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ABSTRACT

Career development relies on an understanding of possible future roles, available training experiences, and current
skills. To target training where it will be most effective, trainees and instructors must understand how these elements
interact, which requires analysis of historical data. These data can be difficult and often sensitive to collect from human
subjects, requiring longitudinal studies with privacy safeguards. Synthetic data generation that simulates the
knowledge and biases of individuals offers an opportunity to develop the algorithms that are most likely to succeed,
prior to human-use testing.

This paper presents a generative model of crowd knowledge and responses to bootstrap the evaluation of algorithms
whose recommendations or measurements will produce downstream effects. The simulation models the effect of well-
known cognitive biases that influence knowledge recall or learning outcomes. For example, the availability heuristic
(Tversky and Kahneman, 1973) may cause the importance of an infrequent or highly variable task to be less accurately
recalled. Simulations must model the strength and prevalence of each cognitive bias, parameters which may vary with
domain and are therefore difficult to set a priori. By adjusting the relative influences of declarative knowledge,
anecdotal experience, cognitive biases, and other factors, the generative model creates many simulations with different
underlying assumptions, allowing it to probe the generality of algorithms trained or selected using a subset of the
simulations. We present an application of this generative model to crowdsourced survey responses. Our approach
enables researchers to select the best performing algorithms under a range of psychologically plausible assumptions.
Furthermore, the generative model provides an open and scalable source of data that is not constrained by issues of
data privacy, security, or collection cost. This model selection approach extends to related domains where relevant
psychological effects can be approximated, such as tailoring training recommendations and intelligent tutoring to
individual backgrounds.
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INTRODUCTION

This paper presents our generative model of survey responses, called the crowd simulator. The crowd simulator can
be used to develop an active learning approach to survey distribution by refining the active learning algorithm prior
to data collection. The simulation approach models systematic effects that influence survey responses, such as
cognitive biases. For example, the availability heuristic (Tversky & Kahneman, 1974) may cause the importance of
an infrequent or highly variable task to be less accurately reported. Any one simulation of survey responses must make
assumptions about the strength and prevalence of each cognitive bias, parameters which may vary with domain and
are therefore difficult to set a priori. By adjusting the relative influences of declarative knowledge, anecdotal
experience, cognitive biases, and other factors, the generative model creates many simulations with different
underlying assumptions, allowing it to probe the generality of the selected survey distribution algorithm. The
generative model provides an open and scalable source of survey response data that is not constrained by issues of
data privacy, security, or collection cost.

Motivation

Surveys are rich sources of human-subjects data, and are regularly employed in a variety of disciplines, such as
political science, market research, economics, psychology, and healthcare (Abuse, 2016; Boril et al., 2018; Buskirk &
Andrus, 2012; Couper et al., 2001). Typically, a single survey is developed and distributed to a large number of
participants, who are all expected to respond attentively to all questions asked. Survey responses are then analyzed in
order to generate a composite picture of the “true” answer to all of the questions, perhaps disaggregated by
demographic or other factors. In some survey design settings, there might be many questions that we are seeking
answers to, resulting in large surveys that impose a burden on individual participants. This burden reduces the ability
to conduct surveys, by increasing the cost and by turning away some participants who might complete a shorter survey.

We reframe the problem of survey design to reduce the individual burden on participants. The critical insight is that
survey-based data collection is often treated as a batch learning problem, but it is fundamentally an online learning
problem. In other words, researchers typically only design a single large survey and distribute this static survey to all
participants. However, one can design different (and smaller) surveys targeting different information, and distribute
these surveys in small batches, building up better and better estimates for the “true” answer to a question. An adaptive,
incremental learning approach to survey design and distribution provides an opportunity to reduce the burden on
individual participants and maximize the value of each question asked. Now that we have reframed the problem as an
online learning problem, we can further refine the framing by considering the active learning setting. In active learning
problem settings, the machine learning algorithm receives data in batches in real-time (as in online learning), but the
machine learning algorithm is equipped with a means of querying specific information in those batches (a query
algorithm). In this work, we present an adaptive survey design algorithm using active learning. Specifically, our
approach consists of a probabilistic information aggregation algorithm that learns to represent the information that we
receive from survey responses, along with a query algorithm that can generate new surveys and collect new
information from the crowd.

A critical problem with this setting is that of validating our query algorithm, as the system’s efficacy is fundamentally
limited by the data that it queries. The typical approach to validation would be to collect data from the real world using
a variety of query algorithms, and select the best algorithm, given a specific notion of “best”. However, this requires
us to define a notion of algorithm quality, which may be difficult without a ground truth distribution, and then collect
data from users, which can be costly when selecting between many algorithms. We are faced with a question: Without
knowing what the data will be, or which model states you will reach, how do you ensure the appropriate choice of
collection algorithm? In this work, we attempt to address that question using a generative model of crowdsourced
responses, which is flexible enough to coarsely model response biases and other structured noise that we may
anticipate in real-world deployment.
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Novel Contributions

The present work makes several novel contributions to various fields. First, it makes a theoretical contribution to the
survey design literature, reframing the task of distributing surveys as an active learning task. Furthermore, it presents
an approach to validating the query algorithm without ground-truth data, using a task setting that we call adversarial
active learning. Adversarial active learning attempts to probe the generality and robustness of a query algorithm,
ensuring that the algorithm is performant under a variety of conditions and thus providing evidence that it will perform
well during deployment. We define the adversarial active learning approach as follows: we are given a set O of oracles,
which represent different survey populations, a set Q of query algorithms, which design surveys to be distributed to
participants, and a set of active learning algorithms A = (L, q) consisting of a fixed learning algorithm L and q € Q.
For each 0 € O we test the performance of every a € A and select the best performing active learning algorithm a. If
the best performing algorithm is stable against a set of oracles, this can increase our confidence in the generality of
the algorithm. This form of validation assumes that the oracles are sufficiently diverse, perhaps representing
demographic groups or different domains. In the present work, we introduce a crowd simulator that can generate data
for different oracles. Though adversarial active learning could, in principle, be performed with oracles that are
composed of actual survey participants, using a simulator gives us access to a much larger set of possible oracles,
without incurring the costs associated with real-world data collection and without changing our approach to algorithm
selection.

The crowd simulator is a general framework for simulating survey responses. The key innovation is that the crowd
simulator can model arbitrary correlations between questions or biases when answering a single question. We refer to
these effects as systematic effects. Beyond differences between different subpopulations of participants (which
correspond to different true distributions over survey responses), these systematic effects can coarsely model a whole
range of cognitive or response biases that might impact a participant’s response to a question. By parameterizing the
crowd simulator such that it can capture a variety of strengths of these systematic effects, we hope to capture and test
against data representing much of the variance that we might see in deployment. Though we might only have a coarse
notion of how a given systematic effect will impact survey responses (e.g., this effect will cause participants to
overestimate the answer to a given question), we can build that systematic effect into the crowd simulator, generate
oracles that exhibit this effect with various strengths (e.g., different amounts of overestimation), and then test our
active learning algorithms against those oracles. If one active learning algorithm outperforms the rest, then we can be
confident that the algorithm will be robust to real-world effects that generally obey this mechanism (e.g., effects that
result in overestimation).

Case Study - Crowdsourced Job Analysis

We demonstrate our adversarial active learning task and survey response simulator in the domain of crowdsourced
job analysis. Job analysis is a formal procedure for defining a job in terms of the tasks that compose it, as well as the
qualifications that it requires. Job analysis is the basis of many human resources functions, including candidate
selection, promotion, training and development, compensation, designing rewards programs, and performance
management. Aside from its critical role in human resources activities, job analysis is legally required by the Federal
Government (Thompson & Thompson, 1982; Warren, 1976).

Traditionally, job analysis is performed by expert job analysts, which requires great time and effort on their part, and
comes at a steep cost for organizations. Furthermore, job analysts typically conduct interviews and use a series of long
survey forms to perform their analyses, which prevents regular updates to job analysis. We are developing a
crowdsourcing approach to this analysis, which can be conducted by non-experts and minimizes the disruption to
employees by distributing the effort across a larger group. This approach allows the analysis to be updated regularly,
preventing out-of-date information from skewing the results. Eliminating stale data on required tasks, skills, and
contextual factors of a job can ensure that assignments are accurate and training curricula are kept up to date.

In the present work, we focus on refining estimates of two essential task characteristics: task frequency and task
importance. For our purposes, we assume that the list of relevant tasks has already been established. Furthermore, we
assume that our data exhibits the following constraints: 1) the data is collected sequentially, 2) frequency and
importance survey questions exist on a Likert scale, 3) each participant has time for a fixed number of questions, 4)
the survey distribution system may process the data from one individual before generating the next survey, 5) there
are a limited number of individuals available to query.
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BACKGROUND

Crowd Simulation — Modeling Systematic Effects

Many studies have shown the existence of systematic effects — correlations between questions or systematic biases —
that can influence question responses in predictable ways (Burkner, 2019; de Ayala, 2009; Friesen & Weller, 2006).
Though we may not know the magnitude of the effect a priori, we may hypothesize about the context in which the
effect happens and the directionality of the effect using qualitative findings from the literature. By including these
biases in our simulated survey responses, we can generate more realistic adversarial tests of our active learning
algorithms. In the present work, we demonstrate systematic effects that loosely mimic the effects of two well-known
cognitive biases — the availability heuristic and the anchoring and adjusting heuristic.

The availability heuristic is a well-known and long-studied cognitive bias that states the perceptions of an event are
impacted by ease in which a subject can recall instances of that event. One experimentally-verified consequence of
this bias is that events that are more easily recalled are thought to occur more frequently (Tversky & Kahneman,
1973). This effect has been studied across a variety of different domains, including media, economics, and criminal
justice. We model this in our simulator by increasing the perceptions of task frequency if a participant can easily recall
instances of performing that task. The probability of this recall is increased for higher-frequency tasks.

The anchoring and adjusting bias is another well-known cognitive bias that states that a judgement is influenced by a
previous judgement, which serves as an anchor (Block & Harper, 1991; Epley & Gilovich, 2006). One common
mechanistic explanation of this effect is that the anchor serves as a reference point for the next judgement. When
making that second judgement, a participant will refer to their anchor and then adjust it to produce the second
judgement. Oftentimes, the participant fails to sufficiently adjust, which biases responses in the direction of their
previous judgement. This effect is known to be moderated by the similarity of the questions requiring judgements
(Mussweiler, 2002). In our context, this means that the answers to successive questions will be impacted by their
answer to the previous question. This will be moderated by the similarities between the questions.

Survey Generation - Active Learning

The adversarial active learning paradigm that we introduce is a type of active learning (Settles, 2009), which itself is
a type of online learning (Diethe & Girolami, 2013; Jain et al., 2014). Online learning is a paradigm in machine
learning where the machine learning algorithm is exposed to small, sequential batches of data due to some constraints
on the data pipeline. Online learning algorithms must be able to continuously learn and produce predictions. Active
learning is a paradigm that equips an online learning algorithm with a query algorithm, which enables the system to
query an oracle for data that is most useful for the machine learning algorithm. Thus, an online learning algorithm
needs to process data in sequential batches without any influence over the contents of those batches, whereas active
learning algorithms can query for specific batches.

In the context of crowdsourced job analysis, we treat whole populations of incumbents as the oracle for learning a
definition of a job. Surveys can only be distributed in small numbers to portions of this crowd, which results in
sequential, batched data. To reduce the burden of surveys on individuals, we seek to reduce survey size by actively
selecting the most informative survey questions at each batch, rather than pre-defining surveys. We then continuously
train a probabilistic machine learning algorithm based on these survey response batches. This setting maps directly
onto the active learning paradigm. Our survey generation algorithm is our query algorithm, our probabilistic algorithm
is our machine learning algorithm, the subpopulation corresponds to our oracle, and each batch of survey responses
corresponds to our sequential batch of data.

METHODS

We now formally define the various components of our adversarial active learning system as applied to crowdsourced
job analysis. This includes our parameterized crowd response simulator, our parameterized survey generator, which
is comprised of a probabilistic machine learning algorithm (Job Definition Model) and a parameterized query
algorithm. We will use these components to measure the relative performance of different survey generators (which
each have different query algorithms) across different crowd simulator parameterizations (which have different
systematic effects). Using this approach, we can assess the effectiveness of different survey generators on a variety of
potential subpopulations, which may exhibit different systematic effects, and may also have different distributions of
true answers for each survey question. This approach tests our assumptions about how different query algorithms will
improve active learning without first performing costly data collection. An algorithm that performs as expected across
a variety of crowd simulator tests can be deployed with some confidence that it will perform well.
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Crowd Simulator

The crowd simulator is a general framework for simulating survey response data. This framework can generate sample
answers to any Likert or true/false question. Crucially, the crowd simulator framework can also model correlations
between question responses or response biases that may impact individual question responses. For brevity, both
correlations and response biases will be termed systematic effects. Each systematic effect provides a series of
hyperparameters, allowing users to explore different configurations of magnitude and prevalence for every systematic
effect. By creating multiple crowd simulator instances with different hyperparameters, one can simulate collecting
data from different possible subpopulations, which each exhibit different systematic effect strength and prevalence.
We formally define the crowd simulator framework below.

Define a survey S as an ordered collection of N survey questions Qi, i € [1, N]. For each Qi, define a continuous
random variable Ti, which represents a user’s true answer to that question. Define Ti’s PDF as P(T;). Thus, we assume
that there is no one correct answer for a given question, but that different users will experience different true answers.
The support of each Timay take on any range of values, if the possible Likert responses correspond to values in that
range. The range typically depends on the content of question Qi. For example, if Qi asked how frequently a task was
done, then the support might range from .5 (the task is completed twice a day, the highest Likert value) to 365 (the
task is completed once a year, the lowest Likert value). If Qi asked how important a task is, then the support might
just be a continuous distribution over the possible Likert values (ex. [0.5, 5.5] for a 1-5 Likert scale).

For each user (indexed by j), draw t;; ~ T;, and define N(t;;, 0;), which represents the response distribution for a
given user and question. This distribution encodes any uncertainty that the user might have in reporting their true
answer on a survey. Next, we define K pairs of systematic effect functions: fi (ti ,0,0,S ) =tj + Ae,
fgk(ti ,0,0,8 ) = 0g; + A,. Each f takes in the mean and standard deviation of the response distribution for the
current question and user, a set of function specific hyperparameters 0, and information about other questions in the
same survey S (including whether they have been answered, and what those answers were), and adds a (not necessarily
positive) value to the mean or standard deviation, respectively. Collapsing the effects of all K pairs of systematic effect
functions, we specify the effective response distribution: N(t;; + 4, 0; + 4,). Finally, we draw the user’s response
1ij ~ N(t;; + 44,0, + 45). We apply a rounding function ROUND (R;;) to generate the Likert response for Qi, user
j- In order to generate responses for a full survey, we iterate through this process in order, generating responses for Q1
through Qn. Generating these responses in order is critical, as the information S passed to the systematic effects
functions contain information about all survey responses for questions Q1 through Qi-1.

Now, we define the systematic effect functions that loosely mimic the availability heuristic and anchoring and
adjusting heuristic. We emphasize that we are not making any claims to provide an experimentally verified model of
the effect of these heuristics, nor are we making any concrete mechanistic claims about them. We only seek to use
these well-known cognitive biases as inspiration to demonstrate the capabilities of the crowd simulator, and to
demonstrate the utility of the adversarial active learning paradigm.

First, we consider the availability heuristic. Intuitively we want to model the scenario where a participant has an easily
recallable instance of performing a task, which biases their frequency response in a positive direction. Let 6 =
{N,S,y},S = {}. Nis an integer parameter encoding how many days in the past a participant considers to be “recent”.
Thus, if N = 5, then any task done within the past 5 days is considered recently done. S, is a parameter encoding
the strength of the availability heuristic. We then define:
Pra = N/t
Where ¢ corresponds to the true period of a given task, in days, for a given participant. Thus, if the task is performed
once a work week, then t = 5. p,4 represents the probability that a task was “recently done”. We clamp the range of
this value to [0, 1]. We then draw:
rd ~ Bernoulli(p,q)

Which defines whether the task was easily recalled. If rd = 1, then ftk(ti

tj. For completeness, we note that fgk(t”, 0;, 0, S) = 0.

jr O'i,g,S) = tj + SAHa else ftk(tij’ O'i,g,S) =

Next, we consider the anchoring and adjusting heuristic. We have already noted that the similarity of judgements is a
moderator in the effect of the anchoring and adjusting heuristic. For this study, we encode this in our function by
making the strong assumption (which is likely invalid in real populations) that the anchoring and adjusting heuristic
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only applies when subsequent questions are of the same type (e.g., both frequency, both importance, or both day one
importance). Let 8 = {S¢, S;,5p1},S = {R™1 }. The S values determine the strength of the anchoring and adjusting
effect, which might vary between question types. The R value encodes the question type and response to the previous
question. Let type() be a function that returns the question type for a parameter. The function ftk(ti ,01,0,8 ) is then
defined as follows:

IF (type(t;;) = type(R™1): return t;; — R~ * Stype(tyy)

ELSE: return ¢;;

Thus, the function biases the response of a subsequent question to be closer to the response of a previous answer if
both questions are of the same type and has no effect if they are of different types. For completeness, we note that

fa'k(tijl 0y, 9,5) = 0j.

Survey Generator

We formalize the survey generation system to be a function from the space of task characteristics to a space of queries.
In our case, characteristics are the current estimates of frequency and importance from our probabilistic machine
learning algorithm (job definition model), and the queries are the survey design. Each survey generator consists of a
job definition model and a unique query algorithm, which selects a survey design to be distributed. The query
algorithm defines a cost function, which is then used to rank potential survey configurations.

The job definition model (JDM) is updated by active learning data collection. Specifically, the JDM is a Bayesian
network, where the probability distributions for each question are defined over the Likert scale of possible responses
for the question. The JDM counts occurrences of question responses and builds up a probability distribution
representing the probability that question’s true answer. For each possible survey question, the JDM calculates an
estimate of the value of asking that question in the next batch of surveys. The value calculation is simply the inverse
Kullback-Leibler (KL) Divergence between the JDM’s current probability distribution and a discrete uniform
distribution defined over the same Likert scale. Intuitively, this encodes the amount of information that the JDM has
about a survey question. When the JDM is confident in a question’s answer, then the KL divergence between that
distribution and the uniform will be high.

Each question is assigned a baseline cost by the JDM equal to the current KL Divergence. This cost is then modulated
by a series of parameters that define a query algorithm’s cost function. Each survey questions considers only one of
the characteristics of a task: the frequency or the importance. For each possible characteristic, we define a cost
parameter that scales the baseline value of any survey question querying that characteristic. This allows the survey
generator to emphasize one characteristic over the other or to balance between them. We also define pairwise cost
parameters that consider whether the previous question asked about the same characteristic or a different one. This
allows the survey generator to emphasize switching or not switching between characteristics with each query.

The cost function operates on a whole survey, considering the ordering of each questions as well as the adjusted
individual costs of those questions. The survey generator optimizes this process by first sorting on the baseline cost,
randomizing the order of questions with the same baseline cost. Then the list of questions is divided into separate lists
for each characteristic and the survey generator calculates the cost of all surveys that can be built by choosing the next
element from one of these lists. Since we are concerned with distributing short surveys, a full enumeration of these
possible survey orderings is possible. This defines the process for generating a survey, given probabilistic estimates
of question values from the JDM and a parameterized cost function.

Experimental Setup

We now define how these components combine in our experimental setting. First, we define the number of tasks that
our system will attempt to learn about, as well as the mean of their true answer distributions. Unless otherwise noted,
our surveys ask about 20 tasks, for a total of 40 questions (one frequency and one importance question per task). For
each question, we use a random number generator to generate the means of the true distribution and use a standard
deviation of 0.1 for frequency and importance questions. Next, we define an oracle, which consists of a particular
parameterization of crowd simulator. This involves selecting the parameters for each systematic effect (availability
heuristic and anchoring and adjusting heuristic), as well as the standard deviation parameters that define the response
uncertainty. Defining these parameters provides us with an oracle that represents a particular subpopulation that we
may encounter. Finally, we define the cost function parameters space for the query algorithm of the survey generator.
These parameters define the constants that determine how new surveys are generated.
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For each run, the crowd simulator and survey generator cost parameters are held constant, but a different task model
is used, assigning different values to the true mean of each characteristic of each task. The set of task models used is
held constant across different parameterizations of the crowd simulator or survey generator, to allow clearer
comparison. The experimental loop proceeds as follows: First, the survey generator creates a survey, which is realized
by a set of parameters passed to the crowd simulator. The crowd simulator generates responses to every question in
the survey. Then, the Job Definition Model learns from these responses, produces estimates of the value of asking
each question for each task, and passes these estimates on to the survey generator query algorithm. The query
algorithm’s cost function then determines the best ordering of questions for the next user. Finally, the survey generator
creates a new survey, and the loop restarts. This loop continues until a fixed number of surveys have been distributed.

We perform runs with 60 users, 5 task models, 20 tasks, and a survey length of 5. For each baseline comparison run,
we use a survey length of 40, allowing all questions to be asked of all users. The crowd simulator parameterizations
are “No Effects”, “AH”, “AA”, and “All Effects”. In the “No Effects” parameterization, users report noisy estimates
of the true mean value for each task characteristic query. In the “AH” parameterization, users’ responses are affected
only by the availability heuristic effect described above. In the “AA” parameterization, the users’ responses are
affected only by the anchoring and adjusting effect, with anchoring occurring only for consecutive questions about
the characteristic (e.g., a frequency question followed by another frequency question). In the “All Effects”
parameterization, user responses are affected by both the availability heuristic and the anchoring-and-adjusting effects.

The survey generator parameterizations are “Random”, “Base”, “Freq”, “Diff”, and “All”. The “Random”
parameterization sets the baseline cost for all task characteristic questions to zero, selecting a survey ordering entirely
at random but still compiling results using the JDM. Random sampling is a gold standard approach to learning
population means and should perform well given enough users. The “Base” parameterization sets all cost function
parameters to the identity, choosing a survey ordering that contains the individual questions with the lowest cost. This
approach should allow smaller numbers of users to produce a better estimate across many tasks. The “Freq”
parameterization functions like the “Base” parameterization but reduces the estimated cost of all frequency questions
by a factor of 4. This should provide more data on the frequency of a task, compensating for uncertainty due to recency
bias or the availability heuristic. The “Diff” parameterization function like the “Base” parameterization but increases
the cost of a question by a factor of 4 if it is immediately preceded by another question about the same characteristic.
This should tend to produce surveys that alternate characteristics, reducing anchoring and adjusting bias. The “All”
parameterization includes the cost adjustments from both the “Freq” and “Diff” parameterizations.

Evaluation Metrics

Our central thesis is that understanding systematic effects and survey constraints will allow us to craft a query
algorithm that improves the estimated values of the Job Definition Model (JDM). We measure performance based on
the completeness of the final estimates of each question type for each task and the stability of the query algorithm
across different crowd simulator variants. Completeness is measured by averaging the 50, 75%, and 90'™ percentile
accuracy values across five difference task models. This measure was chosen to aggregate the algorithm’s ability to
avoid large errors for any tasks and its performance on the median task. Accuracy is defined by the KL divergence
between the JDM’s estimated probability distribution and the true discretized probability distribution of the underlying
task model. In order to evaluate the stability of different survey generators, we compare their rank-order performance
as a function of crowd simulator parameter changes. Intuitively, this corresponds to analyzing whether the relative
performance of different survey generators stays the same when learning from different subpopulations. To scale the
performance, we also calculate the accuracy values and corresponding completeness measure for a Baseline estimate
compiled by simulating responses from every user to every possible question. This Baseline requires too much effort
from each user to be applied in the real world but provides an upper bound on the accuracy of a simple survey.

We test three specific hypotheses that provide insight into the value of the crowd simulator: (1) some survey generators
will have measurably more stable performance across different crowd simulator; (2) addressing more of the constraints
and systematic effects that are present will yield better performance; and (3) addressing fewer constraints and
systematic effects that are not present will yield better performance.

RESULTS

Figure 1 gives an overview of the performance of three possible survey generators across two different crowd
simulators. Results are scaled to the baseline value generated by the “No Effects” crowd simulator and the performance
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progress is captured after every 10 users. 4 different runs were performed using different sets of randomly generated
task models. The performance of these runs was averaged to produce the overview graph. From this graph, we can see
that performance of the “Random” survey generator is very bad for low numbers of users and is worse relative to
baseline for the “All Effects” crowd simulator than for “No Effects”. The “Base” survey generator has significantly
better performance for the “No Effects” crowd simulator, but worse performance for the “All Effects” crowd
simulator. Finally, we see that the “All” survey generator has better and more stable performance across both crowd
simulator variants.

AVERAGE PERFORMANCE VS BASELINE
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Figure 1: Average Performance vs Baseline Completeness

Figure 2 shows the variability of performance relative to the baseline across different sets of task models for the “All
Effects” crowd simulator. This variability helps distinguish meaningful differences between algorithms. For example,
the results for the “Random”, “Diff”, and “All” survey generator parameterizations tend to fall in the same range.
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Figure 2: Performance across different task models

Figure 3 shows how performance of the Baseline and the “Random”, “Base”, and “All” survey generator
parameterizations varies across the different crowd simulator parameterizations. Across all data points, the Baseline
estimates perform best, as expected, with an average rank order of 1.25 (out of 4). The “All” survey generator has an
average rank order of 2.25, “Random” has an average rank order of 3, and the “Base” survey generator has the worst

performance, with an average rank order of 3.5.
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Figure 3: Performance of survey generator parameterizations vs. crowd simulator parameterizations

Based on our hypotheses, we would expect that the “Base” survey generator would outperform “Random” in all of
these cases, focusing attention on the questions where users disagree to compensate for the survey size constraint. We
would expect the “All” version to outperform “Base” when all effects are present, and to have more varied
performance across the different crowd simulator parameterizations (because they will align more- or less-effectively
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with its cost function). Instead, we see more stable performance from “All” than from “Base” or “Random” and we
see that “Random” tends to outperform “Base” whenever systematic effects are present.

DISCUSSION
Hypotheses
Our first hypothesis was that some survey generators will have measurably more stable performance across different
crowd simulator parameterizations. This hypothesis was shown to be true by the stable rank-order performance of the
“All” version of our survey generator. This is a key finding that allows crowd simulator to be used to refine a query
algorithm by isolating parameter choices that improve performance across multiple subpopulations.

Our second and third hypotheses were not shown to be true. Addressing more of the constraints and systematic effects
that are present does not necessarily yield better performance, since “Random” often out-performed “Base” even
though “Base” addressed more constraints in all cases. Likewise, addressing fewer constraints and systematic effects
that are not present will not necessarily yield better performance, since the “All” survey generator showed equal
performance to the “Base” survey generator in the case where no systematic effects were present. That these two
assumptions about how query algorithms should perform proved to be incorrect shows the power of crowd simulator
to test our assumptions and help refine our algorithms.

Implications for Job Analysis

We were able to distill some useful insights about effective query algorithms by using the crowd simulator: (1) when
the true distribution of a characteristic is spread across multiple response values, there is an upper bound on the relative
entropy of our estimates vs. a uniform distribution, causing those questions to have low costs and therefore to be asked
repeatedly; (2) if survey ordering can affect accuracy, it is no longer obvious what the appropriate baseline comparison
is, since there is no natural ordering of questions in the same way that there is a natural choice to “ask all questions”.
The crowd simulator gives us a method of exploring true accuracy, but a real-world data sample will not.

The present work contributes to the job analysis literature by presenting an active learning formulation of the problem
of crowdsourced job analysis. Without a means of validating the query algorithm this formulation would have little
practical application. With the introduction of the crowd simulator, we can challenge the robustness of a candidate
query algorithm when faced with many different subpopulations, without the need to conduct expensive crowd studies.
This allows the cost of job analysis to be reduced to the point that maintaining up-to-date and demographically-
debiased job definitions across an entire organization is a feasible goal.

Generality of Results

The present work advances the machine learning and simulation literature in several ways. First, it introduces a
probabilistic generative model of survey responses, which can simulate arbitrary systematic effects, including
cognitive biases, correlations between questions, and more. This provides both a theoretical advancement, by
connecting the large literature on systematic response effects to the simulation of survey response, and a practical
advancement by implementing a simple and extensible framework for simulating these systematic effects. We hope
that others use our simplified example systematic effects, which coarsely model two well-known cognitive biases, as
inspiration for developing more complete and realistic models of systematic effects, which will increase the real-world
applicability of our system. However, even without such development, our framework provides a means of testing the
robustness of our survey generator algorithms.

Additionally, we introduce the paradigm of adversarial active learning. Active learning has long been known as a
useful strategy for increasing data efficiency in an online learning setting, except its efficacy is limited by the query
algorithms that it employs. Choosing the correct query algorithm is thus a crucial part of designing a successful system.
The adversarial active learning paradigm is a general method for choosing query algorithms. This procedure uses a
parameterized data generation system to simulate datasets with varying characteristics in order to select the most
robust query algorithm. Through our experimental results, we have demonstrated that that adversarial active learning
provides a cost-effective method for validating certain classes of active learning algorithms prior to expensive or
sensitive real-world data collection.

FUTURE WORK

There are two clear paths to improving the current system: 1) making improvements to the crowd simulator and 2)
making improvements to the survey generator. Because we were simply demonstrating the power of a generative

IITSEC 2021 Paper No. 21285 Page 10 of 11



2021 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

probabilistic crowd response simulator, there are many other systematic effects that might impact survey responses.
There is a large literature on cognitive biases, and coarsely modeling a wide range of them will certainly improve the
real-world robustness of a system such as the one that we presented. In addition, systematic effects such as
demographically driven differences in tasking, training, or perceived skill levels could prove fruitful in identify
unintended bias produced by a query algorithm (even one as simple as random sampling). The survey generator might
be extended to take advantage of knowledge about how skills relate to question responses for different types of tasks.
This will be useful especially if the crowd simulator is extended to consider skills. Additionally, one might consider
relaxing some of the constraints on the survey generator’s survey designs to allow more control over question
structures. For example, one might imagine a survey generator that could choose to produce categorical, Likert, or
open-ended questions or perhaps even mix between those types for certain characteristics.
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