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ABSTRACT

Objective: The objective of this study was to evaluate the differences in brain activity between expert surgeons and
novice medical residents based on electroencephalography (EEG). The first sub-goal was to assess the Microstate
EEGlab toolbox and BClIlab toolboxes for data analysis and classification of the topographical features for microstate-
based Common Spatial Pattern (CSP) analysis. Then, the second sub-goal was to compare microstate-based CSP with
the conventional regularized CSP approach.

Methods: After IRB approval, ten expert surgeons and 13 novice medical residents were recruited at the University at
Buffalo. After informed consent, the subjects performed three trials of laparoscopic suturing and knot tying with rest
periods in-between the task trials. 32-channel EEG was performed during the task performance that was used to
analyze spatial patterns of brain activity in 8 expert surgeons (2 dropouts due to data quality) and 13 novice medical
residents. Microstate analysis was applied as preprocessing to improve the signal-to-noise ratio before CSP analysis,
distinguishing expert surgeons' brain activity from novice medical residents.

Results: Microstate-based CSP analysis identified the significant channels based on the maximum spatial pattern
vectors at the scalp. While novices had primarily the frontal cortex involved for a maximum of the spatial pattern
vectors at the scalp, the experts had the hotspot of the spatial pattern vectors over the frontal and parietal cortices.
Simple linear discriminant analysis with 10-fold cross-validation achieved more than 90% classification accuracy with
microstate-based CSP, while the conventional regularized CSP could reach around 80% classification accuracy.
Conclusion and Discussion: Microstate-based CSP analysis can identify an optimal set of channels for evaluating the
differences in brain activity between expert surgeons and novice medical residents. Future studies can apply
microstate-based monitoring of the temporal dynamics of the brain behavior for an individualized adaptive VR-based
training paradigm.
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Introduction

Laparoscopic surgery training following the Fundamentals of Laparoscopic Surgery (FLS) curriculum is a
common education and training module designed for medical residents, fellows, and physicians to assess a set of basic
surgical skills necessary to conduct laparoscopic surgery successfully. The FLS training is a joint program between
the Society of American Gastrointestinal and Endoscopic Surgeons and the American College of Surgeons required
to receive board certification in general surgery in the US (Birkmeyer et al., 2013). FLS certification uses five
psychomotor tasks with increasing task complexity: (i) pegboard transfers, (ii) pattern cutting, (iii) placement of a
ligating loop, (iv) suturing with extracorporeal knot tying, and (v) suturing with intracorporal knot tying. It was
introduced to systemize training and evaluation of cognitive and psychomotor skills required to perform minimally
invasive surgery. The FLS curriculum is being used to measure and document those skills for medical practitioners.
Here, understanding the brain-behavior relationship is crucial for informed training and assessment (Dehabadi et al.,
2014), especially for assessing skill levels.

In the context of skill assessment under perception-action coupling theory (Voorhorst et al., 1998), the novice
brain is postulated to build a cognitive-perceptual mental model (Cioffi, 1991; Renner et al., 2013) under perceptual
load (Marucci et al., 2021) at the start of FLS skill acquisition (Kamat et al., 2022; Riener & Harders, 2012). Here,
the central nervous system internally simulates the motor behavior in planning, control, and learning such that the
prediction of the sensory input is compared with the reafferent sensory information to determine the discrepancy that
is postulated under the forward model concept (Wolpert & Miall, 1996),(Kawato, 1999),(Kamat et al., 2022). Then,
deliberate practice (Ericsson & Harwell, 2019) can reduce the discrepancy by actively probing the environment which
can lead to expert performance. Here, action-to-perception coupling for actively probing the environment is not only
crucial for motor skill training (Riener & Harders, 2012) but also for discriminating movement-related sensations from
environmental stimuli (Sommer & Wurtz, 2008). Christensen et al. (Christensen et al., 2014) investigated the action-
perception coupling based on the effect of action execution on action perception. Here, exploratory action for
perception (Hurley, 2001), which facilitates the closure of the perception-action cycle, is postulated in novices during
skill acquisition. In this study, we postulate that the EEG features of the perception-action cycle can be used to
discriminate experts from novices during FLS suturing with intracorporal knot tying.

Computational circuit mechanisms (Gu et al., 2021) have presented selective attention (Crick, 1984) or
excitability with the thalamus (Hughes et al., 2004) acting as a "spotlight" that is postulated to be a microstate in the
brain — defined as a short epoch — during which the scalp potential field from electroencephalogram (EEG) remains
semi-stable (Michel & Koenig, 2018). This "spotlight" approach leads to a crucial a priori assumption that only one
spatial map entirely defines the relevant global state of the brain at each moment in time, and the residuals are
considered noise (Michel & Koenig, 2018). Here, the temporal evolution of the spatial map in novices is postulated
to differ from experts who have well-developed cognitive-perceptual models and may have achieved particular motor
skill "automaticity" (Poldrack et al., 2005). Specifically, spatiotemporal patterns of neural activity for selection in
working memory and perception in experts will differ from novices (Tamber-Rosenau et al., 2011) that can be captured
with the scalp potential field from EEG.

In this study, we used microstate analysis to leverage the excellent temporal resolution of EEG (Michel &
Koenig, 2018) for detecting the semi-stable scalp potential field at the start of the FLS suturing with intracorporeal
knot tying task (henceforth, the FLS task). Then, we applied Common Spatial Pattern (CSP) for feature extraction,
where the algorithm finds spatial filters (Koles, 1991) for two classes of data — experts and novices. The traditional
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CSP method suffers from noise sensitivity due to the L2 norm in its optimization problem. Our microstate-based CSP
approach addressed this with a meta-criterion favoring the highest signal-to-noise ratio (Custo et al., 2017).

Methods
Subjects and Experimental Setup

After written consent, 13 healthy novice medical students and ten expert surgeons were recruited to perform
the FLS task. The study was approved by the Institutional Review Board of the University at Buffalo, NY. All study
procedures were performed according to local research regulations for human subjects. The experts had substantial
experience with laparoscopic suturing, whereas the novices were entirely new to the task. All the subjects were
instructed verbally with a standard set of instructions on how to complete the suturing with intracorporeal knot tying
task to the best of their capacity. Participants were provided with two laparoscopic needle drivers, one suturing
scissors, and a needle with a suture of 15 cm in length. The task involves inserting the suture through two marks in a
Penrose drain and then tying a double-throw knot followed by two single-throw knots using two needle drivers
operated by both hands. The task starts when the subject picks up the suture and needle driver on the start command
and ends when the subject cuts both ends of the suture.
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Figure 1: (A) Sensor montage with active gel-electrodes shown with 'E' grey discs. (B) Experimental setup.
(C) EEG data processing pipeline in EEGLab and BCILab for the classification of expert vs. novice.

A customized montage consisting of EEG sensors was used to record brain activation signals. Thirty-two
channels of EEG signals were recorded using a wireless LiveAmp system (Brain Vision, USA). EEG recordings were
obtained at 500 Hz using active gel electrodes, as shown with 'E' grey discs in Figure 1A. Figure 1B shows the
experimental brain-behavior setup in the laboratory.

Data processing in EEGLab and BCILab

The recorded EEG was preprocessed and analyzed offline using the open-source EEGLab toolbox
(https://scen.ucsd.edu/eeglab/index.php) for the microstate analysis (Michel & Koenig, 2018). Specifically, the data
were downsampled to 250Hz and high-pass filtered at 1Hz. Then, the line noise was removed using the 'cleanline’'
function, followed by the 'clean rawdata' function to reject bad channels. The bad channels were interpolated using
spherical splines (Perrin et al., 1989) in 'clean _rawdata' followed by re-referencing to the global average. The task
epochs were defined manually as +10sec around the task trigger postulated to be the start of building a cognitive-
perceptual model (Cioffi, 1991; Renner et al., 2013). Then, artifact subspace reconstruction (ASR) was performed
using the default settings in EEGLab, followed by re-referencing to the global average. ASR was performed using the
default settings in EEGlab, followed by re-referencing to the global average. Then, Laplacian spatial filter was applied
to remove the volume conduction from subcortical sources since we were interested in the cortical sources. Here, ASR
is an automated method based on a user-specified parameter that can effectively remove transient EEG artifacts
(Chang et al., 2020). We used the default ASR parameter value of 20, and the optimal value is between 20 and 30 to
balance between removing non-brain signals and retaining brain activities (Chang et al., 2020). In this study on the
EEG topographic features, the maximum number of bad channels allowed for any subject was less than five, so we
dropped two expert subjects.

Microstate analysis was performed using the EEGlab toolbox (Poulsen et al., 2018) after aggregating EEG
data during the FLS task from all the experts (N=8) and novices (N=13). First, we identified EEG microstate
prototypes based on modified K-means clustering in the EEGlab. The modified K-means clustering was based on the
goodness of fit of the microstate segmentation determined from the global explained variance (GEV) and the cross-
validation criterion (CV). Here, the GEV criterion should theoretically become monotonically larger with the
increasing number of clusters (Poulsen et al., 2018). The modified K-means clustering in EEGlab finds topographical
maps of polarity invariant microstate prototypes (Poulsen et al., 2018) from the spontaneous EEG data during the FLS
task (and rest periods in between the trials). Here, global field power (GFP) peaks are used to segment the EEG time
series. The minimum peak distance was set at 10ms (default), and 1000 randomly selected peaks (default) per subject
were used for the segmentation. Then, we rejected the GFP peaks that exceeded one time the standard deviation of all
the GFPs of all maps to segment the EEG data into a predefined number (2 to 8) of microstates. Here, the goal is to
maximize the similarity between the EEG samples and the prototypes of the microstates they are assigned to using the
modified K-means algorithm (Poulsen et al., 2018). The modified K-means algorithm also sorts the microstate
prototypes in decreasing GEV. We had set 100 random number of initializations and 1000 maximum iterations for the
modified K-means algorithm with the 1e-6 (default) as the relative threshold of convergence (Poulsen et al., 2018).
These microstates provided the prototypes for the subsequent microstate-based CSP analysis.

Microstate labels were applied to the EEG samples from the experts and novices based on topographical
similarity (called backfitting) using the EEGlab toolbox (Poulsen et al., 2018). Since short periods of unstable EEG
topographies can occur, so, we applied temporal smoothing. Then, the temporally smoothed EEG topographies from
the experts (N=8) and novices (N=13) at the start of the FLS task in a 10-sec epoch were subjected to CSP analysis
and classification using the BCILab (Kothe & Makeig, 2013). Here, if X; and X> are the EEG topographies from the
experts and novices at the start of the FLS task, viz., X;is a matrix of rows 250Hz times 10sec and columns 32 channels,
WTXIX1W _ chlw
wTxTX,w T wTcw’

then the desired spatial filter is obtained by, argmax J(w) = where w denotes the spatial filter and
w

C and C; represent the covariance matrices of X; and X, respectively. Using the Lagrange multiplier approach, the
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optimization problem can be written as, L(A4,w) = wTC;w — A(wT C,w), where A is the Lagrange multiplier. The
optimization problem to find the spatial filter, w, requires the derivative set to zero, i.e., g—:} =2wTC, — 2awTC, = 0.

The solution of this optimization problem are the eigenvectors, M = C; 1 C;, representing the spatial pattern vectors at
the scalp. Here, the regularized CSP can improve the robustness in small sample setting (Lu et al., 2010), and the
largest eigenvector from, M; = (C, + aK)~1C;, and M, = (C; + aK)~1C,, represent the spatial pattern vectors at the
scalp with K assumed as an identity matrix (Lotte & Guan, 2011). Then, the classification was performed using simple
linear discriminant analysis (LDA) with 10-fold cross-validation. The computational pipeline, starting from the raw
EEG data to the classification, is shown in Figure 1C.

Results

We selected six EEG microstate prototypes based on the GEV and the CV criterion, as shown in Figure 2A.
Here, the CV criterion, pointing to the best clustering solution at its smallest value, reached the minimum value for
six microstates that are shown in Figure 2B, sorted in decreasing GEV. As expected for a visuomotor task, the highest
GEYV is for the microstate 1, corresponding to the activation of the visual cortex (visual imagery (Britz et al., 2010)).
The six microstate prototypes were backfitted to the EEG for 10 sec at the start of the FLS task (postulated to be the
start of building a cognitive-perceptual model (Cioffi, 1991; Renner et al., 2013) in novices), as shown in Figure 3,
for an illustrative novice (Figure 3A) and expert (Figure 3B).
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Figure 2: (A) Measures of fit plotted for the different microstate segmentation based on the global explained
variance (GEV) and the cross-validation criterion (CV). (B) The selected six microstate prototypes based on
the GEV and the CV criterion are sorted in decreasing GEV.
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Figure 3: Illustrative figure of the GFP of active microstates, (A) during 0 to 10000 ms at the start of the FLS
task of the EEG of a novice, (B) during 0 to 10000 ms at the start of the FLS task of the EEG of an expert.

The GFP of the active microstates at the start of the FLS task was subjected to CSP analysis to find the spatial
filters. Then, after applying spatial filters to the expert's and novices' EEG data and extracting features from them,
experts and novices were classified by LDA. We compared our microstate-based regularized CSP approach with
conventional regularized CSP, where the microstate-based regularized CSP approach achieved a classification
accuracy of 90.84% compared to 82.26% with the conventional regularized CSP. We also computed Kappa
coefficient, which is a statistical method for measuring the degree of agreement between classes. Kappa coefficient
method assigns zero to the random classification and one to the perfect classification (Townsend et al., 2006), which
is a more robust criterion than classification accuracy by considering the random agreement. Microstate-based
regularized CSP approach outperformed conventional regularized CSP with a Kappa coefficient of more than 0.9.
Importantly, the microstate-based regularized CSP approach identified topographical maps from microstates 2 and 4
as the largest eigenvectors (from M, = (C; + aK)™1C, and M; = (C, + aK)~1C; respectively) so parietal hotspot
was found to be important for discrimination (relevant for spatial binding (Zaretskaya et al., 2013) in the cognitive-
perceptual model (Cioffi, 1991; Renner et al., 2013)).

Discussion
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In the context of the perception-action cycle (Fuster, 2017), investigation of motor skill acquisition with various
simulation technologies (Riener & Harders, 2012) can provide insights. Specifically, perception and action form a
functional system through which the behavior is adapted in novice during motor learning to develop the perceptual
memory initially. Perceptual memory in experts allows them to execute the task and reduce the variability in action to
achieve perfection by updating the task parameters and refining them in the executive memory, a continuous process
of exploitative learning. The two crucial attributes of the perception-action cycle are perceptual and executive memory
(Fuster, 2004) which are subserved by the frontoparietal network (Marek & Dosenbach, 2018). In this study,
microstate 2 was present in the illustrative novice (Figure 3A), while microstate 4 was present in the illustrative expert
(Figure 3B) during the first 10 sec of the FLS task. It can be postulated that microstate four is associated with the
activation of the left inferior parietal lobe (Numssen et al., 2021) since experts are expected to have the action
semantics knowledge (van Elk, 2014). Also, a global Gestalt perception (Zaretskaya et al., 2013) is postulated to be
present in the experts due to their experience. Then, the first 10 sec of FLS task-related brain states were captured in
the illustrative expert and novice (Figure 3) also by the microstate 1 (corresponding to the activation of the visual
cortex (Britz et al., 2010)), microstate 3 (corresponding to the attention reorientation (Britz et al., 2010) and medial
frontal cortex activation (Gehring & Fencsik, 2001)), and the microstates 5 (topography comparable to microstate 3).

The scalp topography for the first spatial filter using our microstate-based regularized CSP approach identified
topographical maps from microstates 2 and 4 as the most significant eigenvectors. Then, our microstate-based
regularized CSP approach achieved classification accuracy greater than 90%. Here, microstate analysis applied a meta-
criterion favoring the highest signal-to-noise ratio (Custo et al., 2017) that improved the accuracy when compared to
that of conventional regularized CSP. Furthermore, microstates 2 and 4 as the most significant eigenvectors illustrated
the importance of the EEG electrodes overlying the parietal cortex for the classification of experts and novices during
the FLS task. Here, microstate 2 was dominant in the novices, while microstate 4 was dominant in the experts. While
microstate 2 is comparable to right-frontal left-posterior microstate A of the prototypical microstate classes that
account for most of the variance in resting-state EEG (Khanna et al., 2015), microstate 4 hotspot overlying
temporoparietal junction and left inferior parietal lobe (Numssen et al., 2021) can be related to the intact perception
of global gestalt (Rennig et al., 2013) which needs further investigation using EEG source localization. Also, Figure
3 illustrates the sequential flow of information between different brain states that can be related to perception-action
coupling at the start of the FLS task, where EEG microstate sequences are known to be non-Markovian and
nonstationary (Sikka et al., 2020). Here, recurrent neural networks can learn the underlying temporal dynamics and
provide latent representations that can be sensitive to factors such as stress (Sikka et al., 2020). Therefore, studies
need to investigate the temporal dynamics of microstates that the CSP approach could not capture in this study.
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Figure 4: An adaptive VR-based training paradigm to facilitate error perception by highlighting the error in
the 2D video feedback when the error perception is lacking in the subject.

A process for achieving interface and environment fidelity has been developed for the development of the Virtual
Basic Laparoscopic Surgical Trainer (VBLaST) (Chellali et al., 2016). Then, Dutta et al. (Dutta et al., 2021) showed
the importance of the brain-behavior relationship for investigating the neuroergonomics of the physical and virtual
simulators that are crucial for validating Virtual Reality (VR) technology (Kamat et al., 2022). Then, monitoring the
temporal dynamics of the brain-behavior can also allow an adaptive VR-based training paradigm (Zahabi & Abdul
Razak, 2020), for example, for operant conditioning that has been shown feasible in our prior application for stroke
rehabilitation (Kumar et al., 2019). Here, the VR training can be adapted based on the user's capabilities, performance,
and needs (Zahabi & Abdul Razak, 2020) identified from brain-behavior monitoring. Microstate topographies can be
used as a marker of proficiency such that the FLS psychomotor tasks with increasing task complexity can be
progressed in the simulator as the novice trainee achieves proficiency towards FLS certification that uses all the five
psychomotor tasks. For example, microstate 4 was associated with the activation of the left inferior parietal lobe
(Numssen et al., 2021) related to the expert skill level (van Elk, 2014). In this study, the novice trainee attempted the
most complex FLS suturing with an intracorporal knot tying task, so they had to start with building the perceptual
model for task performance in the 3D environment based on 2D video feedback that is error prone (Tanagho et al.,
2012). Figure 4 shows an application of online EEG microstate (brain) monitoring of subject-specific error perception
that can be compared with the error prediction from the 3D (behavior) video data (from FLS box trainer) to facilitate
subject’s error perception by highlighting the error in 2D video feedback. Then, adjuvant treatment with portable
neuroimaging guided non-invasive brain stimulation may be feasible to facilitate error-based learning (Walia et al.,
2021).

In our prior work (Walia et al., 2021) on evaluating the feasibility of portable neuroimaging during the FLS task,
we found that the average cortical activation in novices was primarily at the left pars opercularis of the inferior frontal
gyrus involved in cognitive control (Levy & Wagner, 2011). Published studies have shown that the inferior frontal
gyrus and the pre-supplementary motor area (pre-SMA) are involved in stop-signal task performance (Seidler et al.,
2013) that is relevant in quick error correction. Then, the frontopolar prefrontal area (Walia et al., 2021) was more
active in the experts, which may be related to the manipulation of (learned) structured information (Kroger & Kim,
2022). Specifically, neuroimaging of the rostrocaudal features of the frontal lobes that are associated with the varying
degree of information processing complexity (Thiebaut de Schotten et al., 2017) may be relevant in driving closed-
loop adaptive VR such that the task difficulty can be individualized to avoid stress response (also can be monitored
with neuroimaging (Sikka et al., 2020)). Then, the supplementary motor area complex (SMA) is postulated to play the
central role in descending from the prefrontal to the motor cortex for skill-related information flow. Here, SMA is
involved in planning complex motor finger tasks (PE et al., 1980), considered the programming area for motor effector
subroutines in bimanual coordination tasks. SMA has been suggested to form a queue of time-ordered motor
commands before voluntary movement is executed via the descending pathways from the primary motor cortex (M1).
In this study, microstate 5 is postulated to capture the SMA-related brain activity, which was more frequent in the
experts than novices.
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