed during SUT development.

CONCLUSION
Results

For IMAGRS, the SADIE SBT capability provided a unique ability to evaluate the Extractor subsystem without
integrating the software into the onboard computer and taking the SUAS into the field for testing. This saved
numerous staff hours of travel to the testing facility and reduced the level of physical risk to the platform by
reducing the number of flight hours required to evaluate the target detection functions of IMAGRS,

Based on this case study and other similar use cases, SBT shows great value as a new technique for automated
testing of military applications. The SADIE proof-of-concept has shown the feasibility of using an SBT system to
apply powerful M&S technologies in a new way.

Some of the anticipated benefits from SBT that were demonstrated by this project include:
e Making subsystem testing feasible without full system deployment to the field
e Providing quantitative and repeatable metrics of subsystem performance
e Ability to perform high volumes of testing using different variations of synthetic environments/actors.

Future Work

Some areas for future capabilities of the SADIE proof-of-concept system include:
e Implementation of the Scenario Repository component
o Documented SDK for implementing new Scenario Services
e Genericizing each step of the SBT workflow to allow for easier authoring of SBT jobs

We are ready to work with stakeholders in the M&S and software testing communities to show how SBT can add
value to automated software testing.

I/ITSEC 2022 Paper No. 22380 Page 11 of 12

2022 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

REFERENCES

AGI (2022). AGI: Systems Toolkit (STK). Retrieved from https://www.agi.com/products/stk

DoD CIO (2021a). DevSecOps Fundamentals Guidebook: DevSecOps Tools & Activities. September 2021,
Version 2.1. Retrieved April 22, 2022 from https://dodcio.defense.gov/Portals/0/Documents/Library/DevSecOps
Fundamentals Guidebook-DevSecOps Tools and Activities DoD-CIO_20211019.pdf

DoD CIO (2021b). DoD Enterprise DevSecOps Reference Design: CNCF Kubernetes. March 2021, Version 2.0

Heindl, Christoph (2022). Py-motmetrics Readme. Retrieved from https://github.com/cheind/py-motmetrics.

Joint Staff (2021). Charter Of The Joint Requirements Oversight Council And Implementation Of The Joint
Capabilities Integration And Development System. CJCSI 5123.011, 30 October 2021

Roper, Will (2021). Bending the spoon: Guidebook for digital engineering and e-series. United States Air Force.
https://www.af.mil/Portals/1/documents/2021SAF/01 Jan/Bending_the Spoon.pdf

STO/NATO (2019). Modelling and Simulation as a Service, Volume 1: MSaaS Technical Reference Architecture.
TR-MSG-136-Part-1V. May 2019

I/ITSEC 2022 Paper No. 22380 Page 12 of 12

https://www.agi.com/products/stk
https://dodcio.defense.gov/Portals/0/Documents/Library/DevSecOps%20Fundamentals%20Guidebook-DevSecOps%20Tools%20and%20Activities_DoD-CIO_20211019.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/DevSecOps%20Fundamentals%20Guidebook-DevSecOps%20Tools%20and%20Activities_DoD-CIO_20211019.pdf
https://github.com/cheind/py-motmetrics
https://www.af.mil/Portals/1/documents/2021SAF/01_Jan/Bending_the_Spoon.pdf

