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ABSTRACT

Advances in Live Virtual Constructive (LVC) technology will soon make it possible for aircrew in the Combined Air Forces
to utilize LVC capabilities on a daily basis. LVC is enabled on a live platform by integrating various virtual sensor models into
the weapon system that replicate the functions of live sensors onboard the weapon system. These sensor models can be
implemented at various levels of fidelity, from simplistic range bin detection models to physics-based, environment-enabled
models. This paper describes a research experiment conducted in July 2020 to measure aircrew sensitivities of various levels
of sensor model fidelity used on a platform within an LVVC framework. This effort builds upon existing LVC capabilities
developed for the F-15E platform under the Secure LVC Advanced Training Environment (SLATE) program (Lechner &
Huether, 2008, Lechner & Wokurka, 2010, Lechner & Schwering, 2012, Call & Lechner, 2018). In this study, aircrew were
presented targets of varying levels of fidelity for both an electromagnetic sensor (AESA Radar) and an electro-optical sensor
(Sniper Targeting Pod) utilizing the sensor hardware on an F-15E avionics bench. The 18 participants were current and former
pilots and Weapon System Officers (WSO). The impacts of sensor fidelity were evaluated using a combination of objective
performance metrics and subjective aircrew ratings for target detection and identification tasks. Subjective responses of
participants indicated favorable ratings regarding the LVC capability for emulating real-world conditions to support training
for all tasks. Participants reported that functionality was realistic, workload was manageable, and the systems were acceptable
to meet training needs. Objective performance measures generally supported the more true-to-life targets for tactical tasks,
however other instances supported a mix of sensor fidelities. This paper details all experimental results, gives recommendations
for specific implementations within the LVC environment, and ideas for future research directions are discussed.
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INTRODUCTION

With the advent of synthetic environment injects into live aircraft soon to be realized within tactical air platforms, the
technical capability will exist for aircrew to train with a Live, Virtual, Constructive (LVVC) capability on a recurring
basis. LVC is enabled on a live platform by the addition of various sensor simulation models into the weapon system.
These models replicate the functions of live sensors onboard the weapon system, providing track information from
the synthetic environment that is merged with the live environment. These sensor models can be designed at various
levels of fidelity, from simplistic range bin detection models to physics-based, environment-enabled models. There is
a direct proportional relationship between level of fidelity increase and impacts to central processing unit (CPU) and
graphics processing unit (GPU) processing power necessary to execute the sensor algorithms. This in turn, impacts
the requirements of the computational power necessary for an LVC Program of Record. A high-fidelity, ray-tracing
physics-based model may provide a result exacting a live sensor, but the processing power required to operate it
becomes overwhelming. The need exists to determine how much fidelity is sufficient to meet the training objectives.

The study Fidelity Integration within Tactical Training of LVC (FITTL), sponsored by the Air Force Research
Laboratory (AFRL), was conducted to provide an initial look into the impact of a subset of aircraft sensor models on
performance and perceptions during training within an LVVC environment. An experimental bench was assembled in
the F-15E Electronic Systems Integration Laboratory (ESIL) in St. Louis, MO utilizing actual aircraft hardware and
avionics. The experimental bench provided the ability to utilize a combination of actual sensor hardware and various
levels of fidelity of sensor models allowing the experimental protocol to vary the level of fidelity presented to aircrew.
This paper details the experiment bench, the experimental protocol, and the study results from the experiment.

OVERVIEW OF LVC CAPABILITY/SYMBOLOGY DEVELOPMENT

LVC Capability Overview

Boeing utilized the F-15E Operational Flight Program (OFP) developed under the AFRL SLATE Program for this
study. The SLATE OFP supports LVC operations for both an Active Electronically Scanned Antenna (AESA) radar
model and a Sniper Targeting Pod (TPOD) model. Both the AESA model and the Sniper model are contained within

the LVC Processor Module (LVCPM), an internal component of the SLATE modified P5 Tactical Combat Training
System (TCTS) pod, see Figure 1.
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Figure 1. Project SLATE LVC Airborne System
[F-15 photo credited to Boeing, P5 Pod credited to Leonardo DRS]

The test setup in the F-15 ESIL is shown in Figure 2. The color key defines the existing AESA bench equipment, the
SLATE equipment, and the new equipment added for the study. The LV C Processor Module (LVCPM) was emulated
on a desktop computer for this study and included the LVVC Operational Executive Program (OEP) software, Big Tac,
the AESA model, the TPOD model, and the Host Input/Output (1/0) emulator. The Advanced Display Core Processor
(ADCP) executed the F-15E SLATE modified OFP. Both the AESA RADAR and the TPOD avionics subsystems
were utilized as inputs to the experiment. The real AESA and TPOD (supports live tracks) are used in conjunction
with an AESA model and a TPOD model (supports virtual/constructive tracks) to produce an LVC environment in the
cockpit. The real TPOD is situated in a window in the ESIL facility such that it is facing Lambert airfield in St. Louis.
Specific for the TPOD for both Air-to-Air and Air-to-Ground modes, video images of synthetic infrared targets were
generated on a utility computer using GenesisIG™ software. The simulated targets were combined with real TPOD
video using the EZwindow™ device to produce an augmented reality display in the cockpit. The resultant raster video
is a combination of real infrared imagery from the TPOD with virtual targets overlaid on the real-world imagery.
While this approach has the limitation of not providing appropriate altitude offsets and slant angles for Air-to-Ground,
we were able to locate targets at appropriate distances to minimize this affect. For Air-to-Air, targets were positioned
is the sky such that the TPOD video portray only sky imagery.
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Figure 2. Test System Diagram
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ESIL Equipment

Boeing developed and maintains an AESA test bench that resides in the F-15 ESIL. The test station houses the core
avionics processors, displays, and cockpit controls of the F-15E and is comprised of both real flight hardware, such
as the ADCP and cockpit stick and throttle. The station contains a combination of real and simulated displays and
software-defined sub-system models. The union of real flight hardware and software-simulated models provides a
cost-effective means to exercise system functions and integrate new features in a controlled environment. The TPOD
is an electro optic sensor containing both a Forward Looking Infrared detector and a Charge Coupled Device
Television detector to generate raster video for display in the cockpit. The TPOD also includes image trackers for Line
of Sight stabilization, a laser transmitter/receiver for ranging and designating targets for laser guided bomb deliveries,
a night vision goggle compatible laser marker for designating and illuminating targets, and a laser spot tracker.

LVCPM

Boeing designed and manufactured the LVCPM to provide additional computer processing capability outside of the
aircraft mission computer to support LVC training missions. In addition, we designed, built and tested the LVCPM to
fit within the form factor of the P5 TCTS Pod envelope as well as an option for an internal carriage configuration
inside the aircraft. The LVCPM provides a flexible solution that enables high fidelity training content delivery in
support of embedded training and LV C training missions. The LVCPM was designed to survive the rigors of a military
flight environment and is flight qualified as a component of the SLATE configuration of the P5 TCTS pod. The
LVCPM contains up to six (6) ruggedized Quad Core Atom Processor modules (single board computers). To simplify
testing equipment and testing architecture, the LVCPM device was not used during this study however, the L\VCPM
software was hosted on a standard Dell desktop computer emulating the performance of the LVCPM. The LVCPM
software is an open architecture design that provides the synthetic environment for a live aircraft. An executive layer
moderates the execution and communications of applications and plug-ins that reside across the internal processors
within the LVCPM. The LVCPM communicates with the rest of the SLATE components over the IEEE 1278.1
Distributed Interactive Simulation (DIS) protocol.

Software Elements

Two new software components were developed for this study: (1) the DIS to Common Image Generator Interface
(CIGI) converter and (2) the TPOD CIGI Controller. The DIS to CIGI converter is a library that converts general DIS
protocol messages and translates them to CIGI messages to inform the Image Generator of the visual environment to
draw. The computer generated threats and the “live” own ship or F-15E bench are the sources for that visual
environment data. The TPOD CIGI controller receives the F-15E TPOD model current state and converts the state
data to CIGI messages for proper reflection in the visual environment.

Constructive Force Generator

Big Tac is a flexible, high-fidelity threat environment capable of presenting a combination of air threats and ground
based air defense threats to enhance immersion of trainees into a synthetic combat environment. It is the standard
threat environment for USAF F-15 and F-16 Distributed Mission Operation training systems. It is designed to meet
single-ship, multi-ship, local, and long haul networking requirements between dissimilar aircraft types in support of
joint, combined, and coalition training. Big Tac provides a rich set of stimuli for weapon, avionics and visual systems
used by the trainees. It simulates a mix of interactive entities, accurately modeling their physical, behavioral,
electronic, and countermeasure capabilities. Big Tac is a commercial product of the Boeing Company. Big Tac will
be delivered with a graphical scenario generation tool for developing training scenarios and a threat library
maintenance tool to aid management of customer specific threat performance data and algorithms.

Symbology Development

For this study, we used the SLATE-developed AESA radar model as the baseline model and developed two additional
levels of fidelity to provide radar functionality closer to the behavior of the real radar system. Test subjects addressed
constructive threats presented on the AESA radar display. In addition, for the electro-optical target presentation, we
developed three levels of visual model fidelity target representation on the TPOD display, in both the air-to-air and
the air-to-ground modes. The TPOD representations included a reduced or simplified polygonal 3D model, a high
polygon count polygonal 3D model, and a high polygon count polygonal 3D model with infrared (IR) effects. A scene
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generator synchronized the 3D models with the external environment and displayed them together on the cockpit
TPOD display.

Multiple mission scenarios were developed with the intention of exposing the test subjects to the levels of fidelity
changes that were made to the AESA radar model and the TPOD model. Mission scenarios were developed using Big
Tac for constructive force generation. Test trials were developed using the Big Tac mission scenarios combined with
the different levels of fidelity models. Test trials were grouped together into three (3) primary tasks. Test subject
participants completed the Air-to-Air Radar Detection and Identification task, the TPOD Air-to-Ground Identification
task, and the TPOD Aiir-to-Air Detection and Identification task during the course of the testing.

Visual Models

Image Generation (IG) software from Diamond Visionics, along with a Sensor Module also from Diamond Visionics
for physics-based simulation of IR effects, was employed in this study in order to render simulated 3D targets for
injection into the raster video from the TPOD. The Target Image Generator is configured to receive CIGI commands
as input from the LVCPM TPOD CIGI controller and render the simulated targets correlated to the real world
coordinates in real-time. During FITTL testing, the skybox and terrain are masked out of the rendered scene so that
the target appears with a black background. This allows for the simulated targets in the scene to be combined with
the TPOD video using Luma keying.

Video blending hardware was used in this study to combine simulated targets, generated by the 1G software, with
video from the TPOD. A Westar EZwindow™ video blender and a Westar EZscan™ scan converter was employed
to accomplish video blending.

A set of 3D OpenFlight models were selected from the Boeing Common Data Set (BCDS) for this study. These
selected models were used to create a corresponding set of low, medium, and high fidelity models. (see Table 1). The
lowest level of fidelity for each model was chosen such that a low end computer could render the images. The medium
fidelity model included the highest polygon count of the model. The high detail model was the same polygon count
of the medium fidelity model with the addition of texture pattern sensor attribution such that it could be rendered by
the GenesisSN™ software. Examples of visual model level of fidelity are shown in Figure 3.

Table 1. Level of Fidelity of Visual Models

Level of Fidelity Model Set IR Simulated
Level 1: High Visual Fidelity High Polygon Count with Sensor Attribution Yes
Level 2: Medium Visual Fidelity High Polygon Count No
Level 3: Low Visual Fidelity Low Polygon Count No

Level 1 (IR)

Level 2 Level 3

Figure 3. Examples of Visual Model Level of Fidelity

Radar Models
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Updates were made to the AESA radar model to increase the fidelity of the models performance. Changes were made
to 1) the time needed to establish a track and 2) the chances of dropping a track after establishment. To accomplish
these changes, modifications were made to increase the workload of the radar antenna, the number of simultaneous
tasks the radar system is performing and increasing the duration of those tasks. Additionally, the base detection range
performance of the model was decreased. The updates to the radar model were developed, reviewed and validated
using inputs from pilot subject matter experts. Three selectable model degradation levels were developed that enable
model performance to be varied during test missions. The FITTL radar model degradation value can be set to none
(baseline SLATE model, perfect detection and no track dropping), moderate (some atmospheric clutter, moderate time
to establish tracks with some track dropping), or high (additional atmospheric clutter, longest time to detect tracks and
high rate of track dropping).

DESCRIPTION OF EXPERIMENTAL METHODS

Research Questions
This study examined the impact of radar or visual fidelity manipulations on human performance and perceptions of
the training experience within an LVC environment. Specifically, it sought to answer these questions:

1. How does the level of radar degradation (none, moderate, high) or visual fidelity (high, medium, low)
impact human performance?
a. Entity detection
b. Entity identification
c. Time on task (where applicable)
2. How does the level of radar fidelity impact self-reported perceptions of the training experience?
a. Confidence in performance accuracy
b. Sense of time pressure
c. Acceptability of the training system
d. Realism of the training system
e. Workload

Participants

The study was designed for USAF participants of varied experience levels, but due to COVID restrictions all recruiting
was limited to Boeing employees. Eighteen (18) current or former operational pilots and weapon system officers
(WSO) were recruited from within the Boeing population. These participants were highly experienced with a variety
of tactical aircraft platforms, including derivatives for the F-15, F/A-18, F-16 and F-22. Average tactical hours for this
group of participants was just over 2600.

Protocol

As noted above, the experiment was carried out in an AESA test bench that resides in the F-15 ESIL and is comprised
of both real flight hardware, such as the ADCP and cockpit stick and throttle. The station contains a combination of
real and simulated displays and software-defined sub-system models. The union of real flight hardware and software-
simulated models provides a cost-effective means to exercise system functions and integrate new features in a
controlled environment. The experiment consisted of a pre-experimental phase and three experimental tasks. In the
pre-experimental phase, participants completed informed consent and a brief demographics questionnaire. During the
experimental phase, participants performed three different tasks: 1) Air-to-Air Radar Detection and Identification, 2)
Sniper Targeting Pod Air-to-Ground Identification, and 3) Sniper Targeting Pod Air-to-Air Detection and
Identification. Performance measures, subjective ratings, and open-ended feedback were collected during each task.
Each participant was tested individually and took approximately four (4) hours to complete the testing.
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Subjective Ratings

Across all tasks, subjective ratings were collected from participants following completion of each individual trial.
Participants were asked to rate their agreement with a set of four statements on a labeled five-point Likert scale, from
Strongly Disagree (1) to Strongly Agree (5). These statements gauged participants’ 1) confidence in their performance
accuracy, 2) sense of time pressure during the trial, 3) perceived acceptability of the training system, and 4) perceived
realism of the training system. An additional Likert-scale item
asked participants to provide a self-assessment of their workload
during the trial using another labeled five-point scale, ranging
from Under-utilized (1) to Excessive (5).

Air-to-Air Radar Detection and Identification Task

E=EXaT)

The first task involved detecting targets on the situation display
(see Figure 4), and identifying targets as “friendly” or “hostile”
to differentiate between noise, clutter, and actual threats. Test
scenarios for the air-to-air radar task were created using the Big
Tac constructive force generation tool. For the air-to-air radar
trials, we used three (3) levels of scenario complexity (low,
medium, and high) and three (3) levels of radar model
degradation: none, moderate and high. Each of these levels was
completely crossed, resulting in nine (9) test conditions. Each
participant completed two (2) different trials at each difficulty
by radar model combination, resulting in eighteen (18) total
trials per participant. The order of trials was completely
randomized for each participant. Figure 4. Tactical Entities on the Radar Display

EL
&

Following each trial, participants rated how realistic and acceptable the radar models were for the radar detection and
identification tasks (subjective assessments), and rated subjective workload (modified from Kirwan, et. al, 1997).

Sniper Targeting Pod Air-to-Ground Identification Task

For the second task, participants searched for and identified constructive imagery presented against the real world
background using an air-to-ground targeting pod. The computer-generated entities were placed in pre-determined
locations within the limited FOV of a stationary TPOD (see Figure 5). Nine (9) different entities comprised the air-
to-ground trials: four (4) friendlies (car, jeep, tractor trailer, Bongo without gun) and five (5) threats (Bongo with gun,
Humvee, SA-11, scud launcher, ZSU 23). For each trial, a subset of five (5) of the possible targets was presented.
Each participant completed fifteen (15) trials; five (5) of 15 possible Big Tac scenarios for each of three image fidelity
levels. Participants were given time to familiarize themselves with the different entity types prior to the identification
task. Once all five (5) entities were located and identified for a given trial, the participant provided subjective ratings
similar to those in the air-to-air radar task. The attending experimenter collected and recorded measures of response
time and identification accuracy for each trial.

T e BT i

B ax

Fig’ure. Examples of Ground Entities on TPOD display
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Sniper Targeting Pod Air-to-Air Detection and Identification Task

As with the air-to-ground task, the air-to-air task involved searching for and identifying constructive entities presented
against the real world background using an air-to-ground targeting pod. In order to locate the air entities with the
TPOD, participants first locked onto a radar track, and then commanded the TPOD to the radar track. Participants then
identified the different entities. The threats used in this task were Mig-29 and SU27, friendlies were the F-15 and F-
16. The total number of entities per air trial ranged from two (2) to eight (8), depending on scenario difficulty.
Participants completed nine (9) total air-to-air TPOD trials, one (1) of each difficulty level for each of the three (3)
imagery fidelity levels. Time on task (capped at a maximum time of three (3) minutes per trial), identification accuracy,
and subjective ratings were collected after each trial.

SUMMARY OF RESULTS
Air-to-Air Radar Outcomes

Performance measures for the Air-to-Air Radar Detection and Identification Task included the percent of total entities
detected as well as the percent of entities correctly identified as friend or foe. Additionally, subjective ratings of radar
degradation provided additional insight. Results indicated a significant main effect of radar degradation on detection
(F =37.0, p <.001); detection rates were highest with no radar degradation and lowest with high degradation. There
was also a significant main effect of scenario difficulty (F = 26.0, p <.001), showing the expected pattern of higher
detection in low and medium difficulty scenarios and lower detection in higher difficulty scenarios. The interaction
of radar degradation and scenario difficulty on entity detection approached significance (F = 2.0, p = .09). Whereas
detection was excellent for low and medium difficulty tasks with no or moderate radar degradation, the pattern for
high radar degradation deviated from this overall trend, achieving lower detection rates in low difficulty scenarios
than in medium difficulty scenarios. Results for identification accuracy followed a similar pattern (See Figure 6).
There was a significant main effect of radar
degradation (F = 51.3, p < .001); again, accuracy was
highest with no radar degradation and lowest with high vs
degradation. There was a significant main effect of Radar

scenario difficulty (F = 19.96, p < .001), with the Degradation

highest accuracy achieved in medium difficulty :ng‘;_ate
scenarios. There was a significant interaction of radar ' — High

degradation and scenario difficulty (F = 3.2, p <.05).
While increasing scenario difficulty with no radar
degradation showed a decreasing trend in
identification accuracy, identification accuracy for
both low and high difficulty scenarios was lower than
for medium difficulty scenarios with moderate and  Figure 6. Identification Accuracy as a Function of
high radar degradation. Scenario Difficulty and Radar Degradation

Identification Accuracy

2 Entities 4 Enfities 8 Entities

Scenario Difficulty

A Chi-square test of independence was conducted to investigate the relationship between radar degradation and
participants’ reported confidence in their task performance. The test results indicated a significant effect of radar
degradation on participants’ responses (X2 = 13.8, p < .01), with significant contributions to the Chi-square value from
the Agree and Disagree categories of the high degradation condition. Participants less often agreed and more often
disagreed that they felt confident in their performance following trials with high radar degradation. Chi-square tests
conducted to examine the relationships between radar degradation and participants’ subjective ratings showed no
significant impacts on reports of time pressure, radar system realism, task workload, or acceptability of the radar
system for training.
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Sniper Targeting Pod Air-to-Ground Outcomes

P
& B

Performance measures for the TPOD air-to-ground task
included task time and the percent of entities correctly
identified. Additionally, subjective ratings examined the
participants’ evaluation of acceptability for varying levels
of target fidelity. Results showed that the effect of target
fidelity on task time approached significance (F = 2.6, p
= .08); time to completion was shortest with medium
fidelity (Mmedium = 37 seconds) and longest with high
fidelity (Mhigh = 45 seconds). This effect is illustrated in

Figure 7. The measure of identification accuracy showed o Target Fidelity -
a ceiling effect with all conditions achieving a mean
accuracy rate of 97% or above; there was no significant Figure 7. Air to Ground TPOD ldentification
effect of target fidelity. Time as a Function of Target Fidelity

Mean Time (seconds)
¥ 8 ¥ & & % &
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A Chi-square test of independence investigating the relationship between target fidelity and participants’ perception
of acceptability of the TPOD entities for training was not significant; however, a Chi-square test comparing only the
medium and high fidelity conditions did indicate an effect (X2= 7.8, p = .05). Participants less often strongly agreed
and more often strongly disagreed that the TPOD entities were acceptable following trials with high fidelity than with
medium fidelity. Chi-square tests conducted to examine the relationships between target fidelity and participants’
subjective ratings showed no significant impacts on reports of the realism of TPOD functionality, confidence in
performance accuracy, time pressure, or task workload.

Sniper Targeting Pod Air-to-Air Outcomes

Performance measures for the TPOD air-to-air task
included the percentages of entities detected and
correctly identified, as well as task time. Two-way
ANOVAs were conducted using the three (3) levels
of target fidelity (low, medium, high) and the three
levels of scenario difficulty (low, medium, high) to
examine participants’ performance. Additionally, a
series of chi-square tests of independence were
performed to examine the relationship between
target fidelity and participants’ subjective ratings.
Results indicated that the effect of target fidelity on 07
detection approached significance (F = 2.92, p =
.057); detection rates were highest with medium
fidelity. There was a significant main effect of
scenario difficulty (F = 9.66, p <.001), showing the
expected pattern of higher detection in low and
medium difficulty scenarios and lower detection in
higher difficulty scenarios. The interaction of radar degradation and scenario difficulty on entity detection was not
significant (F < 1). These findings are illustrated in Figure 8. Results for task time followed a similar pattern: the
effect of target fidelity on time to completion approached significance (F = 2.43, p <.05); task time was shortest with
medium fidelity. There was a significant main effect of scenario difficulty (F = 40.7, p <.001), showing the expected
pattern of shortest task times in low difficulty scenarios and longest task times in high difficulty scenarios. The
interaction of target fidelity and scenario difficulty was not significant (F < 1). There was a significant effect of
scenario difficulty on identification accuracy (F = 4.63, p < .05), with higher accuracy in low difficulty scenarios and
lower accuracy in medium and high difficulty scenarios. The effect of target fidelity on identification accuracy was
not significant, and there was no significant interaction of target fidelity and scenario difficulty (F < 1).

Target
. Fidelity

— |
e Wl lilim

— High
08

Percent Detection

2 Enfities. 4 Enfities 8 Enfities

Scenario Difficulty

Figure 8. Detection Accuracy as a Function of
Scenario Difficulty and Target Fidelity

A Chi-square test of independence was conducted to investigate the relationship between target fidelity and
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participants’ reported confidence in their task performance. The test results indicated a significant effect of target
fidelity on participants’ responses (X? = 10.8, p < .05), with participants more often agreeing that they felt confident
in their performance following trials with medium target fidelity. Chi-square tests conducted to examine the
relationships between target fidelity and participants’ subjective ratings showed no significant impacts on reports of
realism of TPOD functionality, task workload, time pressure, or acceptability of the TPOD entities for training.

Participant Feedback on Tasks

Following completion of all experimental trials, participants provided feedback in response to the question “What did
you like or find useful?” An informal thematic analysis of those responses is summarized in Table 2. Overall, we
found that a majority of participants commented on the realism of radar and entity behavior, as well as the visual
realism of the targeting pod images. Many others referred to the training exercises as a good opportunity for skill
development. In response to the question regarding how these exercises could be improved, half described
opportunities to increase task difficulty for the radar task and others suggested that ranges needed some adjustment,
meaning that entities were detected too far out to be realistic. This was particularly true in the no degradation
condition. For the targeting pod tasks, participants thought that the task could be improved with additional target
variation and better behavior of the ground images (static in our task). A majority of participants wanted to see
improvements to the visual fidelity realism of ground images, and that fidelity of the air images could be degraded
further at the far ranges.

Table 2. Themes and Descriptions of Participant Comments by Task

Realism 61% of participants ~ 50% of participants 33% of participants commented
found the radar and  appreciated elements of  on entity fidelity and visual
entity behavior to authenticity. realism.
be realistic.

Strengths Value of 39% of participants ~ 39% of participants 39% of participants indicated

Training described the commented on the this was a valuable training
exercises as agood  value of LVC training. exercise.
training exercise
for skill

development.

Difficulty  50% of participants
identified
opportunities for
increasing task

difficulty.
Opportunities Task 44% suggested that ~ 39% suggested that the 50% of participants suggested a
Features ranges should be training task could be need for more target variation.
(Range) closer. improved.
Visual 67% of participants 28% suggested that the level of
Fidelity & identified opportunities fidelity should be adjusted at
Realism for improving visual far range.

fidelity.
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CONCLUSION AND NEXT STEPS

Across tasks, participants responded favorably about the LVC capability for emulating real-world conditions to
support training. Generally, participants reported that functionality was realistic, workload was manageable, and the
systems were acceptable to meet training needs. We used objective performance metrics and subjective ratings at the
end of each trial to draw more specific conclusions about model and entity fidelity. Open-ended comments provided
additional insights; however, because they were collected only at the conclusion of each task, they do not speak to
specific conditions of radar or model fidelity.

Air-to-Air Radar Tasks

Participants responded favorably to all radar models, agreeing that they were realistic and acceptable for training.
However, we found that the high radar degradation condition increased task difficulty and more successfully emulated
the behavior of real radar. We recommend using the high degradation condition for training applications. Training
scenarios for LVC air-to-air radar tasking could be improved by ensuring that radar behavior is appropriate for range
and entity behaviors. This could be accomplished by ensuring that dropped tracks occur more frequently at farther
ranges and at specific orientations, rather than randomly. Tracks for entities closer in and at head-on orientations
should be more stable.

Sniper Pod Air-to-Ground Targeting Tasks

Low-altitude task constraints likely contributed to the ceiling effect on entity identification accuracy, limiting the
conclusions that we were able to draw. Based on timing data and subjective feedback, there is evidence that the high
fidelity model increased task difficulty and more successfully emulated real-world visualization. This was particularly
true when compared to the medium fidelity models. The addition of infrared modeling to the high-fidelity entities
helped them blend more with the other real-world objects. Recommendations for future implementations would be to
address the instability of entities due to lags in the system, to improve the contrast blending of constructive entities,
and to provide the white-hot/black-hot capability available in current targeting pod systems. We expect that the
realism factor of ground constructive entities will improve when tasks are performed at more realistic altitudes.

Sniper Pod Air-to-Air Targeting Tasks

Both the low fidelity and high fidelity models produce comparable increases in task difficulty, emulating real-world
challenges of detection and identification. This suggests that one potential improvement would be to create a hybrid
model that combines lower fidelity models at the farther ranges and higher fidelity infrared models at closer ranges.
Furthermore, this task could be improved in future implementations with the addition of the white-hot/black-hot
capability available in current targeting pod systems, and by incorporating more diversity in the aspect angles of
constructive entities within the scenarios.

Target Image Generator

As the experimental results show, a full-fidelity IR target generator may not increase task complexity to the point of
being a requirement. However, a medium fidelity Target Image Generator (T1G) would be beneficial. To that end, it
is recommended to pursue the installation of TIG software within the SLATE architecture. The most advantageous
system to run the TIG application would be the L\VVCPM.

Next Steps
There is beneficial research that can be performed to increase the knowledge base of embedded training while
minimizing the impact to the host platform. From the results of the study, we recommended several courses of action

be taken to 1) improve the realism of radar model performance and 2) continue the study of introducing visual targets
in the cockpit of an LVC enabled aircraft.

1. Perform a study/analysis of the entire system (aircraft system, bench system, SLATE system, Image
Generator, and/or network) to determine the cause of the transport delay that appeared in the experiment
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bench and correct/minimize the deficiency if possible.

2. Perform a study to address Target Pod simulation fidelity. It is recommended that a medium fidelity TIG be
installed within the LVCPM/SLATE system and integrated with the aircraft to more closely replicate real-
world performance at altitude.

3. Perform additional radar model refinement work to continue to add fidelity to the performance of the radar
model. Live radar and simulation model differences are exposed when constructive threats are displayed
together with live aircraft radar tracks in the cockpit. The effort would require inputs from aircrew subject
matter experts and validation of the updates. Testing and validation of the radar model updates should be
conducted with a more capable radar bench system, such as that which may be available at OEM. The intent
of this research would be to add additional fidelity and realistic performance degradation to the radar model.

4. Perform similar fidelity testing during test fights to address previously reported limitations with the static
FITTL lab test environment system. Test flights would improve data comparing live sensors to simulation
models and provide the look-down view needed to improve evaluation of TPOD air-to-ground testing trials.
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