

2021 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

IITSEC 2021 Paper No. 21315 Page 1 of 12

Integrating Simulation-Based Training with

 Future Integration Training Environment (FITE) Assistive Aids

Matthew Franz, William Helfinstine, Matthew LeVan, Dale

Moyer, Mark Torpey, Deborah Wilbert

Ryan Brown

Lockheed Martin

Rotary and Mission Systems

Training and Education Command /

Training Support Center-29 Palms

 Andover, MA Twentynine Palms, CA

matthew.franz@lmco.com, bill.helfinstine@lmco.com,

matthew.d.levan@lmco.com, dale.moyer@lmco.com,

mark.torpey@lmco.com, deborah.wilbert@lmco.com

ryan.s.brown@usmc.mil

ABSTRACT

Integrating legacy and evolving simulation systems complicates planning, creating, and executing training activities.

Ensuring interoperability leads to technical problems requiring M&S experts to understand simulation protocols and

bridge conceptual gaps between each system’s implementation of the simulated world. Even with expertise, designing

an interoperable system requires time-consuming and error-prone processes and often results in simplified solutions

that bound system capabilities to that of the least-capable component. Focusing on integrating Marine Corps Air and

Ground simulators at the Marine Air Ground Task Force Training Command (MAGTFTC) Battle Simulation Center

(BSC), the FITE program has created FITEware, a tool suite improving the ability to execute simulation-based training

activities using innovative tools and a flexible gateway architecture. Users focus on deciding which system capabilities

and types of entities are needed while assistive aids determine the specific details of how each system will model those

entities, identify protocol arrangements to link those systems together, and produce the complex configurations needed

by simulation systems and gateways to provide fuller interoperable functionality. Further, these configurations can

easily be adapted to subsequent similar training events, saving even more time and effort.

This paper details the methods by which this research has eliminated or reduced time-consuming and error-prone

aspects of setup through automation and describes how the flexible gateway architecture maintains capabilities across

integration. With FITEware in use, MAGTFTC BSC in collaboration with the 29 Palms Training Support Center

(TSC) found that building a library of solutions to common simulation interoperability problems has improved their

ability to execute historically difficult training activities. Furthermore, BSC and TSC found these tools offer more

persistent interoperable training solutions and opportunities to home station units and provides a pathway to achieve

similar results for other simulation systems in large-scale, service-level training events.

ABOUT THE AUTHORS

Ryan Brown is the Resource Integration Coordinator for USMC Training and Education Command’s Training

Support Center aboard the Marine Corps Air Ground Combat Center in 29 Palms, California responsible for the

integration of Live, Virtual, and Constructive training resources to enhance Fleet Marine Forces training opportunities.

Mr. Brown has supported USMC training efforts aboard MCAGCC for a decade in both industry and government

roles through modeling and simulations, training innovation, applied research, and technological integration.

Matt Franz is a Staff Software Engineer at Lockheed Martin and the lead developer of the ONR FITE program. Matt

has over fifteen years of experience developing training software and integrating distributed systems across the US

Navy, Marine Corps and Air Force. Matt graduated with a B.S. in Computer Engineering from the University of

Delaware.

William Helfinstine is a Senior Staff Software Engineer at Lockheed Martin and led the design and implementation

of the ONR FITE bridge architecture. Bill has over 27 years of expertise in the modeling and simulation domain

supporting a wide range of customers. Bill has extensive HLA experience, and maintains the RTI-s HLA

2021 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

IITSEC 2021 Paper No. 21315 Page 2 of 12

implementation for the US Navy. Bill received his B.S. in Computer Science from the Massachusetts Institute of

Technology.

Matthew LeVan is a Senior Software Engineer at Lockheed Martin with over twenty years of experience working on

constructive simulators, during which his principle focus was developing network interoperability solutions. He

graduated from Vassar College with a BA in Computer Science. Matt’s primary focus on ONR FITE was the design

and implementation of the protocols and translations within the FITEware gateway.

Dale Moyer is a Staff Software Engineer at Lockheed Martin who led the ONR FITE Topology Solver focused

research. He has over seventeen years of experience developing for constructive simulations on a wide variety of

subjects including simulation architecture design, algorithm design and implementation, optimization, sensor and C4I

modelling, and autonomous and semi-autonomous behavior design and implementation. He graduated from

Worcester Polytechnic Institute with a B.S. in Computer Science.

Mark Torpey is a Lockheed Martin Associate Fellow and Principal Investigator at Lockheed Martin Rotary and

Mission Systems (RMS) and is the PI for the ONR FITE Simulation Battlespace Services research. Within RMS’s

Advanced Simulation Centers, Mark leads the Constructive Simulation and Interoperability Lab, where his research

has included distributed simulation, gaming and web technologies, immersive and augmented reality, and modeling

and simulation interoperability. Mark received M.S. and B.S. degrees in Computer Science from the University of

Massachusetts at Lowell and has over 26 years of experience in modeling and simulation research and development.

Deborah Wilbert is a Senior Staff Engineer at Lockheed Martin who led the ONR FITE enumerations-oriented

research. Deborah has over thirty years of experience in the field of distributed simulation with particular interest in

the area of graphical interfaces for systems management and configuration. Deborah holds a Bachelor of Science

degree in Computer Science from the Massachusetts Institute of Technology.

2021 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

IITSEC 2021 Paper No. 21315 Page 3 of 12

Integrating Simulation-Based Training with

Future Integration Training Environment (FITE) Assistive Aids

Matthew Franz, William Helfinstine, Matthew LeVan, Dale

Moyer, Mark Torpey, Deborah Wilbert

Ryan Brown

Lockheed Martin

Rotary and Mission Systems

Training and Education Command /

Training Support Center-29 Palms

 Andover, MA Twentynine Palms, CA

matthew.franz@lmco.com, bill.helfinstine@lmco.com,

matthew.d.levan@lmco.com, dale.moyer@lmco.com,

mark.torpey@lmco.com, deborah.wilbert@lmco.com

ryan.s.brown@usmc.mil

OVERVIEW

The Future Integrated Training Environment (FITE) program is an Office of Naval Research (ONR) Future Naval

Capability (FNC) research activity. The objectives of the program are to enhance interoperability between existing

and future United States Marine Corps (USMC) air and ground training simulations. The USMC has many simulation

capabilities but most of them were never required or designed to be interoperable with each other, and therefore like

many other simulation environments, present interoperability challenges when combined. The research presented

here focuses on two specific interoperability challenges – protocol interoperability (e.g. are the sims speaking

compatible languages and do they understand what each is saying), and enumerations consistency (e.g. is an M1A1

tank published by one simulator interpreted as an M1A1 tank in all others). There are many other interoperability

challenges, with perhaps the most significant being synthetic environment (to include terrain), and other aspects of

the FITE program focus on those other issues. Historically, protocol and enumerations interoperability are solved by

a team of Modeling & Simulation (M&S) experts, leveraging a large toolkit of tools, standards, and significant

expertise. Events that combine simulations are intentionally designed by experts, and there are well-defined processes

(IEEE 1730-2010) that most large-scale environments follow. A desired outcome of this research is a capability that

reduces or eliminates the need for significant M&S expertise and contractor support, leveraging assistive aids to help

less-expert users configure and manage less-structured training activities.

Processes for configuring data to conduct interoperable exercises between heterogenous simulators are labor intensive,

error-prone, and time-consuming (Dvorak, 2019). Working with staff at the Marine Air Ground Task Force Training

Command (MAGTFTC) Battle Simulation Center (BSC) and Training and Education Command (TECOM) Training

Support Center (TSC) 29 Palms, we identified processes that we believed could be improved with assistive aids. In

addition, various shortfalls and concerns were highlighted relating to how one of these events would be configured,

with a collection of various gateways and tools, and the strengths and weaknesses of those tools/gateways and even

of the simulations themselves. In TALONEX 2-18, for example, MAGTFTC BSC and TSC-29 Palms designed the

Tactical Integrated Training Environment (TITE) for command post exercise (CPX), battalion-level staff training.

TALONEX 2-18 federated the AH-1 Full Flight Simulator (FFS), UH-1 FFS, and AV-8 FFS across the Aviation

Distributed Virtual Training Environment (ADVTE) with Virtual Battlespace 3.9 and the MAGTF Tactical Warfare

Simulation (MTWS). TITE used a series of bridges and gateways to integrate Distributed Interactive Simulation (DIS)

protocol version 6 and version 7 with High Level Architecture (HLA) versions 1.3 and 1516 utilizing various

federation object models (FOM). Furthermore, each federate stimulated its equivalent or associating operational

system; most notably, the Command and Control Personal Computer (C2PC), Advanced Field Artillery Tactical Data

System (AFATDS), Tactical Handheld System (THSv2), and Common Logistics Command and Control System

(CLC2S). The scenario called for approximately (70) 3-D model variations and (100) munition variants. Thus, to

accomplish this federation a simulation technician had to manually map every enumeration in every federate to a

The views presented in this paper are solely that of the authors and do not necessarily reflect the opinions of nor

endorsement by TECOM, RTPD, TSC, MAGTFTC, or any DoD organization unless otherwise stated in referenced

directives or publications.

2021 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

IITSEC 2021 Paper No. 21315 Page 4 of 12

master scenario enumeration list. Ideally, this list would match SISO standards, but there are disparate protocols and

diverse model repositories for each, and often archaic training systems make this process difficult. The manual

association of models and mapping proves time-consuming as the simulation technician is chained to each disparate,

federate system’s organic gateway capability; or, the simulation technician’s own technical competency on each

disparate system. The status quo requires each federate to conduct its own “parking lot” and procedural testing to

ensure credible integration of systems. If, for example, a system’s organic gateway can only conduct one-to-one

pairing versus a many-to-one or one-to-many pairing, then precise enumerations require manual input to ensure that

interoperability. To design and test interoperable training with the tactical fidelity, precise interaction, complexity,

and depth in this training event, TALONEX 2-18 demanded (5) personnel commit five weeks to manual model

mapping, testing, and rehearsal to complete. Due to the model and enumeration disparity across all federate systems

and the labor-intensive process, however, TITE could only use a limited number of munitions and many 3-D models

proved non-existent or inconsistent across system repositories. Ultimately, this leads to incomplete or limited training

options in federated environments, does not allow for persistent application of many synthetic training designs, and

builds an inherent distrust in the stimuli due to the federation “isms”. The issue with Marine Corps synthetic training

is not demand; rather the design and preparatory work proves more time intensive and exhausting than the Marine

Corps’ current simulation support contracts can provide on a persistent basis.

In response to the design pain of TALONEX 2-18, MAGTFTC BSC and TSC- 29 Palms attempted a less complex

and more centralized approach to TITE events using a VBS-based only scenario through the use of dynamic filtering.

Mitigating the entity count load on the VBS machines while keeping a constructive simulation level capability required

the implementation of 59 filters across 25 VBS machines and the MAGTF Mobile Flight Rehearsal Simulator

(MMFRS) using Joint System Protocol Analyzer (JSPA). While this design provided higher-fidelity to the training

audience it lacked the inherent benefits of community-based training system use in the design, and demanded roughly

the same amount of preparation time as TALONEX 2-18 due to the intensive nature of the required filters. TALONEX

2-19 only federated VBS 3.9, VBS Fires, and MMFRS with a total entity count of 1,700 across 25 machines; but it

took roughly four weeks to ensure the design worked to its purpose, which again, proves unsustainable for persistent

interoperable training. Simply, while other services or organizations can throw support staff or money at these

problems, the USMC cannot, and the BSC and TSC are looking for technologies that allow them to be more

agile in servicing the training requests they are responsible for supporting in a consistent and persistent

manner.

FITEWARE RESEARCH AND INNOVATIONS

Our research first focused on construction of a next-generation gateway, and tools that enable less-expert users to

configure and manage execution of a training activity using the gateway. A traditional protocol bridge often has two

significant design characteristics that have some drawbacks. First, they often utilize a single internal data model that

provides a superset of all supported external data models, and secondly, they tend to be designed around the concept

that a “message in” equates to a “message out” (e.g. stateless

to the extent they can be, ignoring protocol differences).

While these assumptions allow many design simplifications,

a significant disadvantage is they encourage a least common

denominator effect that can result in degradation in the

translation from one protocol to another. This least common

denominator effect in its worst-case results in the entire

system of simulations being dumbed down to the capabilities

of the least capable component, for each aspect of

interoperability (Ceranowicz et al. 2002). The approach we

explored doesn’t force a single internal data model, but

instead retains the state in the native object model of each

protocol, and then defines translations on the various forms

of the state that convert between them. In this way, the

characteristics and idiosyncrasies of one protocol don’t affect

others, as might happen with a single internal data model.

More importantly, the marshalling and control logic that

implements each protocol can reason upon the data in the

Figure 1: Configuration with a single internal data model

that everything converts to/from.

2021 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

IITSEC 2021 Paper No. 21315 Page 5 of 12

format that it expects in an independent manner, so that subtle effects of complex protocol aspects like dead-reckoning,

heartbeating, queries, thresholding, timestamps, etc. can be managed independently and correctly per protocol.

Through pairwise translation between protocols, we

attempt to optimize how each pair of protocols are

connected. In the extreme, this would require a

significant number of translations, which not only

requires effort to implement but also to maintain. To

combat that, we enable transitive translation, so that only

the specific pairs that require optimization need to be

built, but any pair of protocols can be bridged as long as

there is a path through other defined transitions. As these

are in-memory conversions rather than network hops, the

extra overhead of transitive translation turns out to be

minor. For this research, support for DIS6 and DIS7, and

HLA support for RPRv1, RPRv2, JLVC, DVTE-CAN,

NTF, and a few others were implemented, along with

pairwise translations between most of those protocols.

The third significant trait of traditional gateways is that

they are very complex to use, and therefore they are difficult to configure correctly resulting in poor or catastrophic

results (e.g. creating a loop between gateways can cause a catastrophic crash of the entire system). Large scale

environments typically have an EXCON (or white cell or tech control) that is staffed by experts who know how to

configure these gateways, but less expert users are less likely to do this well. With this new gateway, we set out to

provide an easy-to-use graphical user interface (GUI) with assistive aids that enable users to more efficiently

and accurately configure training activities. The entire capability was designed to work in various types of

deployments, ranging from laptop, desktop, or into a server/cloud environment. For example, the gateway can run as

a headless daemon if desired, or it can have a terminal connection that provides more-expert users with the ability to

inspect and affect the behavior of the bridge. Additionally, the bridge can be packaged up as a set of shared libraries

(or DLLs on Windows) that can be linked into another application as middleware – providing that application all of

the interoperability features natively. The primary user interface is a web browser, which provides the ability to

manage a gateway from anywhere, run multiple GUIs, and simplifies the software installation/distribution process.

FITEware Control

The user interface was designed to be run in a standard web browser which has network accessibility to the FITEware-

Control server. The flow of the interface walks a user through the typical steps required to define an executable

configuration, supporting a range of user expertise – that is, less-expert users can accept the assistance the tool is

providing and move from step to step, while expert users can drill-down to examine, tweak, or override. The goal of

this workflow is to address the main interoperability challenges in a way that the tool can then configure the FITEware

bridge properly. To facilitate the ability for the tools to make decisions, we analyzed the individual simulations,

protocols, enumerations, as well as our historical expertise with constructing large-scale federated simulation

environments. This led us to an approach of characterizing the simulation capabilities, the protocols and their nuances,

and the capabilities of the bridge we were constructing as metadata that the tools can reason upon. The evolving

metadata for protocols and simulations can be imported using the web page and stored in a centralized database on

the server. As a user walks through the workflow on the web interface, the tools use this metadata to facilitate decisions

about how the simulations will interact and what is required of the bridge, and that information is utilized to create the

bridge configuration data.

Protocol Topology Solver

The Protocol Topology Solver is a component that computes an optimal full-connectivity solution between a set of

application instances that may speak differing protocols and bridges that translate between those protocols. Once the

solution is found, FITEware uses the solution to automatically generate bridge configuration files to implement it.

Within the UI, the Build step allows the user to drop and drag applications and view the solver result. The user can

Figure 2: Configuration with every possible translation

2021 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

IITSEC 2021 Paper No. 21315 Page 6 of 12

then further modify the solution, and between each modification the solver re-runs and generates a new solution with

the new user constraints.

The Solver is aware of the limitations of each application. For example, two applications that speak the same protocol

may still be incompatible due to use of differing dead-reckoning algorithms or enumerations. The solver can generate

solutions that bridge the same protocol to translate across these difficulties. Human operators may further constrain

the solution by forcing applications to use specific protocols, grouping applications to make them select the same

protocol as each other, and forcing certain protocols to be present in the final solution.

Solutions can be quite complex – for example, Figure 4 shows a solution with five instances of four applications. The

“E” symbols in the topology indicates that the solution considers enumerations compatibility for that application,

which is what is preventing the first three applications from directly interoperating over DIS6. The lock icons on the

bottom two protocol instances indicate the user has overridden configuration items for those protocols.

Generating a connectivity solution is a challenging problem typically solved by human SMEs. The Protocol Topology

Solver simplifies and accelerates this process by generating optimal solutions for the human operator. To do so, each

application protocol and translation is assigned a cost determining how completely it represents the information being

communicated. This generates a cost between each pair of applications communicating. An optimal solution is one

where the net cost of protocol selections and translation bridges across all pairs of application instances is minimized.

Figure 5 provides an illustration of solution costing. Application A communicates on the DIS6 protocol with a cost

of 1, Application B communicates on DIS6 with a cost of 2, and Application C communicates on DIS7 with a cost

of 1. A bridge that translates between DIS6 and DIS7 with a cost of 2 is in use. The total cost of the solution, then,

is twelve; three for A to B, four for A to C, and five for B to C.

Figure 3: A solution with three applications (A, B, and C). The solver has decided that A and B can interoperate directly

(using DIS6), and that the bridge must instantiate a translation between DIS6 and DIS7 to support C.

Figure 4: Users add desired simulations from a palette, and the Solver automatically produces a solution that

combines them based upon their capabilities and the other simulations in the template, as well as the capabilities

of the bridge itself. Users can further modify the problem and the solver will honor those changes, adjusting the

rest of the solution as needed.

2021 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

IITSEC 2021 Paper No. 21315 Page 7 of 12

In addition to being a challenging problem for a human SME, however, connectivity solution generation is expensive

computationally. Brute forcing possible protocol selections is approximately an O(AN) complexity problem where A

is the number of applications and N is the number of protocols supported. Additional decision making and

computation is required to find the optimal path of bridges between each pair of protocols; an exhaustive search would

take time O(B*P2) where B is the number of translation bridges and P is the number of protocols. The solver must

generate solutions rapidly for the user to provide a responsive GUI, so an innovative approach is required to accelerate

solution generation.

The bridge pathing problem is the simpler problem of the two to solve, being of a lower order of complexity and

operating on the relatively static data set of bridges available to translate between protocols. To resolve this problem,

the solver runs Dijkstra’s algorithm (Dijkstra, 1959) along each pair of protocols and caches the result. This allows

for constant-time lookup of the shortest path between any two problems when generating a solution.

To solve the application protocol selection problem, the Protocol Topology Solver treats it as a pathfinding problem

and applies an A* algorithm (Hart, 1968) to search the space. The A* works with partial solutions and assigns a

heuristic cost when determining the expense of applications who have not yet been assigned a protocol. Given an

application pairing where one or neither application has been assigned a protocol yet, the heuristic assigns a cost as if

the unassigned elements chose the protocol that produces the lowest-cost result between those two applications. This

ensures that the final solution reached will be optimal, as any actual selections made by the algorithm can produce a

cost that is at best identical to the heuristic cost. The initial search node begins in a state where none of the applications

have been assigned protocols. The algorithm then selects and removes the lowest-cost node available. An unassigned

application is selected from the extracted node, and new nodes are created for each possible protocol selection from

the assigned application. This process then iteratively repeats until a solution is found.

In summary, the Protocol Topology Solver allows for rapid, machine-assisted development of simulation

interoperability solutions, a problem generally solved manually via human experts. The Solver creates an optimal,

fully-connected network between a set of application instances, using protocol translation bridges. This solution is

generated in two steps. First, Dijkstra’s algorithm is used to determine the optimal path between each pair of protocols.

Then, protocols are selected for each application using an A* search with a heuristic that assumes the protocols yet to

be selected achieve the theoretical optimal solution where each application was talking to each other application via

the best possible protocols. This allows for the rapid generation of the optimal connectivity solution.

Enumerations SmartMap

One of the other common issues in interoperability between heterogeneous simulators is translating the meaning of

enumerations used in each of the participating protocols. A gateway needs to be configured so that it can “map” foreign

enumeration values to the closest supported value for each protocol. In particular, entity type enumerations are one of

the key challenges that traditionally requires significant manual effort to configure effectively, and there are multiple

places that must be configured in a consistent manner (including gateways and each of the simulations and their

installed instances). Historically, this is managed using spreadsheets and a lot of manual effort, usually including

“parking lot” validation (e.g. each sim publishes a scenario and experts would validate entities received by each of the

other simulations match up to what is being published, and then manually setting up best mappings). We solve this

Figure 5: Costing of a Solution.

2021 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

IITSEC 2021 Paper No. 21315 Page 8 of 12

by characterizing various implementation details of enumerations as metadata and constructing an assistive

aid that implements several heuristics that reason upon that metadata to produce automated best-

approximation enumerations mappings, all in a centralized manner.

Our approach to gateway configuration for entity type translation centers around creation of an entity type list for each

exercise template, which consists of a selected subset of the entity types imported by “references” (standards). This

list is composed by the user by selection from dropdown tree structures of each reference, or re-use from a prior

template, or by importing an external CSV spreadsheet. Conceptually, this list of entity types represents the set of

entities expected to exist in an exercise that are considered to be valid, and it can include both specific (e.g. “M1A1

w/mine plows”) and generic enumerations (e.g. “Tank”).

FITEware supports importing two different formats of entity type enumeration references: the hierarchical “SISO”

enumerations (Simulation Interoperability Standards Organization, 2020) in XML format and flat spreadsheets (CSV

or XLSX). Each entity type in the reference imported is either assigned to an existing record (which is tagged as

belonging to multiple references) or if no appropriate entry exists, a new record is created. Each entity type record

includes a SISO-style septet assignment, even if septets are not inherently used by the imported reference. The septet

provides information to help the enumeration assistive aid to choose the best entity type match. Entity type translation

also requires entity type enumerations (which represent models) supported by each simulation. Simulations are also

characterized and stored in the metadata. Scripts and import capabilities were written to “scrape” the list of entity

type enumerations each simulation externally supports, which ideally includes a SISO-style septet and additional

useful information, such as the human readable name for the models.

The gateway translations between simulation entity types are configured using the Enumeration Matrix (Figure 6) and

it's assistive aid (Figure 7). The matrix displays one row for each entity type in the template’s entity list and one

column for each simulation in the template. From the user’s point of view, each cell represents how the simulation

will map that row’s entity type to a model value, rather than attempting to map each simulation model directly to every

other simulation model. The entity type row concept simplifies the task for users and allows them to focus on each

Figure 6: Enumerations mappings are managed in a matrix, with the valid entity types in the first column, and a row per

simulation. The cells indicate the sim-specific model that represents a good match for that entity type. The bridge uses this

to translate enumerations between the various simulators. Color/star ratings are assessments by the tool expressing quality

of the guesses, which can be overridden by the user by clicking on a cell.

2021 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

IITSEC 2021 Paper No. 21315 Page 9 of 12

simulation’s mapping to the entity type, which results in only needing to make n*m

mappings for n simulators and m entity types instead of (n * (n-1))*m/2 mappings

for pairwise translations, which is important when n is large.

The SmartMap assistive aid performs a configurable heuristic algorithm to suggest

a mapping for each selected cell for which it can find a reasonable match. The

algorithm by default will first choose mappings that have previously been confirmed

as accurate, then perform a weighted hybrid search which factors in both names

using a customized fuzzy string search and septet values, and filters those results to

only select mappings which match by kind and domain. Which mappings to retain

or remap, which mappings to prioritize, the basic search metric, and the exclusionary

filters to apply can all be reconfigured and reapplied to (re)suggest mappings for any

matrix cells. The hybrid search attempts to use multiple heuristics to cross validate

each mapping, since looking at names or the septets alone often results in poor

matches due to inconsistent approaches between simulations. To keep this task

performant, best name and septet matches are lazily computed on the server by a set

of worker threads, so that when the SmartMapper is run, it can operate on cached

results in the browser.

The SmartMap aid rates the quality of each of the mappings it suggests, which is

shown both as a color code and a star rating. The algorithm may leave poorly matching cells unassigned and for cells

it does assign, it flags mappings that performed poorly by some metric, even if overall the quality seems good. Users

can click on any cell in the matrix (Figure 8) to inspect, override, change quality, or express trust in the mappings,

which will get utilized in future mapping suggestions.

SISO-REF-010 provides a machine-readable (XML) file of hierarchical “Comprehensive Entity Types” (CET), which

provides a strong foundation for characterizing entity types, but it has limitations for identifying similarities in both

hierarchical septets and names. One limitation is that the CET isn’t truly comprehensive; users may construct valid

entity types that are not enumerated in the CET. Users do exploit this flexibility to define their own references and for

this reason, FITEware supports importing alternative references in a simple spreadsheet format.

The SISO-REF-010 hierarchical structure is divided into 7 fields (Kind, Domain, Country, Category, Subcategory,

Specific, Extra), with the possible values of each field interpreted in the context of the preceding fields. These fields

form a useful taxonomy for comparing similarity, with one major quirk. The Country field doesn’t really characterize

the inherent types of entities and for purposes of identifying entity type similarity, would be better as a separate

attribute. As it stands, the Country field allows values to be assigned independently at lower levels. Different countries

often, but not always, share at least some of lower level values. As a result, one cannot tell if a septet that contains all

Figure 8: Clicking on any cell in the numeration matrix pops up a dialog allowing finer control, override, and trust options.

Users can search for a better match, choose a specific enumeration, override the Match Quality, and express trust

("Confirm"). The dialog has several helpers enabling the user to search through the list of models the sim supports.

Figure 7: SmartMap Controls

2021 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

IITSEC 2021 Paper No. 21315 Page 10 of 12

the same values except for country are very similar or completely different. The heuristics do factor in the country

values, but essentially treat it as a separate attribute. This generally results in better matches when countries share the

same lower level values but can produce less desirable septet matches when they differ.

More difficulties arise in using the CET for matching entity type names, particularly when trying to match reference

entity types to named simulator models (rather than to other reference entity types). In the hierarchical CET, each

node has a description which functions as a name. These node names are not unique (for example, many nodes are

labelled as “Other”). While this uniqueness problem could be addressed by concatenating the names of all the septet

nodes, this usually results in unwieldy strings that reduce overall similarity. Even individual node names can be

unwieldy, for example the “Patriot Communications Relay Group (CRG), AN/MRC-137 on M927A1 Truck, cargo,

XLWB, 5-ton, 6 X 6, w/o winch” makes it difficult to automatically determine how best to identify a matching model

name. In fact, depending on the simulator or the exercise, the best match might focus on the AN/MRC-137 capability

or the M927A1 platform.

In order to find good name matches, heuristics first preprocesses the strings in the CET as well as the model names,

using both generic (e.g. remove dashes so that “T-72” will match “T72”) and specific (e.g. remove “mysim_” prefix)

rules. Then a fuzzy string match is performed to get a baseline measurement of similarity which is assigned a high

confidence. This similarity value can be too low when names contain a lot of extraneous information, so the heuristics

then try to identify important tokens (e.g. military model names) within each string, also factoring in length, whether

the letters are uppercase, contains digits, or other characteristics. The heuristics then try to find those tokens or similar

tokens, where similarity focuses on the beginning of the token because similar variants generally differ in endings in

each name. The system then assigns a match value on that basis, with a lower confidence, depending on the number

of tokens involved.

Our heuristics are the result of considerable trial-and-error experimentation, which do a good job in many cases, but

do not eliminate the possibility of inaccurate or suboptimal mappings. Ultimately a human must judge which aspects

of an entity type make for the best match and, for example, whether country alignment trumps platform details or

whether a similar visual profile is more important than weapons capabilities. Therefore, mechanisms exist for the user

to evaluate, override, an even express trust in the mappings – which are then factored in by future mapping suggestions.

The FITEware suite of tools automates a large portion of the enumeration mapping process, which has traditionally

been an extremely time-consuming and error prone process requiring significant M&S expertise. Importing the

simulation metadata in a centralized database eliminates the expertise and effort required to manually search

simulation data files or sometimes even capture enumerations by driving or running simulations to see the entity types

produced. Additionally, providing suggestions for mappings saves a great deal of monotonous data entry and

eliminates the risk of syntax errors or typos. Further, by providing a centralized mechanism for the user to evaluate,

override, and validate the results, work done on enumeration mappings in the context of one exercise can be leveraged

in future exercises. As a result, the enumerations tools help mitigate the thorny interoperability problem of configuring

entity types and their translations in a heterogenous simulation environment.

APPLICATION AT MAGTFTC BSC AND TSC- 29 PALMS

Training Environment

Effective training designs should create an environment that accurately represents conditions within the targeted

operational environment (OE); thus good training should provide a structure that best enables units to train to specific

mission sets, training tasks, or training objectives within the OE to which those objectives apply. The intent behind

any interoperable event, therefore, should aim to incorporate the strengths each individual federate system provides

while supplementing the shortcomings in the others.

The current fielded training systems provide high fidelity simulation systems for community specific and individual

task training events, but it fails to account for the process and people for which these tasks will execute in a combat

environment. A high-fidelity simulation for individual task or community specific training events does not necessarily

translate into a high-fidelity training environment that intends to fully replicate the OE. Most Marine Corps

communities possess a training system designed specifically for that community, so if integrated properly, could vastly

2021 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

IITSEC 2021 Paper No. 21315 Page 11 of 12

increase the virtual training environments replication of the operational environment. Currently, however, the Marine

Corps remains incapable to provide this valuable, synthetic training on a quick and consistent basis because technical

intricacies restrict persistent plug-in-play use for interoperability.

FITEware demonstrated a leap forward to solve this issue. Any innovation should attempt to produce higher output

from the same input or provide the same output with less input; but FITE produced higher output with less input.

Currently, FITEware supports an array of USMC program-of-record training systems and simulation protocols. For

example, to design, test, and execute a battalion-level training event using systems from RTPD LVC-TE Increment I

(CACCTUS, DVTE, SAVT) would typically take approximately three weeks. To create this federation using FITE

took one hour to build and accomplish the same ends. Furthermore, FITE proved timely and persistent in the federation

for a typical interoperable event, but also provided greater fidelity in the volume and diversity of models it could map

in that time. In a federation test in May of 2021, MAGTFTC BSC and TSC-29 Palms integrated (7) disparate

constructive and virtual systems with (443) 3-D and munition model variations across a multi-protocol and multi-

domain network using (5) disparate simulation protocols/versions. The test also used FITE’s dynamic filtering to

control data flow into each respective system/port to ensure or improve system performance and manage data flow.

In its entirety, this federation took 3 hours to build, test, and rehearse. Simply, FITE proved it could provide more

persistent and timely integration between training systems with higher fidelity in far less time.

FITEware Experience

Many limitations exist for federated training, but the most challenging regards scenario accommodation. Often,

exercise designers must adjust training scenarios to accommodate the system federation whereas the system federation

should support the desired training scenario and environment. Designers routinely adjust order-of-battle schemes or

the intelligence preparation for the battlespace (IPB) to align with the training systems model repository; or they must

manually apply an alternative model to accommodate the scenario. This limitation creates unrealistic training

scenarios or introduces unrealistic tactical friction during execution. As such, exercise designers must analyze every

3-D model variation within a training scenario then identify which models every system can support. Designers then

must determine alternative, yet different models to supplement the model gaps or change the training scenario to

accommodate the common model repository for the federation. Once identified, simulation technicians must map each

simulation protocol to match those existent or alternative models to each other; and contingent on the technician’s

system knowledge or the systems internal bridge or gateway capability determines how effective that federated

training provides. The larger the scenario or the more individual systems you add to the federation, the more complex

and time consuming the process; and bluntly, the less capable the federation becomes. To exasperate the problem,

model repositories and training systems do not keep pace with the evolving OE that Marines and Sailors train to or

the evolving industry standards that connects those systems. A recent model gap analysis conducted by Training

Support Center 29 Palms exposed that all the high priority models (derived from each Marine Expeditionary Force

and MAGTFTC training agencies) were marginally existent in the Marine Corps’ most used virtual training system.

Another example, the TALONEX 2-18 federation was only 30% capable of supporting the initially proposed scenario

models. FITEware cannot fix this, however, FITEware quickly organizes, analyzes, and identifies those gaps within

the scenario and allows the designer to quickly associate and assign model alternatives across all federates. FITEware’s

ability to automate this intensive and unavoidable process saves an immense amount of time and energy that supports

higher quality training with more opportunity to train to complex problems.

User Intuition and Trust

A primary goal for FITE is to reduce or eliminate the need for significant M&S expertise and contractor support by

leveraging assistive aids to help less-expert users configure and manage complex interoperable training events. To

that purpose, FITE must possess an appropriate level of trust and intuition between user and gateway. Through

multiple training events and federation tests, we observed FITE possesses an effective graphical user interface (GUI)

that produced an overall high intuition with system interaction. FITE effectively leads the user through the federation

design process to ensure the user accounts for all essential elements. We did observe, however, that each step required

limited explanation as to what that step intends to accomplish and what each graphic represents. A couple features

within FITE (e.g. the filtering capabilities and system monitoring) require adjustments to increase system intuition

further. First-time users did struggle to understand FITE’s conceptual model and architecture. Many approached FITE

with the same methodologies that they approached in past federated events and struggled to understand the FITE

paradigm in relation to the old.

2021 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

IITSEC 2021 Paper No. 21315 Page 12 of 12

FITE’s innovation, as with any new innovation that shifts paradigms, requires users to understand that innovative

approach. FITE does what many other gateways or systems like JSPA do, but it does it in a more efficient albeit

different way. The hardest part for a first-time user is getting them to understand how FITE operates differently and

getting them to apply it practically. In other words, navigating the program was easy to teach, but teaching how to

practically apply it was harder. Using FITE requires users to approach the simulation design differently, so FITE’s

conceptual model is not intuitive in itself. Mainly, though, like anything new, users did not intuitively trust what FITE

claims to do. This is rooted in decades of enumeration, model, and terrain mapping pain. In numerous tests, we

observed every time a new system was added to the design or a new model was added to the scenario the users

intuitively felt they needed to verify and test it every time; however, as first-time users interacted with FITE more you

could see an inherent trust in its capability growing. Simply, time will build that intuitive trust in FITE’s methodology

and capability.

Current Limitations

FITE in its current state demonstrates incredible upside to progress the Marine Corps’ synthetic training capability,

but in order for FITE to provide a more holistic solution to the current interoperability woes FITE must expand its

current brokering function. In order to replicate a realistic operational environment and provide appropriate stimuli to

all respective systems and processes, FITE must bridge and broker to operational systems, respectively. Training

systems should stimulate operational systems, and a substantial shortfall within current synthetic training regards the

inability or partial ability to properly stimulate those C2 systems. If included and proven effective, then government

program offices would no longer need to update each individual C2 plugin on each individual federate system, but

rather update FITE so that it brokers to all other systems. Further, exercise monitoring and troubleshooting needs

further development to make interactions between FITE, systems, and filters more streamlined. As effective as

FITEware is now, FITE does not fix every interoperability problem within every system. At the very least, FITE solves

the majority of problems in current interoperability methodologies, but the remainder still requires hands-on, manual

attention. Therefore, dynamic and robust monitoring and troubleshooting is essential for timely, sensible, and

maximum utility in the program.

REFERENCES

Ceranowicz, A., Torpey, M., Helfinstine, B., Evans, J., Hines, J., (2002), "Reflections on Building the Joint

Experimental Federation,'' 2002. Proceedings of the Interservice/Industry Training Simulation & Education

Conference (I/ITSEC), 322, Orlando, November 2002.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269–271.

Dvorak, J., Scrudder, R. Gupton, K., Hellman , K. (2019) “Enabling Joint Synthetic Training Interoperability through

Joint Federated Common Data Services”, Journal of Cyber Security and Information Systems 7(3)

Hart, P., Nilsson, N., & Raphael, B. (1968). A Formal Basis for the Heuristic Determination of Minimum Cost Paths.

IEEE Transactions on Systems Science and Cybernetics, 4(2), 100–107.

IEEE Standard Group 1278: Distributed Interactive Simulation (Revision 2002), IEEE CS Press

IEEE Standard Group 1516: High Level Architecture (Revision 2000), IEEE CS Press

IEEE Standard 1730-2010: IEEE Recommended Practice for Distributed Simulation Engineering and Execution

Process (DSEEP).

Simulation Interoperability Standards Organization (2020). Reference for Enumerations for Simulation

Interoperability, Version 28, document no. SISO-REF-010-2020, 7 May 2020.

	ABSTRACT
	ABOUT THE AUTHORS
	OVERVIEW
	FITEware ReSEARCH and Innovations
	FITEware Control
	Protocol Topology Solver
	Enumerations SmartMap

	APPLICATION AT MAGTFTC BSC AND TSC- 29 PALMS
	Training Environment
	FITEware Experience
	User Intuition and Trust
	Current Limitations

	REFERENCES

