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ABSTRACT

Over the past few decades, simulator use has increased greatly, due in part to its cost-efficiency and ability to provide
training experiences that would be impractical or unsafe to conduct otherwise (e.g., emergency procedures). This
increase in simulator use has coincided with an explosion in “big data,” more specifically, human performance data
that are collected from a large number of learners (n), measured variables (v), and measurements per unit time (t)
(Adjerid & Kelley, 2018). However, as the resulting corpus of human performance data expands, it becomes
increasingly more difficult to mine for trends, resulting in a large pool of recorded data that is not immediately useable
without extensive workarounds, manpower, or software algorithms. For example, consider the use case of simulated
Air Force engagements. At any single Air Force training facility, there could be simulator records from hundreds of
training scenarios per year with a variety of different characteristics (e.g., offensive counter-air maneuvers, defensive
counter-air maneuvers, two-ships, four-ships, etc.). However, certain limitations of the data, such as unstandardized
start and stop times of the engagements, hinder the ability to easily mine the data for historical norms, proficiency, or
other human performance outcomes. As a result, the ability to interpret or draw conclusions from the data is much
more limited, despite the robust pool of data. In this paper, we present the findings from a multi-year research and
development effort that focuses on extracting meaningful human performance metrics from a “data lake” of roughly
3,500 data recordings that represent 10,000 training scenarios over the course of more than 15 years. We present best
practices and lessons learned for parsing the data lake contents so that readers can better understand the implications
of data limitations and how to address them in their own work.
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INTRODUCTION

As a result of advances in technology, training devices used by the United States Air Force (USAF), to include
simulators, have resulted in an influx of recorded data. As the emphasis on the value of training and human
performance data has increased, organizations such as the USAF have prioritized the collection of a large corpus of
human performance data in order to inform important outcomes such as proficiency-based training. While such large
datasets are beneficial, there are several notable challenges to properly managing and analyzing the data.
Unfortunately, such issues are often the result of small decisions, oversights, or a failure to communicate data analysis
priorities in the initial stages of data collection and storage, all of which can result in adverse and costly consequences
when trying to analyze the data. As a result, the following paper discusses important considerations when collecting
human performance data as well as a case study outlining the analysis of a data lake of over 10,000 training exercises.
More specifically, the following paper will highlight how a small feature in the data, the lack of standardized exercise
start and stop times, severely minimized the initial utility of the data and lead to the implementation of an extensive
algorithmic workaround. Further, the objective of this paper is not only to present a unique case study to demonstrate
the importance of thoughtful data collection processes but also to present a challenge to the military community on
how to progress human performance data analytic capabilities moving forward.

The Power of Playback: Recording Human Performance Data

As technology capabilities expand, additional opportunities are available to collect and interpret diverse and extensive
human performance data. For example, in many domains (e.g., health care, professional sports, the military), the
increase in personalized and affordable wearable sensor devices (e.g., Apple watches) has resulted in a corpus of
health-related data that can be tracked longitudinally. Additionally, the increased accessibility and decreased cost of
storing large amounts of data has further encouraged the creation of large datasets (Fan et al., 2014). Both of which
(e.g., more accessibility, decreased costs) will only continue to facilitate additional data collection moving forward.
As a result of this trend, there has been a rather drastic prioritization on the consumption of data to inform research
through collecting, mining, and analyzing large datasets (Fan et al., 2014).

While the idea of high-dimensional and large datasets is exciting and presents several potential advantages, previous
research has also highlighted some of the challenges that come with the exponential expansion of data, including how
to manage and interpret large amounts of organizational data, as well as the challenges of relying solely on data-driven
approaches to interpret the data (Fan et al., 2014; Orvis et al., 2013). Further, across most domains, there is a general
consensus that capturing as much data as possible is a best practice. This notion may fail to address, and therefore
simplifies, some of the complexities and challenges that come with analyzing large datasets. More specifically, a lack
of forethought on the front end of data collection processes, such as how data is captured and stored, can limit the
usability of the data without extensive workarounds when it is later analyzed on the backend. This particular issue
highlights the notion that oftentimes it is easier to collect data than it is to quickly find useful and meaningful assertions
from the data (Tsai et al., 2015). As a result, while the overall sentiment of collecting large datasets represents a
valuable effort, overlooking certain features of the data that limit or prevent analyses can misrepresent the value of
datasets without extensive workarounds.

The following paper addresses this issue by describing a case study of a large corpus of human performance data from

recorded USAF simulator training sessions. More specifically, how certain features of the data, stored within a large
data lake, severely limit the usability of the data without extensive algorithmic workarounds. As it relates to the value
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of human performance data, if human performance data is not immediately usable or has several limitations, then the
value of that data is also limited. In the case of the USAF and the military at large, human performance data that is
restricted presents as an operational disadvantage and limits the ability to accomplish proficiency-based training and
other human performance informed outcomes.

CASE STUDY
Background

In recent years, the USAF, like many other military organizations, has become increasingly reliant on the use of
simulators to provide training. Simulators are advantageous in that they offer a more budget-friendly approach to
training while also minimizing adverse safety outcomes (e.g., crashes). Further, simulators are able to mirror more
complex threats and emergency procedures and therefore can provide a heightened level of readiness for operators.
As the use of simulators has increased, recordings of simulator training exercises have also increased, resulting in a
source of valuable training data. While previously such recordings were used almost exclusively for warfighter
debriefs, the push for longitudinal and dynamic training data has resulted in a multitude of tools that can record and
play back the exercises (e.g., the Live, Virtual and Constructive Network Control Suite [LNCS]) as well as tools that
can extract data from the recordings (e.g., Performance Evaluation Tracking System [PETS]; Schill et al., 2014;
Schreiber, 2013). In essence, the USAF has begun to mirror other industries (e.g., professional sports) that have
prioritized archiving and analyzing recordings as a way to inform training and other performance outcomes above and
beyond debriefs. As the USAF and the military at large seeks to improve data analytic capabilities of the increasing
corpus of human performance data, the number of such tools will also likely expand.

Further, advances in data mining approaches have provided additional opportunities to examine training and human
performance outcomes. In many cases, such as the case study described below, data from the recordings as well as the
raw files of the recordings have been deposited in a data lake for future analysis. However, despite the general
sentiment that capturing more data is beneficial to understanding different outcomes, issues within the data collection
and storage process can limit the immediate usability of large datasets, suggesting that only considering the collection
of large datasets is not sufficient in order to extract meaningful training and human performance outcomes. As a result,
the following case study discusses a 15-year research effort that has resulted in a data lake of 3,500 data recordings
that represent 10,000 training exercises. The following case study will first discuss an overview of historical issues
with the data as well as provide a more granular examination of an issue regarding the lack of standardized exercise
start and stop times. Although highly specific, the objective of this examination is not only to speak to the community
most affected by this issue, but also to present a use case for others to proactively consider similar issues with human
performance data and the consequence of those issues in their own work.

Documented Human Performance Issues

Too numerous to go into detail in the current paper, there are a number of issues that can come into play naturally
with previously archived historical data; we briefly mention them here. The first, and most common, is loss of
information. Many historical documents about training which was taking place at a given time is separate from the
recordings of the data itself and difficult to accurately link the documentation to the appropriate recording. In many
cases, the document itself is also missing. As such, any given recording might not contain or may be missing key
information about who was flying in it, where it was flown, what type of scenario was flown, weapons loadouts, and
the list goes on. Additionally, historical data may be more prone to bugs and errors that are more difficult to
troubleshoot given the gaps in time between data collection and analysis. For example, two common, very problematic,
examples include the velocity and acceleration vectors necessary for calculating G-load not existing properly in the
data. In addition, in some cases, munitions send mistimed detonation and deletion messages resulting in extra, not real
munitions to appear in the data. While such issues drastically impact the usability and quality of stored data due to
prevalence of missing information or data, the lack of standardized start and stop times within the data provide an
example of a significant yet simple problem that has sweeping consequences to the analysis of human performance
data. More explicitly, how recording simulator training scenarios were started and stopped (and therefore archived)
has drastically impacted the utility of large datasets above and beyond missing data or time-related errors.

The Importance of Start and Stop Times
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Although several issues have been noted when analyzing archival data from simulator training exercises, a particularly
simple but significant issue is the lack of standardized exercise start and stop times. During recorded simulator training
exercises, instructors frequently activate or “start” entities (e.g., platforms), which pushes a protocol data unit (PDU)
across the network. In some cases, this happens to all entities (a “global start”) and in other cases this happens to just
one or a handful of entities (a “start” or “unfreeze”). During the exercise itself, the functionality of this feature is to
activate and manipulate different entities for the different training scenarios (relevant to the instructors) and for the
PDUs to accurately communicate across the system (relevant to software engineers who create and manage the
network). However, the functionality of the start and stop times outside of the exercise doesn’t map on the functionality
needed for data analysis such that the start and stop times fail to capture the actual periods of performance within the
exercise. For data analysis, the functionality of starts and stops represent the period of time to capture and summarize
performance data, much akin to tabulating points/statistics according to a sporting game time “clock” starting and
stopping at the beginning and end of a game. Quite problematic for analyses then, the start and stop times recorded in
the data are represented by an unstandardized smattering of start and stop PDUSs, that are either present, not present,
or inconsistent (multiple starts, no stops, etc.). The end result is a very large database of scenarios (thousands) in which
the scenarios cannot be automatically partitioned correctly to the actual start and stop times. If automatic partitioning
cannot occur, then this completely prohibits aggregating the database for analyzing summaries across scenarios and
therefore, creates the inability to derive performance outcomes from the data.

To illustrate, consider an NBA basketball game. If you were to record the data from a regulation NBA basketball
game, it would last 48-minutes. However, if you “started” recording points 10 minutes early (i.e., capturing baskets
“scored” during warm-ups) and “stopped” the data capture 30 seconds early, the outcome of who won or lost could
be different (i.e., wrong) than if you correctly started/stopped a data recording for the game. The incorrect start and
stop times of the game WILL drastically alter the performance outcomes and assertions made regarding what happened
during the game itself would be flawed. Now consider you were to go to Madison Square Garden and continuously
recorded data such that you captured multiple games. You would then have an aggregate of all the outcomes, such as
points scored across multiple games, instead of outcomes for just one game. In that case, even mediocre players could
rack up an impressive +50 points. More specifically, if you were to look at the aggregate data as if it were a single
period of performance, or game, your analysis of the game and the players would again be gravely misinformed. In
this case, the lack of start and stop times for each relevant period of performance creates an inaccurate aggregate
dataset. In both cases, analyzing simple statistics for the season would be wrong; for example, the total wins/losses
for each team would be incorrect. Additionally, any given player’s performance per game (e.g., shots scored) would
also be incorrect. As a result, the ENTIRE database has lost much of its analytical value, due solely to incorrect start
and stop times.

Similar to the basketball example above, the lack of a standardized exercise start and stop times within simulator
training recordings has resulted in two key problems for analyzing human performance data, both of which have
detrimental implications for drawing conclusions regarding proficiency-based training. First, a lack of standardized
exercise start and stop times can fail to identify the actual period of performance of the exercise. Meaning, the lack of
a standardized start and stop time results in the entirety of the recording being captured, which can include (1)
extraneous events within the recording (see Figure 1) or (2) truncate important events (see Figure 2). As a result, any
analyses may also include events outside of the period of performance (similar to analyzing the basketball game with
the warmup included) or fail to include important events (similar to analyzing the basketball game after failing to
record the first quarter). In either case, failing to identify the correct period of performance within the recording can
result in an inaccurate analysis of the data such that your outcomes may include data outside of the period of
performance and/or may truncate the period of performance, therefore excluding key events. Such a problem is then
compounded when you have thousands of scenarios in a data lake.
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Figure 2. Identifying Exercise Periods of Performance (Truncated Data)

Next, in any single recording, there may be one exercise or several (e.g., an hour-long session may have several
scenarios). Since standardized start and stop times of the exercises were not implemented when recording the data,
the beginning and end of each individual exercise within the recording is not indicated. This issue is particularly
relevant when a recording has multiple exercises. Because the exercises within the recording are not properly
indicated, the end result can be the incorrect analysis of human performance data (similar to recording multiple
basketball games but analyzing the performance data as if it were just one game). Meaning, the lack of a standardized
start and stop time results in the entirety of the recording being analyzed as one exercise instead of multiple exercises
(see Figure 3). More specifically, outcomes such as flight time, shots fired, and kills would be drastically different if
the recording was being analyzed as one exercise opposed to correctly analyzed as three separate exercises. In this
case, the lack of standardized start and stop times of the exercises results in an unreliable period of performance which
limits the ability to analyze and glean meaningful insights from the data. Similarly, this issue can further compound
with the previously described issue such that not only are multiple exercises within a recording being aggregated, but
there also is substantial extraneous and/or truncated data within the recording. The end result is a dataset in which
human performance outcomes cannot be confidently extracted without extensive workarounds and data cleaning, both
of which can be time consuming and costly.
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Figure 3. Identifying Exercise Periods of Performance (Multiple Exercises)
In summary, unstandardized exercise start and stop times provide an example of a tangible and simple issue that has

massive implications that impact the ability to analyze the data for meaningful human performance outcomes. As a
result of a lack of systematic use of start and stop times in simulator training recordings, the stop and start time of each
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exercise, and more specifically the desired period of performance within each exercise, was not documented. Since a
recording may have several exercises and/or partial exercises (e.g., an exercise was reset) as well as extraneous “dead
time” (e.g., set up of simulators and features of the exercise), periods of actual performance are not immediately clear
and therefore cannot be used to extract meaningful and accurate training and human performance outcomes. Simply
put, the consequence of a lack of a standardized process to record start and stop times has rendered the data limited
without extensive workarounds such as software algorithms. In doing so, the data is either (1) not immediately useable
and therefore the intended outcomes are unable to be derived or (2) the data is used incorrectly, and the outcomes
derived from the dataset are based on incorrect periods of performance and therefore are wrong. In other words, human
decisions, and the lack of standardized processes on the front end of data collection prevent or severely undermine the
benefits of collecting large datasets without costly consequences.

Start and Stop Solutions

As a result of the lack of standardized start and stop exercise times, additional workarounds had to be implemented in
order to properly analyze the data. In our research, we developed an analytical approach (a “start and stop logic™), in
order to correctly and automatically identify exercise start and end times (e.g., periods of performance) within a large
data lake of archived data. Given the previously described two primary concerns regarding start and stop times, the
purpose of the logic was twofold. The first purpose of the logic is to trim the exercises to include only the relevant
period of performance from each exercise. Therefore, the logic extracts only the appropriate data, or period of
performance, from each exercise for analysis. Second, the logic sought to correctly identify and separate multiple
scenarios/exercises within one recording. In doing so, the logic provided the ability to identify the correct periods of
performance for analysis. Taken together, the goal of the logic was to identify/partition individual exercises and
capture the meaningful periods of performance within such exercises while simultaneously avoiding excluding key
performance data.

The initial design of the algorithmic logic was primarily based on creating a weapons range for all entities (e.g., F-35)
such that the exercise start time would be triggered when the first set of entities were within a designated range from
each other. Likewise, the exercise stop time would be triggered when the last set of entities were outside the designated
range. Weapons ranges were identified as the primary priority given the importance of shots as a key feature of the
period performance as well as a key performance outcome. The range distances used to inform the logic was created
by multiplying the notional weapons range of each individual platform (e.g., the weapons range of a F-16) by a max
range factor developed by subject matter experts (SMESs). The max range factor was created in order to identify
weapon employment ranges without disclosing actual shot range capabilities. More specifically, the calculated range
would create a buffer such that the range was exclusive enough not to trigger too early when entities were extremely
far away but inclusive enough to not miss any key events (e.g., shots fired). Depending on the platform, most of the
ranges used to inform the logic were between 50-80 miles.

While the logic in its original iteration was fairly successful, additional modifications were added to the logic in order
to refine the accuracy of the logic. For example, initially, logic for long range weapons had to be modified to address
pre-mature triggering due to too large of a range (e.g., triggers happened immediately). Further, of in more complex
distributed training scenarios, entities that were being dragged into place were triggering the logic with inactive entities
while being moved. As a result, the logic was modified such that both entities had to be active to trigger the logic.

In order to test the efficacy of the start and stop logic, 25 historical recordings were examined. Each scenario was run
on the most recent version of PETS to get a computer-generated start and stop time for each scenario. Separately, a
SME watched each scenario giving it a start and a stop time. The start and stop times indicated by the SME were then
compared to the start and stop times that were selected by the logic. For the start times, 100% of start times were
within acceptable ranges (5 seconds or less difference when compared with the SME), demonstrating high efficacy of
the program at generating proper start times. In the case of stop times, however, only 60% were within acceptable
ranges. However, many of those outside of the acceptable range were only slightly outside the acceptable range (7-
10 seconds). In either case, the logic did not miss any important events taking place, indicating that while the logic
may still be capturing some extraneous data (e.g., 7-10 seconds worth), the logic is successful at capturing all necessary
events within the period of performance.

Lessons Learned and Next Steps
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In the process of analyzing the large corpus of human performance data, several key insights and lessons learned
noted. To begin, when developing the algorithm that informed the logic, the initial basis for the development of the
logic prioritized shots, as previously mentioned. Although the rationale for this was sensical based on the importance
of shots as a key performance outcome, focusing on one outcome failed to consider the implications of other outcomes
(e.g., triggering the logic early in the case of long-range weapons). More explicitly, by focusing on one goal or
objective instead of the collective goal served initially as a barrier to the development of a more comprehensive logic.
Another key lesson learned from this process is the importance of developing a validation plan. At several stages of
the development of the logic, pre-planned validity checks were implemented to better understand the progress of the
logic. For example, after the initial logic was developed, a multi-disciplinary team (e.g., engineers, scientists, SMES)
observed the logic’s ability to implement start and stop times in a series of randomly selected exercises. As a result,
the validation process was how the team corrected for errors.

In addition to the lessons learned related to developing the logic, two much broader experiences occurred that provided
key insights for the team, both of which have direct implications for other multi-disciplinary teams interpreting human
performance data. As previously mentioned, the functionality of the start and stop times differed based on which group
was being considered. More explicitly, for the instructors, the purpose of the start and stop times were to manipulate
the training exercise. However, in the case of the engineers, the start and stop times were more of a manifestation of
PDUs accurately communicating within and across the networks. Further, the purpose of the exercise start and stop
times for the scientists was to correctly identify a period of performance in order to analyze the data for performance
outcomes. For example, because the ultimate goal of the scientists was to define the correct period of performance,
the use of “global” start and stop terminology was initially utilized to refer to the start and stop of the desired period
of performance. In contrast, and based on terminology utilized in the Distributed Interactive Simulation (DIS)
standards, global start and stop times more accurately reference the type of PDU pushed such that a global start
represents a PDU push that enables all entities. As a result, the scientists and engineers had a much different
interpretation of global start and stop times which served as a barrier to both communicating and problem solving.
Therefore, the functionality of start and stop times within the team had to be accurately and precisely defined in order
for team members to correctly interpret both problems and potential solutions for analyzing the data. This particular
example highlights the need for multi-disciplinary teams to examine and standardize language in order to ensure that
all team members are approaching the problem with the same lens. More explicitly, multi-disciplinary teams should
ensure that goals are accurately communicated across the team members and a standardized set of definitions is created
for terminology that may be domain or discipline specific.

Similarly, interpretations of problems with the logic needed to be standardized across the team to accurately capture
what aspects of the logic needed to be modified. For example, in the initial iteration of the logic, there were still issues
with capturing the correct period of performance due to activity of entities pre-exercise triggering the logic too soon.
In this case, the logic was triggering a start as the engineers had intended based on the specifications outlined by the
SME, however, the goal of capturing the correct period of performance was still not achieved as outlined by the
scientists on the team. This differentiation resulted in additional issues with communication as the logic was
simultaneously working correctly (for the engineers) and incorrectly (for the scientists) depending on which objective
was focused on. While it is pertinent for team members to understand the key objectives for their own tasking, team
members should also understand key objectives for other member’s tasking in order to wholistically comprehend and
solve the problem. This also requires a synthesis of knowledge across multi-disciplinary team members in order to
identify partial solutions that fail to address the collective goal. For example, even though the logic was initially
functioning, it required the input of the SME who was familiar with simulator exercises for the team to understand
that the logic was not capturing the actual periods of performance. In other words, it required each team member to
contribute their own understanding of the problem as well as their own expertise to understand that the initial solution
was not working. Once the problem was fully outlined for all members of the team, the team was able to work together
to create additional guidance for the logic (e.g., requiring both entities to be active) in order to prevent the previously
described problem.

Taken together, the lessons learned highlight the need for highly functional multidisciplinary teams when tackling
human performance data. Given the need for rigorous research methodologies, insight from an experienced SME, as
well as the need for highly technical software engineering skills, having multidisciplinary teams is crucial for success.
However, in order for multidisciplinary teams to be successful, it is pertinent that team members are able to
communicate and comprehend problems and solutions across the team.
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CONCLUSION

In conclusion, while human performance data can be extremely valuable, collecting, storing, partitioning, and
managing the data must first be considered on the front end in order to efficiently analyze the data on the back end.
More explicitly, collecting data without proper foresight of how certain features of the data may impact analytic
capabilities may limit the extensive efforts of data collection and for future use, prevents scaled growth. To that
extent, the paper outlines a case study describing the lack of standardized start and stop times when completing
simulator training exercises and the costly and time-consuming consequences of the lack of standardized data
collection processes. Such issues are costly in that not only do they require time (e.g., years of work) and effort (e.g.,
extensive labor across multiple disciplines) to fix, but also that the extraction of key performance insights that could
be used to inform training are delayed. As a result, the USAF is left with an untapped resource that could and should
be used to improve training and therefore, mission performance. Stated another way, the inability to immediately
draw certain human performance conclusions from previously recorded data is slowing down a more comprehensive
and well-informed approach to proficiency-based training. Which certainly impacts USAF training outcomes, but
also may have more consequential effects as training outcomes transitions to mission outcomes.

Identifying correct periods of performance are crucial for analyzing human performance data as incorrect periods of
performance can drastically impact insights derived from the data. This can include instances such as the
aforementioned case study (e.g., unstandardized start and stop times) as well as other use cases across military and
performance-oriented research. As a result, researchers should leverage the previously described case study when
outlining their own data collection and analysis methodologies. Further, the developed logic and validation process
may have additional implications for archived human performance research, especially in instances where periods of
performance may be identifiable based anticipating the occurrence of certain events (e.g., utilizing weapons range to
inform capturing shots fired).

As it relates to the USAF and military community at large, more formalized, and standardized processes must be
implemented in order to bolster human performance analyses and inform training outcomes, such as proficiency-
based training. More explicitly, a great emphasis must be made on converging the priorities of the military at large
(e.g., well-versed training data) with the priorities of the operators collecting the data. While operators must first
consider how to effectively implement and execute training in real time, there also must be a strong emphasis on
data collection methodologies and standard practices in order to facilitate performance analyses. This should be
done while considering both the importance of standardized processes as well as the burden of the operator. In
conclusion, this case study highlights the important lesson that just because data is being recorded and stored in a
large dataset or data lake does not mean that the dataset is immediately useable for many types of analyses.

REFERENCES

Adjerid, I., & Kelley, K. (2018). Big data in psychology: A framework for research advancement. American
Psychologist, 73(7), 899-917. https://doi.org/10.1037/amp0000190

Fan, J., Han, F., & Liu, H. (2014). Challenges of Big Data analysis. National Science Review, 1(2), 293-314.
https://doi.org/10.1093/nsr/nwt032

Orvis, K., Duchon, A., & DeCostanza, A. (2013). Developing Big Data Based Performance Measures: A Rational
Approach. The Interservice/Industry Training, Simulation & Education Conference (I/ITSEC), vol. 2013,
Orlando, FL.

Schill, N.P., Rowe, L.J., Gyovai, B.L., Joralmon, D.Q., Schneck, A.J., & Woudstra, D.A. (2014). Operational
alignment in predator training research [Paper presentation]. The Association for Unmanned Vehicle
Systems International, Orlando, FL.

Schreiber, B. T. (2013). Transforming Training: A Perspective on the Need for and Payoffs From Common
Standards. Military Psychology, 25(3), 294-307. https://doi.org/10.1037/h0094970

Tsai, C.-W., Lai, C.-F., Chao, H.-C., & Vasilakos, A. V. (2015). Big data analytics: a survey. Journal of Big Data,
2(1). https://doi.org/10.1186/s40537-015-0030-3

I/ITSEC 2022 Paper No. 22289 Page 9 of 9


https://doi.org/10.1093/nsr/nwt032

