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ABSTRACT 

 

As the intelligence in autonomous systems expand, so too have their roles. These complex systems, and the intelligent 

agents of which they are comprised, serve more independent and interactive roles with humans than tools of the past. 

In order to ensure humans can effectively interact with this technology in human agent teams (HAT) there is a need 

to understand how the varying levels of autonomy and types of agent embodiment influence this interaction.   The 

recent technological advancements in autonomous systems blur previous delineations between distinct types of agents 

based on their embodiment (e.g., physical—or tangible such as warehouse robots, virtual—or digital based agents 

such as a virtual assistant; and embedded—or invisible agents that operate without any embodiment such as a global 

positioning system (GPS) assistant; Glikson & Woolley, 2020). Autonomous systems may also exhibit multiple 

embodiments; for example, Unmanned Aerial Systems (UAS), which are physical, are also shown virtually on control 

stations, and exhibit embodied capabilities including object detection and mission planning. This paper will focus on 

what is needed to effectively train humans and manage HATs, including identifying the skills that humans need to 

work with agents across varying levels of autonomy. The paper will map out a framework for taskwork and teamwork 

skills by drawing on interdisciplinary research from the fields of research on human-human team (HHT) composition, 

selection, and training with research on HATs to address which skills are needed for which types of agents. These 

concepts will be discussed across emerging advanced agents that break the modern mold of singular embodiment and 

pose unique challenges, such as UAS that are controlled from thousands of miles away, or autonomous passenger 

vehicles that require human trust. Issues with current frameworks and guidance for performing a HAT task analysis 

are presented. 
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INTRODUCTION  

 

Military operations are becoming increasingly unmanned and automated, requiring optimization for human-agent 

dynamics (Gangl, Lettl, & Schulte, 2013; OSD, 2017). Artificially intelligence (AI) agents that can act independently 

of a human, are becoming more commonplace in a variety of applications, including smart home devices, 

manufacturing and assembly, shipping and delivery, autonomous vehicles and drones, and weapon systems. With the 

vast expansion of autonomous systems, safe and effective integration of AI into human operations is key. Although 

there have been many advancements in HAT, effective team dynamics is still an area of needed improvement (Walliser 

et al., 2019). Many issues prevent effective HAT, including biases that humans place on agents, under or overtrust 

and expectations of agents, predictability, reliability, and task allocation (Dubrow & Orvis, 2019; Glikson & Woolley, 

2018; Roff & Danks, 2018). However, as agents become more complex, newer issues also emerge. For example, 

remote operations are challenging for operators to maintain situation awareness (SA) as they become out of the loop 

due to the lack of sensory information on which they normally rely (Endsley & Jones, 2004). Remote missile drones 

introduce additional issues extending into moral dilemmas, in which military personnel actions and decisions may 

differ when working with highly autonomous agents from remote locations, as they may not be fully aware of the 

impact that their actions have in the real world (Coeckelbergh, 2013). Finally, in the case of automated weapon systems 

(AWSs), which are extremely complex machines with varieties of autonomy at play, humans may incorrectly perceive 

their predictability or reliability (Roff & Danks, 2018). However, there are no current mechanisms within AWSs that 

exhibit the strong predictability required in complex and changing military environments. These new dynamics of 

varying autonomy and distributed operations may present new challenges that require specific skills of the agent and 

human that may not be represented in general frameworks. Considering the implications of these emerging areas of 

automated agents in the military, it is important to ensure effective and safe teaming between human and agent.  

 

Current Space of Automation and Teaming Frameworks 

 

The focus of HAT has shifted from a technology-centered approach to a human-centered approach in order to address 

issues in HAT collaboration and effectiveness (Glikson & Woolley, 2018). AI, the underlying technological 

component of an agent, represents an advanced spectrum of technologies that are capable of completing tasks within 

the environment, gathering information from outside environments, interpreting the information, generating results 

and evaluating the results of the AI’s own actions. AI can take a variety of embodiment forms, but the three main 

forms outlined by Gilkson & Wooley (2018) include: (a) a physical robot, in which the agent is tangible and the human 

can touch and visually see its actions; (b) virtual agents carrying out tasks on a screen or within a virtual environment; 

and (c) embedded AI, in which the AI is submerged inside of another tool or a computer, which can carry out tasks 

that may be unbeknownst to the human. These classifications help to determine how the human member of a HAT 

team will interact with the AI teammate (or agent) and is an essential framework for understanding trust and reliability 

among different autonomous systems and HAT. (Gilkson & Wooley, 2018). Agents or robots are often classified by 

their primary function or their physicality (physical, virtual, or embedded). In the early 2000s and even 2010s 

technology could easily be seen in this categorical view: Roombas (a physical agent) which can vacuum your home; 

Clippy (a virtual agent) who helps you write documents; and Google Maps (an embedded agent) who can give you 

directions to your destination are all easily placed into categories. Even though Glikson and Woolley (2020) noted 

that agents may exist in multiple categories, agents with multiple embodiments are quickly becoming the norm. 

Therefore, it is critical that the complexities of novel agents with many functionalities are considered. In the civilian 

space, consider Amazon Alexa who has a physical space in one’s home, but has a virtual voice for whom she is broadly 

mailto:slindsey2013@my.fit.edu
mailto:nguyend2018@my.fit.edu
mailto:cficke2018@my.fit.edu


 
 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 

IITSEC (year) Paper No. 21269 Page 4 of 14 

recognized, and has many background capabilities. However, are the knowledge, skills, abilities, and other attributes 

(KSAOs) the same for someone using Clippy, which will simply change the format of a document as opposed to 

Amazon Alexa who could unlock your front door smart lock, call your family members, or make purchases for you? 

Likely not. Humans may trust a car to drive them from point a to point b but not trust its ability to dynamically respond 

to nearby traffic and choose a different route to get to the destination (e.g,. its ability to perform physical actions versus 

decision making actions). Therefore, the physical abilities and embedded abilities of an agent may be trusted 

differently. Agents are being developed with increasingly higher autonomy and responsibilities, however, agents now 

come in all shapes and sizes. In the military space, early drones were piloted and operated by soldiers as scouts for 

information gathering purposes. For example, a combat drone is physically present in the world and generally remotely 

piloted and may have embedded functionalities or subtasks including navigation, object detection, fuel management, 

and more. Drones now and in the near future can be operated from remote locations and tasked with a range of 

activities from supply delivery, missile strikes, and counter drone operations (Guitton, 2021; U.S. Air Force, 2016). 

Human teammates may trust a combat drone’s ability to fly and avoid obstacles, but may not trust the combat drone 

to identify enemy assets and fire missiles without approval. There can also be overtrust in an autonomous system, 

which in military settings can lead to loss of life (e.g., 2003 Patriot missile incident; Scharre, 2019). On the other hand, 

lack of trust can lead to disuse, putting extra workload on the human and requiring too much monitoring of the agent.  

Thus, the ultimate goal is calibrated trust in HAT in which humans put an appropriate level of trust in the agent based 

on the capabilities and limitations of the agent’s functionality (de Visser et al., 2020). Additionally, it is possible that 

as agents become more complex, that humans misunderstand the capabilities of agents (e.g., mistake lane keeping 

automation in vehicles for automatic driving; Mirnig et al., 2016). Therefore, a framework that requires the agent, as 

a whole, to fall into one of these categories, may not be appropriate with emerging agent types. 

 

Other models include the level of autonomy (LOA) framework. LOA is defined as the range of design options 

implemented in a system to enhance self-sufficiency and self-directedness; ranging from manual operations that 

require humans to complete all functions, to fully autonomous operations, in which the system is able to perform the 

task in its entirety, requiring no assistance (Johnson et al., 2011). The different levels of autonomy are outlined more 

specifically in Sheridan and Verplank’s (1978) LOA structured model. For example, automation levels may include 

when the computer or automated teammate either allows the human to veto any actions before any automatic 

executions, or the computer necessarily informs the human before executing any automated actions (Sheridan & 

Verplank, 1978). Understanding the best LOA in HAT missions may lead to improved mission performance, overall 

mission effectiveness, and ease of communication in HAT. However, LOA is contingent on the autonomous capability 

and the task of interest. For example, a self-driving car is autonomous in the sense that the vehicle can follow a road. 

However, it is only considered semi-autonomous once the car must also avoid traffic and fails to do so. Although these 

different levels are separated by an extra task, the makeup of the autonomy and the approach to communicate its status 

to the operator drastically changes; requiring new forms of coordination, interdependence, and communication design 

(Johnson et al., 2011). As LOAs fluctuate throughout a mission, designers typically overlook how humans may adapt 

to changes in different LOAs and how to implement higher LOAs effectively (Johnson et el., 2011). Depending on 

the type of automation and the complexity of the situation, each agent type will require different needs for teamwork, 

taskwork, and KSAOs. Additionally, considerations based on the type of agent or location of the agent and the needed 

teamwork requirements based on co-located, distributed, or entirely virtual agents are needed. Based on these 

stipulations, a simplistic framework or approach for KSAOs with clean categories is simply not feasible or inclusive 

of all possible scenarios. The following sections will discuss a more fluid framework that considers a broad range of 

how automation can be instantiated in HAT as well as guidance for identifying HAT KSAOs based on agent 

responsibility and team complexity. Finally, steps for conducting a task analysis specifically for HATs are presented. 

 

 

HAT FRAMEWORK FOR SUPPORTING COMPLEX TEAMS 

 

HAT’s work most effectively and efficiently when both the HAT members have the KSAOs required for successful 

team performance (Dubrow & Orvis, 2019). Selective team composition is required to provide an overall mix of the 

essential KSAOs needed to create a productive and effective team. It is important to establish the LOA an agent 

teammate possesses, so the human can understand why it is acting the way it is (Dubrow & Orvis, 2019). This can be 

a difficult task, as current agents are now capable of shifting their automation level during a task, requiring the human 

to adapt, which can hinder HAT performance. AI and agent teammates are continuously being updated, advanced, 

changed and trained in a relatively short period of time, while humans learn at a more stable pace (Dubrow & Orvis, 

2019). These updates, some incremental and some comprehensive, can create difficulties in interaction between 
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teammates (e.g., the human may not know what was updated or why). However, traits such as openness to experience, 

adaptability, tolerance for ambiguity, cognitive flexibility, and propensity to trust can be extremely beneficial when 

an agent teammate updates without forewarning (Nikolaidis, Hsu &Srinivasa, 2017; Dubrow & Orvis, 2019). Humans 

with such traits are likely to act in a more patient manner, and be more willing to learn about new AI programs and 

updates (Dubrow & Orvis, 2019).  

 

The answers to what skills the human and robots need and the effective teamwork dynamic will be highly dependent 

on the number of functionalities of the agent and the riskiness of the task associated with them. For example, as 

discussed by Stuck, Holthausen, and Walker (2021), a home-care robot can be trusted to water plants, collect mail, 

and place calls as needed. However, tasks such as shaving, regardless if it is a human or robot performing the task, is 

likely to stir some distrust from the one being shaved due to the inherent risk associated. It should be noted that 

miscalibrations between the perceived trustworthiness and actual trustworthiness of an agent again can lead to the 

under trust and overtrust in these situations (de Visser et al., 2020). Therefore, mediating factors for HAT will always 

need consideration. As HAT use expands in military settings, what should be considered when the warfighter’s life is 

in the agent’s “hands”? What will be required of the human in HAT for appropriate trust and teamwork as the agents 

become responsible for riskier tasks? How can individuals be selected or trained for HAT? What skills and knowledge 

must they possess to work effectively with each type of agent embodiment—and those with a variety of embodiments?  

 

This paper aims to provide a framework as 

guidance to begin developing more effective 

team-style interactions and dynamics between 

humans and agents. The needed KSAOs and 

task allocation is discussed both for the human 

and agent design. The discussion applies the 

teamwork and taskwork dichotomy that is 

commonly used in human-human teams (HHT) 

to delineate KSAOs which promote effective 

member interactions (i.e., teamwork) from 

KSAOs which promote effective performance 

of the team (i.e., taskwork). The framework 

presented here builds upon previous concepts 

by removing the limitations of categorization. 

It acknowledges that an agent can possess 

many embodiments and have various 

functionalities that cover the full range of the 

autonomy gamut. HATs can be characterized 

by: (1) how much responsibility, or the amount 

of task delegated to the agent and the 

subsequent risk of delegating the tasks to the 

agent and (2) the complexity, or the challenges 

associated with the HAT dynamic due to the nature of the team and task such as distributed locations, high information 

and workload, or multiple agents working with one human. Therefore, the current framework aims to present 

continuums that can be leveraged to understand the baseline needs of HAT as well as key KSAOs required as 

automated agents become responsible for more and riskier tasks and as the HAT dynamic becomes more complex 

(see Figure 1).    

 

 

TEAMWORK NEEDS 

 

The teamwork track of team effectiveness is concerned with how team members work together, and is focused on how 

social interactions within a team relate to the team’s functioning (Cannon-Bowers & Bowers, 2011). This may involve 

activities such as assigning roles, communication tactics, and various types of interpersonal interactions (e.g., conflict, 

decision-making), as well as key thoughts, feelings, and attitudes (e.g., trust, shared mental models) that the members 

have toward each other and the team as a whole (Cannon-Bowers & Bowers, 2011). Facilitating teamwork activities 

in HATs will thus require individual KSAOs, which improve these kinds of team member interactions. Research on 

effective teamwork skills in HHT has identified several individual team-generic KSAOs that may also be transferable 
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to humans working in HATs (Liu et al., 2017). Because the teamwork track of team effectiveness focuses on 

interaction, a universal concept to any group, there are specific individual-level KSAOS which are likely to facilitate 

effective interactions in any team because they broadly concern the individual’s attitudes, behaviors, and cognitions 

about working with others (not necessarily humans). In addition to identifying these KSAOs, it is also important to 

highlight contextual features which may strengthen the contributions of a KSAO to team effectiveness or make the 

KSAO particularly vital to team effectiveness (Mathieu et al., 2008). Below, each of the relevant teamwork-related 

knowledge, skill/ability, and other characteristics gleaned from the HHT literature is described. Special consideration 

is also noted to highlight when certain combinations of agent-teaming complexity and LOA may strengthen a KSAO’s 

impact or when a KSAO may be particularly important to facilitating teamwork (see Table 1 for a summary of the 

identified teamwork KSAOs and the conditions in which they may be strengthened). 

 

Table 1. Teamwork Needs 

HAT 

Dynamic 

Human needs... Agent needs to... 

All HATs Knowledge of teamwork (Hirschfeld et al., 2006)  

Preference for teamwork (Stark et al., 2007)   

Understanding of agent capabilities (Mirnig et al., 

2016) 

Knowledge of team roles (Mumford et al., 2008)  

Self-efficacy in managing agents (Parasuraman & 

Riley, 1997) 

Tasks that require reasoning, judgement, and flexible 

decision making (de Winter & Dodou, 2014) 

Be transparent (Boring et al., 2019; 

Shaefer, Hill, & Jentsch, 2019) 

Provide explanations (Shaefer, Hill, & 

Jentsch, 2019) 

Be tasked with information processing, 

repetitive tasks, and responding to 

alarms (de Winter & Dodou, 2014) 

Utilize anthropomorphic appearances 

and behaviors (Glikson & Woolley, 

2020; Zhao & Malle, 2020) 

With Higher 

Automation 

Responsibility 

Adaptability (Salas et al., 2007) 

Involvement in development of agent (Roff & Danks, 

2018) 

Calibrated trust (de Visser et al., 2020; Mirnig et al., 

2016) 

Perspective taking (Zhao & Malle 2020) 

Have a trusted representative (Roff & 

Danks, 2018) 

Be observable (Christoffersen & 

Woods, 2002) 

Be able to negotiate team goals (Klein 

et al., 2004) 

With Higher 

Team & Task 

Complexity 

To monitor performance (Marks & Panzer, 2004)  

Openness to experience (Homan et al., 2008)  

To overcome biases placed on agents (Dubrow & 

Orvis, 2019) 

Be incorporated from the start of 

training (Roff & Danks, 2018) 

Be directable (Christoffersen & 

Woods, 2002) 

Be predictable (Klein et al., 2004) 

Knowledge 

Regarding knowledge, two attributes have been linked to team effectiveness that broadly speak to an individual’s 

understanding of how to productively work with others. First, being knowledgeable about teamwork itself is associated 

with team effectiveness (Hirschfeld et al., 2006). Individuals who understand that teams are inherently dependent on 

the connection between its members are more apt to actually enact these behaviors (Stevens & Campion, 1999). This 

knowledge may be particularly important for HATs in which the team’s tasks are complex or its human and agent 

team members are physically distanced (i.e., remotely interacting). In such settings, the intricacies of interdependent 

work make member-to-member collaboration essential for completing tasks. The agent in these instances needs to be 

observable, or allow its information, status, and actions to be easily understood by the human teammate (Christoffersen 

& Woods, 2002). Second, understanding the roles within one’s specific teams has also been associated with team 

performance (Mumford et al., 2008). That is, team members who know how their team operates are more likely to 

contribute to effective team functions. Clear transparency is essential to incur appropriate trust during HAT (Schaefer, 
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Hill & Jentsch, 2019). Providing inadequate amounts of information can create ambiguity amongst an agent's intended 

actions, and can also lead to complacency. Transparency of the agent's tasks, and providing reasoning for the agent's 

processes and decision making leads to a shared understanding and mental model among teammates. If transparency 

among teammates does not occur it can lead to poor trust during HAT (Shaefer, Hill & Jentsche, 2019). This 

knowledge may be particularly important for human team members in HATs with highly autonomous agents and 

HATs with agents responsible for completing risky tasks. As agents become more complex, and can adapt to more 

situations, they may innately become less predictable causing confusion for the human operator (Klein et al., 2004). 

In these cases, to create a deeper sense of trust among HAT would be to close the loop between all involved in 

developing the agent. Each person will receive a degree of knowledge about the different aspects of the agent to 

generate a shared understanding of the agent from the early stages of development (Roff & Danks, 2018). Automated 

agents now have a multitude of functions as well as multiple subtasks—requiring a fundamental understanding of 

each subtask and the agent’s limitations in each to ensure appropriate and calibrated trust in the agent (Mirnig et al., 

2016). Otherwise, humans may place too much trust in the agent that exceeds its capabilities, ultimately leading to the 

agent not meeting human expectations, thereby damaging trust and task success (Mirnig et al., 2016). Early and 

continuous exposure to automated agents can aid in gradually building an operator’s trust, as it allows for more time 

for trust building experiences and helps the operator to better understand the agent’s actions (Roff & Danks, 2018). 

This could be achieved by introducing agents into basic training or any early training procedures. In such teams where 

agents carry more responsibility and self-sufficiency, knowledge of their advanced assignments will be even more 

essential for effective teamwork by a human team member. 

Skills and Abilities 

Regarding skills and abilities, three attributes stand out that demonstrate an individual’s aptitude for working with 

others. First, performance monitoring refers to an individual’s ability to accurately review and evaluate the work that 

another team member does, then take the appropriate action to improve future performance (Marks & Panzer, 2004). 

Accuracy and appropriateness are central to this skill. One must be able to correctly identify when another’s work 

does not meet expectations, and they must be able to do this at the appropriate frequency as over-monitoring uses 

resources that the individual could be using towards another task, while under-monitoring could be associated with 

worse task performance (Marks & Panzer, 2004). This skill is particularly important to consider when agents in a 

HAT are more autonomous or tasked with riskier responsibilities. In such circumstances, human team members always 

bear the legal responsibility of any outcome that occurs. Appropriately and accurately monitoring the work that an 

autonomous agent does on risky tasks is important for preventing a range of negative outcomes. Under-monitoring or 

incorrectly monitoring an agent’s work may lead to mistakes being enacted with undesirable consequences, whereas 

over-monitoring an agent’s work consumes a person’s resources that could be spent on other productive endeavors. 

Given the importance of monitoring in these situations, it is likely that good performance monitoring skills will be 

essential for performance in these teams. Second, an individual’s adaptability is an important ability for conducive 

teamwork as it relates to how well a person can adjust to changing task demands (Burke et al., 2006). An individual 

with high adaptability is able to effectively redistribute their own resources and help accommodate changes to other 

team member’s tasks. For the agent, it must also be adaptable, or otherwise known as directable. A directable agent 

can allow the human to delegate tasks or subtasks to the agent whenever novel situations arise (Christoffersen & 

Woods, 2002). Another skill needed of the agent is goal negotiation as the agent becomes more responsible for actions.  

Without being able to convey potential goals in the face of novel situations, agents will be unable to effectively 

coordinate with their human teammates (Klein et al., 2004). This effect is likely amplified in HATs with complex 

tasks or physical distance between HAT members, as adaptation will be even more important to react to the multiple 

risks that may occur when remotely conducting intricate, dynamic tasks. Lastly, an individual’s team management 

skills are directly related to teamwork, as it refers to a person’s capacity to plan the team’s workflow (Burke et al., 

2006). Individuals with high team management skills are able to directly facilitate teamwork by setting goals, 

coordinating team member involvement with tasks, and scheduling deadlines. From this, human operators that exhibit 

team management skills would be better equipped to perform in adjustable autonomous systems. Since human 

operators delegate tasks to automation in adjustable autonomy, using skills related to teamwork will serve as leverage 

to perform at higher levels of mission effectiveness (Toquam et al., 1997).  

Other Key Attributes 

Regarding other characteristics for the human in KSAOs, three types of individual attributes relate to team 

effectiveness. First, an individual’s preference for teamwork is an attitude which describes a person’s appreciation for 
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being part of a team (Stark et al., 2007). This attitude may be more important in HATs that are high on task complexity 

and distance. When HAT members are separated to conduct difficult, intricate tasks together, teamwork behaviors 

become vital in order to successfully perform team tasks. Having a higher preference for teamwork is more important 

for humans in HATs within these circumstances as they are more likely to engage in these vital teamwork behaviors. 

Second, although research on personality has found many links between each of the Big Five traits—also known as 

extraversion, agreeableness, openness, conscientiousness, and neuroticism—and team performance (Liu et al., 2017), 

openness to experience may be particularly relevant to HATs. Beyond HHT findings which positively associate 

openness to experience and team creativity (Homan et al., 2008), individuals with high levels of openness to 

experience may be more receptive to teaming with technology during their first time in a HAT and thus continue 

teaming behaviors in HATs. Openness to experience would be even more important in HATs with higher levels of 

agent autonomy or agent task risk, as the human team member would be more willing to let the agent do its task 

without immediately overriding it or rejecting its input. For example, for Automated Weapon Systems (AWS) deep 

trust could be achieved by taking advantage of “transitive trust” (Roff & Danks, 2018, p.12) or trusting a third party 

because a member of the organization does. Creating managers or agent representatives, who are already trusted, to 

act as an extension of the agent can facilitate transitive trust, which can lead to a deeper trust with the agent. In a study 

by Chen and Barnes, Roboleader was created to serve as a human operator's assistant, who can delegate commands to 

a group of robots with lower capabilities (Chen & Barnes, 2012). Rather than the human operator managing each 

individual robot, Roboleader allows a single entity to control lower-level robots and communicate to the human 

operator. When Roboleader was perfectly reliable, results revealed that task times were reduced resulting in high 

efficiency levels. Using a manager, like Roboleader, could be an effective method for controlling multiple agents 

(Barnes et al., 2013). Lastly, self-efficacy has been found to positively relate to the team performance (Richter et al., 

2012). Self-efficacy is often specified, and refers to an individual’s belief that they are able to carry out a particular 

task or succeed in solving a certain problem (Bandura, 1997). Within HATs, this may be particularly relevant to 

teamwork—individuals who do not believe in their ability to interact with an agent may be more likely to misuse the 

agent or under-monitor its work (Parasuraman & Riley, 1997). 

Regarding other characteristics for the agent in KSAOs, by observing the challenges currently faced with HAT, the 

key other characteristics can be identified. One such challenge with HAT is that humans are inherently biased to 

presume that their agent teammate will and should act human (Dubrow & Orvis, 2019). These assumptions are then 

also applied to their agent teammates, leading to inaccurate predictions of the agent's actions, which interrupts HAT 

coordination. In HHTs, these mental models and biases are, generally, an accurate way to predict or anticipate the 

expected outcomes of their teammates’ actions. However, when these biases are applied to agent teammates, they are 

more often than not an inaccurate assumption about what the agent will do, causing the coordination between the agent 

teammates to degrade (Dubrow & Orvis 2019; Quinn, Pak, de Visser, 2017). To counteract this issue, technologists 

suggest that AI should be designed to act as human as possible, to allow these mental models to remain applicable 

(Zhao & Malle, 2020). This concept, however, severely hinders the potential performance capabilities of the AI. In 

order to mitigate this challenge, it is crucial to identify skills that could aid humans in overcoming their biases (Dubrow 

& Orvis, 2019). In cases of poor trust, strategies can be implemented during HAT to repair trust (de Visser, Pak, & 

Shaw 2018). Active trust repair is critical in dealing with errors among HAT. This includes apologies, denials, and 

explanations provided by the agent to mitigate deteriorating trust due to an error (de Visser, Pak, & Shaw 2018). 

Additionally, observing diverse team training provides some context on which skills may aid humans the most in 

overcoming biases. Interactions between agent teammates are very similar to cross-cultural teammates in regards to 

the challenges they face. Human teammates of differing cultures often have divergent mental models, assumptions, 

and expectations of their teammate counterparts and the same can be applied to HATs. Skills associated with cross-

cultural competence may also pertain to HAT teams. Training humans in perspective taking (a skill someone utilizes 

in which a person is actively and willingly trying to understand a situation from the other teammates perspective or 

point of view) is a training mechanism that has been effective in improving cross-cultural competency (Miranda, 

2002), and could be employed when training humans to work with agent teammates. The process of perspective taking 

limits biases teammates have about one another, and encourages members of the team to remain patient, be more open 

to helping, and even facilitates behavior mimicking, which allows the teammates to interact more deftly. Perspective 

taking is also more likely to occur, naturally and similarly to perspective taking with humans, if the agent teammates 

carry some form of human attributes, or human likeness (Zhao & Malle 2020). Anthropomorphism, or looking and 

acting human, may also assist with trust in agents (de Visser et al., 2016; Glikson & Woolley, 2020). Table 1 provides 

a summary of the baseline teamwork skills for the human and agent along with needed skills as automation 

responsibility and team and task complexity increase. 

 



 
 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 

IITSEC (year) Paper No. 21269 Page 9 of 14 

 

TASKWORK NEEDS 

 

In HAT, one of the largest challenges is function allocation, or which tasks to give the human and which tasks to give 

the agent. The concept of HABA-MABA (Human Are Better At/Machines Are Better At) characterizes the strengths 

and weaknesses of agents and humans, which currently plays a central role in modern automation research within 

HAT (de Winter & Dodou, 2014). As contemporary society develops more technological advancements, the HABA-

MABA list is evolving due to automation increasingly becoming more sophisticated and capable of performing tasks 

that were previously performed more effectively by humans. Agents are now better at performing precise and 

repetitive processes such as pattern recognition, data processing, responding to alarms, and maintaining productive 

control in high workload situations (de Winter & Dodou, 2014). On the other hand, humans are generally better at 

improvising, reasoning inductively, and exercising judgement (de Winter & Dodou, 2014). Furthermore, autonomous 

systems are able to function for longer periods of time, with greater efficiency and precision-unlike humans who are 

greatly impacted by excessive physical and mental workloads. In aircraft maintenance, where constant oversight of 

autonomous elements is needed, complacency is common due to redundant procedures. Although mechanics are 

equipped with the knowledge and experience to correctly perform maintenance procedures, familiarity and fatigue 

may occur overnight in critical elements, resulting in potential accidents (Tolleson, 2007).  

 

In allocating tasks within HAT, any tasks humans are not able to perform at optimal level, should be delegated to the 

autonomous system (Boring et al., 2019). Furthermore, in circumstances where operators must perform a process 

under unsafe conditions, autonomous systems should perform instead. Although agents are capable of performing a 

wide array of processes, human engagement remains essential for HAT. Human capabilities provide better discretion 

when responding to unexpected events, conducting decision making, and maintaining the overall vision for success 

(Boring et al., 2019). Therefore, it is critical for human engagement and supervision to be present in HAT in the event 

the human must override automation during an unexpected event. 

 

Automation Styles 

 

As higher autonomy levels become more commonplace, it is critical for humans and agents to exhibit the necessary 

awareness and understanding amongst each other to ensure mission success (Schaefer et al., 2019). To further 

understand automation, human agents must differentiate between control automation and information automation. 

Control automation is the most recognized form of automation, in which the autonomous system governs the functions 

necessary to complete a specific task, whereas information automation allows the system to collect information on 

behalf of the human (Boring et al., 2019). As HAT operations require autonomous systems to complete more elaborate 

tasks, the functionalities of control and information automation inherently become more complex. Although 

information automation can function independently, it can complete the full spectrum of human activities when paired 

with control automation, allowing autonomous systems to complete a task without any human assistance. After 

selecting the appropriate amount of control and information automation necessary, the LOA may be established. In 

HAT, determining LOA is necessary for the efficiency and effectiveness of a mission, since LOA determines the 

interaction style between the agent and human operator (Johnson et al., 2011). For example, autonomous control 

systems in nuclear reactors demonstrate minimal computerized controls due to the severity of risk in the event of an 

accident. However, systematic approaches towards nuclear reactors present the need for autonomous controls with 

basic functions. Reflection of previous literature suggests that autonomous systems are better at performing repetitive 

tasks that require precision, whereas humans are more capable of executing tasks regarding recognition or decision 

making (Boring et al., 2019). Therefore, human oversight is implemented to ensure safety and immediate interaction 

in case something goes wrong. If a nuclear reactor was fully autonomous, where humans provided minimal oversight, 

the chances of humans engaging with the autonomous system in the event of an accident would be less likely due to 

the decrease in human supervision. From this, distinguishing the appropriate LOA and interaction style for the task 

type is essential to the dynamic of HAT. Glikson and Woolley (2020) present a framework of AI types which can be 

used as a basis for the form of the agent (physical, virtual, or embedded). It is also important to consider the way that 

the agent and the human interact with one another. Four main automation interaction styles exist currently in the HAT 

space: basic, adaptive, adjustable, and mixed initiative. 

 

Basic automation is the most common interaction style, in which an autonomous system can go from being completely 

manual to fully automated; with no additional features in between. For example, a car can go from operating in a fully 

autonomous condition, in which no human input is needed, to switching into a fully manual mode of operation, where 
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the human agent must fully operate the vehicle with no autonomous assistance. Due to the simplistic nature of 

switching from fully autonomous to fully manual in the basic automation style, in the event that the autonomy fails, 

the human operator may take over at any time. Although simplistic, this dynamic may potentially lead to delays in the 

human operator detecting problems with the autonomy. This phenomenon known as “Operator Out of the Loop'' is a 

common drawback to basic automation due to the reduction of engagement between the autonomous system and 

operator when the automation is engaged (Kaber & Endsley, 2004). As a result, situational awareness exhibited by 

the operator is subsequently reduced, resulting in high potential of decreased mission effectiveness (Stanton, 2009).  

 

Adaptive automation is dynamic and flexible in nature; and is a style in which the controls of functions shift between 

humans and agents depending on the situational demands of the environment (Inagki, 2003). For instance, when a 

human agent is experiencing levels of high workload, the autonomy will adapt by delegating and completing tasks 

automatically to alleviate workload. In this interaction style, the computer technology has complete authority over the 

operation, regardless of whether the human agent wants to override procedures (Miller et al., 2000). As the 

autonomous agent completes and assigns tasks, both control and information automation are implemented during 

adaptive automation. Although the use of information automation typically reduces the workload and situational 

awareness for the human operator, increased utilization of information automation may demonstrate lack of 

transparency between the agent and operator (Boring et al., 2019). For instance, when the agent is required to filter 

information, the human operator may potentially exhibit low levels of trust or high levels of overreliance. Since the 

operator is only following the tasks assigned, how and why decisions are taking place may not be fully understood by 

the human agent. Furthermore, the computing complexity of adaptive allocation demonstrates difficulties since the 

criteria followed during the adaptive autonomy condition must determine how and when functions are performed, and 

to whom functions must be assigned. As a result, the complex and highly-demanding functionalities that adaptive 

autonomy presents requires more development time and cost to produce (Klein et. al. 2004, Boring et al., 2019). 

 

Adjustable automation is more human centered, as the human operator is required to reconfigure and allocate tasks to 

the automation. Studies have revealed that adjustable automation exhibits better HAT compared to basic automation 

because of its inherent flexibility and team-like structure (Valero-Gomez et al., 2011). Due to the dynamic nature of 

this interaction style, it is common for human operators to exhibit higher levels of workload—as they may find the 

task delegation time consuming and complex (Chen & Barnes, 2014). Unlike adaptive automation, the human operator 

takes initiative over any form of information automation, and delegates tasks for the agent to accomplish control 

automation procedures—which can lead to better situation awareness as the human stays in control (Chen & Barnes, 

2014.  

 

Mixed initiative automation is another type of interaction style, which entails collaborative decision making between 

the human operator and autonomous system (Chen & Barnes, 2014). For instance, during a mission task, the agent 

asks and informs the human to complete certain processes, the human operator reviews agent information and 

authorizes actions. Although automation serves a subordinate role in the mixed initiative condition, both operators 

must consistently share and communicate to each other to ensure proper human-system collaboration. In 2004, NASA 

developed a Mixed-initiative Activity Planning Generator (MAPGEN) which used mixed initiative autonomy to 

compute the optimal plan of action to conduct a Mars space mission (Bresina & Morris, 2007). By using constraint 

reasoning amongst physical constraints and priorities inputted by human agents, MAPGEN provided flexibility for 

operators to visualize different scenarios and the constraint specifications for each one (Chen & Barnes, 2014). 

Research suggests that mixed initiative dynamics are more effective than basic or full autonomy dynamics as humans 

hold final decision authority and the dynamic keeps humans informed of agent actions (Barnes et al., 2013). Table 2 

provides a summary of the baseline taskwork skills for the human and agent along with needed skills as automation 

responsibility increases as well as team and task complexity. 
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Table 2. Taskwork Needs 

HAT Dynamic Human needs... Agent needs to... 

All HATs To understand, predict, and adapt 

from agents’ perceptions of the 

environment (Mirnig et al., 

2016) 

Perceive elements in the environment (Mirnig et al., 

2016) 

Focus on information automation (Boring et al., 2019) 

With Higher 

Automation 

Responsibility 

Team management skills (Burke 

et al., 2006) 

Monitoring based on calibrated 

trust (de Visser et al., 2020) 

Ensure human stays in the loop (Kaber & Endsley, 

2004) 

Focus on control automation (Boring et al., 2019) 

With Higher 

Team &  Task 

Complexity 

To be tasked with recognition 

and decision making (Boring et 

al., 2019) 

Support the human in predicting and adapting to a 

situation (Mirnig et al., 2016) 

Be given precision-based repetitive tasks (Boring et al., 

2019) 

Provide an agent manager in multi-agent teaming 

(Barnes et al., 2013) 

 

Identifying Appropriate Task Allocation 

 

The appropriate automation style will highly depend on the nature of the task and the natural skills of human and 

agent. In the automotive domain, current automation such as lane keeping automation focuses on tasking the 

automation with perception tasks (Mirnig et al., 2016). Automated vehicles perform well at this task compared to 

humans whereas humans are tasked with understanding, predicting, and adapting to the situation (Mirnig et al., 2016). 

For each domain, one must ask: “Will we have agents work as needed to assist the human? Or are we working towards 

agents as replacements to humans (Dubrow & Orvis, 2020)? What is the best way to support the human in both?” 

Tasks are allocated to teammates based on their differing KSAOs, which is what creates an effective team. As 

discussed by Dubrow & Orvis (2020), HAT tasks and automation allocation can be complex and difficult leading to 

human and agent roles overlapping. This can also occur when agents of differing levels of automation are either given 

too much responsibility or not enough. Poor function allocation can also arise when inadequate conclusions are made 

about whether the agent teammate should either supplement or augment the human's responsibility. Another way to 

address fundamental biases humans place upon their agent teammates, as well as to counteract for varying automation 

levels in HAT teammates is to establish role identity for each teammate early on and select a human teammate that 

has specific and beneficial personality traits, which may not be trainable. Given the wide range of HATs and the 

various work they engage in, it is unfeasible to provide a universal answer to the appropriate skills and tasks for 

humans and agents. However, there are widely applicable methods for uncovering the answers to these questions for 

any given team. Team task analysis is one such method by which these questions may be answered. Taken from 

research on HHTs, team task analysis (TTA) is a tool that systematically examines both individual and interdependent 

tasks that a team must do in order to identify the KSAOs necessary for the person(s) responsible for completing that 

task (Liu et al., 2017). One of the key features of TTA is that it specifically highlights and connects task 

interdependencies to member characteristics and KSAOs. Applied to HATs, TTA can be used to help allocate tasks 

and assign roles based on agent team member characteristics (e.g., automation styles) and human team member 

characteristics (e.g., KSAOs). Using recommendations from Burke (2004), Table 3 provides steps for conducting a 

TTA for HATs.   
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Table 3. Steps to HAT task analysis derived from Burke (2004) 

Step Description Relevant 

Citations 

1.       Requirements 

analysis 

Describe the specific tasks enacted by any member within a HAT.   

2.       Identify 

human-agent 

tasking 

Create separate lists for tasks done by human versus agent team 

members 

Morgeson & 

Dierdorff (2011) 

3.       Create 

teamwork 

taxonomy 

List all teamwork behaviors that each member must enact to help 

other team members. 

Arthur et al., 

(2012) 

4.       Coordination 

Analysis 

Identify task interdependencies and decide human-agent interaction 

styles (basic, adjustable, adaptive, mixed initiative). 

Cannon-Bowers 

& Bowers (2011) 

5.       Determine 

critical tasks 

Conduct task importance studies to prioritize essential tasks for 

training/selection. Consider the level of task complexity, teaming 

complexity, and agent’s responsibility when evaluating task 

importance.  

Bowers et al., 

(1993) 

6.       Identify 

KSAOs from 

critical tasks 

Identify human KSAOs and agent characteristics that are required 

to perform critical tasks well. 

Goldstein & Ford 

(2002) 

7.       Link KSAOs 

to team-tasks 

Connect the KSAOs back to the team’s tasks and goals. Train/select 

for critical human KSAOs. Restructure human-agent interaction or 

role requirements if needed (consider HABA MABA to align roles 

with human or agent tasking).  

 

 

 

CONCLUSION 

 

This paper aimed to discuss the current space of HAT and the challenges associated with defining KSAOs for the 

space as a whole. Current frameworks and the limitations within them were presented. A fluid framework that presents 

the complexities of modern HAT as a continuum was developed based on the complexity of the team and the 

responsibilities of the agent. Current guidance that can be assumed for all HATs along with necessary additional skills 

as task complexity and agent responsibility increase are presented. As agents become more advanced, the nature of 

the HAT dynamic will continue to evolve and additional considerations will be needed. The framework presented here 

is by no means comprehensive but aims to provide a starting point for those creating new HAT in military settings 

and beyond. Agents will continue to shift from tool to teammate. By utilizing HHT research and human factors design 

research, designers of HATs can begin to find ways to leverage the capabilities of both human and agent to their fullest 

potentials. 
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