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ABSTRACT

One third of US military veterans suffer from some type of psychological distress. Cognitive behavioral therapy (CBT)
has emerged as the standard practice for reducing psychiatric symptoms but suffers from high dropout rates (25-40%)
and low compliance. Emerging mobile applications can augment CBT and improve the mental health outcomes of
both Service members as well as the general public. In the current paper, we discuss the development and evaluation
of a mobile health (mHealth) system for stress and anger management, which consists of a mobile application and
wrist-worn sensor band (smartwatch) for end users as well as a web-based portal for mental health providers. The
mobile app detects stress objectively and in real time via a unique, Al-based classifier of stress that leverages data
collected from the smartwatch and alerts end users when high levels of stress are detected. Users can then self-report
contextual information about their stress events within the app, such as triggers and location. The app also includes
tools to reinforce stress reduction techniques learned during CBT, including heart rate variability (HRV) biofeedback,
deep breathing, progressive muscle relaxation, and guided meditation exercises. Mental health providers can use the
system to access stress/sleep data and analytics via a HIPAA-compliant, web-based portal. This information helps
providers to track users’ progress and improve therapy sessions. Use of this system in a group of military Veterans (n
=16) in conjunction with CBT resulted in significant improvements on outcome measures of stress, anxiety, and anger
as compared to standard CBT. Veterans using the system were also significantly less likely to discontinue therapy. An
ongoing, follow-up trial with active duty Service members (n = 30) intends to replicate these results. Preliminary
findings from that trial are discussed here, along with avenues for future work involving the mHealth system.

ABOUT THE AUTHORS

Dr. Jeffrey Hullfish is a Senior Data Scientist and the Portfolio Manager for Digital Twins R&D at Design Interactive,
Inc. (DI). He has over seven years of experience studying signals from the peripheral and central nervous systems.
His primary research focus is reverse engineering the structure and function of the human brain via the study of
neurological and psychiatric disorders. He led a clinical pilot study in collaboration with Interacoustics A/S, a
Denmark-based medical device company, to improve the early detection of peripheral nerve tumors using auditory
brainstem responses; this resulted in his successful master’s thesis. He went on to earn his Ph.D. from the University
of Texas at Dallas, where he studied the neuropathology of tinnitus using functional magnetic resonance imaging
(fMRI). At DI, he works primarily with physiological data collected non-invasively from human subjects. Using these
data, he develops and implements algorithms for the real-time classification of cognitive and physiological status;
recent examples include both stress and pain.

Adam Lynch is a Senior Project Engineer at DI and has over nine years of project management experience in both
hardware manufacturing and software development. Adam has over 17 years of military experience as an officer in
the Marine Corps Reserve and is currently serving as the Battalion Commander of 4th Air Naval Gunfire Liaison
Company. After serving 8 years on Active Duty in the Marine Corps, Adam became a Law Enforcement Officer for
the city of Charleston, South Carolina. Adam conducted over 2,000 hours of service demonstrating proficiency in a
variety of LEO topics from patrolling, defensive tactics, narcotics, and small arms operation. During his time at CPD,
Adam conducted surveillance operations, traffic stops, field interviews, testified in open court proceedings, arrested
criminals for violations of county, state, and federal laws, transported wanted individuals, and worked in collaboration
with multiple government agencies to make arrests.

IITSEC (2021) Paper No. 21198 Page 1 of 14



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

Dr. Brent Winslow is Chief Scientist at DI and has over 15 years of experience in rehabilitation, training, biomedical
engineering, and applied neuroscience. He developed patented approaches to human stress quantification in natural
environments, and has tested such approaches in law enforcement, first response, special operations, and with active
duty Service members. He is active in advisory councils and advocacy groups from brain injury to bleeding disorders,
has published articles from in vivo electrophysiology to military training, and has presented work in various
international bioengineering, neuroscience, and imaging conferences. He earned a Ph.D. degree in Bioengineering
from the University of Utah, where he studied the biocompatibility of neuroprostheses and subsequent changes to
neurogenesis and cognition. Prior to joining DI, he was at the Allen Institute for Brain Science in Seattle, WA, where
his work focused on describing the mammalian connectome using genetic techniques and multiphoton imaging, as
well as the development of millimeter-scale wireless biosensing devices.

Mitchell Ruble is a Consultant in Delivery Services at Hylaine where he works with a team to provide application
development and business intelligence recommendations. Mitchell has a strong background in rehabilitation with over
six years of experience where he has led software development efforts that focused on gamification of rehabilitation
including a myoelectric pre-prosthetic training system for upper limb amputees and a rehabilitation-based game for
children with cerebral palsy. He has also led several efforts focused on mobile application development including a
mobile tool for detecting stress and providing stress mitigation strategies in cognitive behavioral therapy and
developing a classifier for detecting learner engagement in classroom settings.

IITSEC (2021) Paper No. 21198 Page 2 of 14



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

Using a mobile health (mHealth) system to mitigate posttraumatic stress
disorder (PTSD) and other consequences of war

Jeffrey Hullfish, Adam Lynch, Brent Winslow Mitchell Ruble

Design Interactive, Inc. Hylaine, LLC

Orlando, FL Charlotte, NC
jeff.hullfish@designinteractive.net, mruble@hylaine.com

adam.lynch@designinteractive.net,
brent.winslow@designinteractive.net

INTRODUCTION

Concern has been raised over the prevalence of health issues in military personnel returning from deployments in the
Middle East (e.g., Operation Enduring Freedom, Operation Iragi Freedom, and Operation New Dawn). The scientific
literature increasingly supports a Consequence of War Syndrome (CWS) to describe this cluster of symptoms
including chronic pain, insomnia, and other physical complaints as well as posttraumatic stress disorder (PTSD),
anxiety, depression, and neuropsychological deficits (Dieter & Engel, 2019). Unlike previous symptom clusters such
as Gulf War Syndrome, CWS appears to be fundamentally linked to chronic stressors inherent to deployment (Binns
etal., 2008, 2014; Dieter & Engel, 2019).

While not appearing as an overt physical injury, disruptions of a psychological nature are often as debilitating.
Approximately 1/3 of combat Veterans returning from Iraq and Afghanistan suffer from PTSD, depression, traumatic
brain injury (TBI), or acombination of states (Holdeman, 2009). Anger, hostility, and aggression have been associated
with PTSD and sub-threshold PTSD (i.e., some symptoms of PTSD, but not all required for a clinical diagnosis),
which in turn have been associated with substance abuse, depression, poor overall health, and increased suicidality
(Marshall et al., 2001; Yarvis & Schiess, 2008). Given the prevalence of CWS-related symptoms—especially PTSD,
depression, TBI, and the associated effects on anger and aggression—there is an increasing need for support tools.
This need is made even more acute by fiscal constraints leading to long wait times for appointments with the VA.
Indeed, “according to VA internal data from October 2019 through June 2020, veterans waited an average of 41.9
days for an appointment in the community, starting from the time he or she requested the appointment to the time the
meeting occurred. (Ogrysko, 2020)” Tools to address these issues should allow for standardized tracking, monitoring,
and mitigation of anger and stress outside of face-to-face treatment and enhance the overall treatment plan for
individuals struggling with psychological health issues.

PTSD and stress-related symptoms can be treated in a number of ways. Pharmacological agents—including anti-
depressants such as selective serotonin reuptake inhibitors (SSRIs), tricyclic antidepressants (TCAs), and monoamine
oxidase inhibitors (MAOIs)—have shown modest effects on PTSD symptoms (Hotopf & Healy, 2002), but are
associated with a range of side effects that could exacerbate symptoms. In contrast, a number of psychological
interventions for PTSD have also been associated with moderate effects, including exposure therapy, anxiety
management training (AMT), eye-movement desensitization and reprocessing (EMDR), and combination treatments
(Keane et al., 2006).

Among the various interventions to treat depression, anxiety, and PTSD, cognitive behavioral therapy (CBT) has
emerged as standard practice for reduction of psychiatric symptoms, with previous studies indicating that CBT has
similar therapeutic efficacy as anti-depressant medication (DeRubeis et al., 2005). CBT is generally administered by
mental health professionals, and consists of a structured, collaborative process that helps individuals consider and alter
their thought processes and behaviors associated with stress or anxiety, usually administered weekly over several
months. However, standard CBT does not offer the provider information regarding therapeutic efficacy or progress
outside of office visits, nor does it provide objective information about individuals’ triggers such as location, time, or
severity. In addition, dropout rates from CBT programs have been reported to range from 25% to as high as 40% for
individuals suffering from depression (Fernandez et al., 2015).
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The limitations of CBT, including lack of objective data available for providers and high patient dropout rates, could
be mitigated with emerging technologies. Existing approaches to physiological stress detection use a wide array of
features calculated from sensor data measuring various aspects of: heartbeat, including include pulse
photoplethysmography (PPG) or electrocardiography (ECG) (De Santos et al., 2011; Plarre et al., 2011; Sun et al.,
2010); electrodermal activity (EDA) (Alamudun et al., 2012; Bakker et al., 2011; Choi et al., 2012); and measurement
of respiration, all of which are responsive to increased sympathetic nervous system activity associated with stress
(Everly & Lating, 2019). Standard supervised machine learning methods have been used previously to develop stress
classifiers, which require subjects to engage in tasks known to induce stress so that stress or non-stress labels can be
assigned to the input features. Previous work has emphasized the difficulties imposed on stress classification by
individual subject variability in physiological responses to stress (Alamudun et al., 2012; De Santos et al., 2011).
Another concern is the physical activity of subjects which triggers similar cardiovascular and electrodermal signals as
stress, leading to masking and confounds of stress detection (Alamudun et al., 2012; Sun et al., 2010). A major
challenge in using mobile physiological sensors to quantify stress is the lack of robust and clinically tested algorithms
to classify stress in a mobile environment in real time (Martinez-Pérez et al., 2013). To support real-time, objective
stress monitoring in mental health treatment, wearable, physiological sensors and associated telehealth and mobile
health (mHealth) applications have the potential to quantify biological metrics associated with stress, support remote
monitoring, and alert the wearer or provider to real time changes in emotional state. However, most telehealth and
mHealth tools targeting mental health remain untested (Anthes, 2016). Here, we describe the development and testing
of an mHealth application that combines emerging wearable technology with artificial intelligence (Al) to quantify
stress and guide users through stress reduction techniques, while giving providers the information needed to
individualize therapy.

METHODS
mHealth System Development

An mHealth system for stress and anger management (Figure 1) was originally developed and implemented in
Android. The prototype system received real-time physiological data from the Empatica E4 band, classified stress
using a context-aware, individualized algorithm (Chadderdon 11l et al., 2017), alerted the user when stress was
detected, and presented stress mitigation techniques to the user such as breathing exercises. The E4 band sent PPG,
EDA, temperature, and accelerometer information to the mobile application via Bluetooth 4.0. A web-based provider
portal that resided on a secure cloud server was also implemented and allowed the provider to view physiological data
for individual users and enter reminders (e.g., “complete your cognitive restructuring homework”) or focus points
(e.g., “practice breathing”), which were sent to the mobile application. This system was evaluated in a randomized,
controlled trial (RCT) conducted in a Veteran population; see Randomized Controlled Trials for details.

The system was later expanded and enhanced based on feedback from participants (i.e., end users and mental health
providers) following the initial, Veteran-focused RCT. The current version is implemented in both iOS and Android.
Furthermore, to improve accessibility, it supports the use of Garmin devices—which are widely available and already
used by many Veterans and active-duty Service members, especially in the Air Force (Demerly, 2019a, 2019b)—in
place of the E4 band; see Stress Classifier Performance and Ruggedization for details. Feature updates included: stress
event tagging, i.e., to collect contextual information such as triggers and location; additional relaxation techniques
such as guided meditation; sleep data collection and visualization; in-app educational resources about stress and sleep;
and crisis resources such as contact information for the National Suicide Hotline, etc. Significant user interface and
user experience (Ul/UX) updates were also made, including an expanded range of data visualizations for both stress

°
SENSOR BAND PATIENT MOBILE APP SECURE CLOUD SERVER PROVIDER PORTAL

Figure 1. Concept of operations (CONOPS) for the mHealth system for stress and anger management.
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and sleep made available on the mobile app and the provider portal. This enhanced version of the mHealth system is
the focus of an ongoing RCT being conducted in an active-duty population; again, see Randomized Controlled Trials
for details.

Stress Classifier Development

Stress classification was based on physiological data from a wearable device (Empatica E4), consisting of
photoplethysmography (PPG), electrodermal activity (EDA), an embedded inertial measurement unit (IMU) to
provide acceleration data, and temperature sensors to give context to the cardiovascular and electrodermal data. Thirty-
five human subjects (24 males; average age 25.7 * 6.2 years) were exposed to moderate to severe stress via the Trier
Social Stress Test (TSST), along with physical and emotion induction tasks to prevent misclassification of stress.
Stress classification was performed in non-overlapping, 1-minute blocks of interbeat intervals (IBIs) derived from the
PPG and mean EDA data using Python with numpy, scipy, pandas, and matplotlib libraries. A 2-feature linear model
classifier was trained and tested on the data using a 75:25 train:test split, followed by 5-fold cross-validation to
evaluate the average performance of the algorithm.

Randomized Controlled Trials

Veteran Study

Following integration of the stress classifier with the mobile application, sixteen participants (13 males; average age
39.8 £ 10.5 years) were enrolled in a RCT of the mHealth system, which lasted 8-10 weeks for each individual.
Participants were recruited from the Philadelphia VA Medical Center who reported current difficulties with stress and
were willing to participate in a research study. Participants were randomized into a control group that underwent
standard CBT or an experimental group that underwent standard CBT and used the mHealth tool. During the initial
and final therapy sessions, participants responded to the Depression, Anxiety, Stress Scale (DASS), PROMIS Anger
scale, and PTSD Checklist-Military (PCL-M). Sessions involved weekly, in-person meetings lasting 60 minutes.
These continued until: (a) the participant and clinician jointly determined that there was significant clinical
improvement; (b) it was judged by the therapist that no further improvement was likely to occur; or (c) the participant
discontinued therapy. Data were analyzed using a mixed within/between (timepoint/group) repeated-measures
ANOVA.

Active-Duty Service Member Study

A follow-up RCT is currently being conducted in an active-duty population to evaluate the enhanced mHealth system
over a period of 12 weeks for each participant. The completed study will include 30 active-duty Service members,
including symptomatic participants suffering from stress, anger, anxiety, and/or PTSD as well as asymptomatic
controls. Symptomatic participants are being randomized into experimental (symptomatic, CBT + mHealth system, n
= 10) and control (symptomatic, CBT only, n = 10) groups. These participants are being recruited from the Brook
Army Medical Center (BAMC) at Fort Sam Houston, TX from non-emergency, active-duty personnel who presented
to the outpatient mental health clinic. Asymptomatic participants are being recruited from active-duty personnel via
flyers (mHealth system only, n = 10). As of June 2021, 18 participants have started the study, and 10 of the 18
participants have completed the study.

Symptomatic participants respond to the DASS, PROMIS Anger scale, and PCL-M during CBT sessions 1, 4, 8, and
12. Sessions involve weekly, in-person meetings lasting 60 minutes. These continue until: (a) the participant and
clinician jointly determine that there is significant clinical improvement; (b) the clinician determines that no further
improvement is likely to occur; or (c) the participant discontinues therapy. Asymptomatic participants respond to the
same questionnaires at the same timepoints during the study but do not participate in CBT. The complete data set will
be analyzed using a mixed within/between (timepoint/group) repeated-measures ANOVA.

RESULTS
Stress Classifier Performance and Ruggedization
Baseline-normalized HR and EDA means were used for stress vs. non-stress classification. Figure 2 shows the results

of training the classifier using 75% of the physiological data. The test-set accuracy was 95.1%, with a hit rate of 89.1%
and a false alarm rate of 1.7%. In order to expand the stress classifier to military training and operational environments,
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a number of steps were taken to ruggedize the classifier,
including: altering sensor modalities to support PPG
without EDA,; expanding the compatible sensor suites;
implementing context awareness for sleep and
movement; and refining feature extraction to support
classification in high-movement environments. In order
to improve cardiovascular feature detection while still
allowing for stress classification, a number of other
sensors have been evaluated and are compatible with the
classifier, including the Equivital EQ02 sensor and a
series of Garmin devices (Table 1).

Randomized Controlled Trials

Veteran Study

During the initial assessment, stress and depression for
the participants was in the 96" percentile, and anxiety
was in the 99" percentile as compared to a normative
sample. Anxiety scores were considered extremely
severe, while stress and depression scores were in the
severe range (Lovibond & Lovibond, 1995). No
differences between groups were observed during the
initial assessment. During the final assessment,
participants who used the mHealth system were less
likely to discontinue therapy (p = .016, d = 1.34) and
significantly improved on measures of stress (p =.032, d
=1.61), anxiety (p =.050, d = 1.26), and anger (p = .046,
d = 1.41) compared to controls undergoing CBT alone.
These between-groups differences were assessed using
Mann-Whitney U tests with significance set to .05. Non-
parametric statistical analysis was used to compare
within-groups measures across the two timepoints:
initial and final assessment (pre vs. post). These analyses
consisted of Wilcoxon signed-ranks tests with
significance set to .05 (Table 2). All statistical testing
was done in SPSS, version 18. See Winslow et al. (2016)
for the full results of the Veteran study.

Active-Duty Service Member Study

At present, the study has recruited four participants each
for the experimental and symptomatic control groups,
including one dropout. All of these participants, minus
the dropout, are still within the 12-week study period.
The study has also recruited nine participants for the
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Figure 2. Classification of stress (Trier Social Stress
Test, Speech: TSST-S) vs. baseline data collected in
ambulatory environments using baseline-normalized
HR and EDA as features.

Table 1. Example sensor suites currently compatible
with the stress classifier.

System E3/E4 | Vivo/fenix | EQO2 Life

series Monitor

Vendor Empatica Garmin Equivital

Form Wrist-worn | Wrist-worn Belt
factor

Sensors PPG, EDA, PPG, Acc, ECG,

Acc, Temp GPS EDA,

Skin/Core

Temp, Acc,

Respiration

Weight (g) 25 50 38

Wireless Bluetooth Bluetooth Bluetooth

LE LE
Range (m) 10 100 100
Battery 20 200 48
life (hrs)

Price $949.00 $350.00 $2,500.00

(USD)

Table 2. Within-group analysis results for initial (Pre) vs. final (Post) assessments of stress, anxiety, depression,
anger, and PTSD. Parentheses contain standard deviations. Asterisks indicate statistically significant results.

Control group (n = 6) Experimental group (n = 10)
Pre Post p-value Pre Post p-value
Stress 29.7 (12.6) 30.7 (4.2) 593 27.8 (6.7) 16.0 (5.6) .032*
Anxiety 28.3(11.4) 22.7 (6.4) .109 22.2(12.4) 11.0 (8.1) .050*
Depression 27.3(11.3) 16.7 (10.1) 1.000 20.6 (5.9) 145 (6.2) 719
Anger 66.6 (7.1) 71.5(9.7) 715 66.1 (8.7) 55.4 (2.4) 109
PTSD 60.8 (14.1) 51.3 (5.5) .285 59.7 (12.2) 43.5 (18.0) 144
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asymptomatic control group, including one (Participant 9030) who dropped out due to non-compliance. Most of these
participants have completed the 12-week study period; see Table 3 for descriptive statistics of their heart rate, stress,
and sleep over the whole study. Table 4 shows summary statistics for a single participant (Participant 9000) for each
week of the study period while Figure 3 shows the full time-series data for that same participant over Week 1 for the
study period. The data collected so far suggest that the asymptomatic control participants experience stress events
intermittently but have low overall stress levels on average. Two participants did have a high number (> 200) of stress
events, but this is likely due to issues with calibration; see Discussion: Stress Classifier Enhancements for details.
These participants’ data also appear to remain stable from week to week (Table 4). Figure 3 shows that, while the raw
stress classifier output generally tracks well with the heart rate data, the mHealth system only identifies a limited
subset of these data as evidence of a high-stress event. This suggests that the system is correctly rejecting high
physiological stress levels resulting from confounds such as significant physical activity. This is further supported by
the fact that the stress events identified in Figure 3 occurred only at times when heart rate was less than 110 bpm;
instances where heart rate was at its peak, which would indicate cardiovascular exercise, were not classified as stress
by the Al.

Table 3. Summary statistics of heart rate, stress, and sleep data for asymptomatic control participants over the
12-week study period. The count column under stress indicates the number of high-stress events identified by
the mHealth system. Participant 9030 is missing data due to non-compliance with the study. Participant 9060
only recently finished the study; their data is still being processed. Participant 9070 has yet to begin the study.
Participant 9080 only recently began the study.

D Heart Rate (bpm) Stress (1-10) Sleep (hr:min)

Mean SD Max Min Mean SD | Count | Mean SD Max Min
9000 | 69.74 | 15.59 180 31 1.79 1.09 256 8:45 0:52 | 11:01 6:46
9010 | 79.39 | 15.45 180 38 1.67 1.09 73 7:16 1:19 | 11:22 3:48
9020 | 71.64 | 13.64 192 42 1.62 0.93 9 8:04 1:22 | 11:30 3:59
9030 - - - - - - - — — — -
9040 | 66.04 | 17.04 182 38 1.23 0.74 21 7:33 0:58 9:32 6:09
9050 | 83.59 | 15.18 186 52 1.84 1.08 7 8:06 0:46 9:42 6:58
9060 — — — — — — — — — — —
9070 — — — — — — — — — —
9080 — — — — — — — — — —
9090 | 64.68 | 16.73 174 33 2.15 1.15 206 7:14 0:52 9:13 4:52

Table 4. Weekly summary statistics of heart rate, stress, and sleep data for asymptomatic control participant
9000 over the 12-week study period. The count column under stress indicates the number of high-stress events
identified by the mHealth system.

Week Heart Rate (bpm) Stress (1-10) Sleep (hr:min)

Mean SD Max Min | Mean SD | Count | Mean SD Max Min
1| 7134 | 17.28 173 36 1.89 1.23 27 8:09 0:20 8:33 7:37
2| 7194 | 1791 172 37 1.92 1.27 34 8:44 0:47 9:50 7:20
3| 70.38 | 18.38 176 46 1.84 1.29 14 8:20 0:19 8:52 7:49
4] 6819 | 17.36 165 37 1.73 1.18 23 9:22 0:37 | 10:26 8:13
5| 6597 | 13.69 167 38 1.58 0.90 24 8:53 0:53 | 10:54 7:55
6| 67.72| 1557 174 41 1.67 1.06 24 9:35 0:47 | 1101 8:33
7] 6651 | 14.19 177 45 1.57 0.99 15 9:03 0:25 9:55 8:34
8| 69.08| 15.38 177 31 1.75 1.06 9 8:38 0:56 | 10:02 6:55
9| 68.02 | 13.69 177 44 1.68 0.93 28 8:11 1:06 | 10:02 6:46
10 | 69.74 | 11.29 140 43 1.75 0.83 9 8:06 0:49 9:34 7:07
11| 7342 | 1419 170 36 2.00 1.04 20 9:04 0:34 9:55 7:58
12| 7333 | 1441 180 46 2.01 1.03 13 8:49 0:54 | 10:14 7:16
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Figure 3. Stress (1-10 scale; left axis; red) and heart rate (bpm; right axis; blue) time-series data for
asymptomatic control participant 9000 during the first week of the 12-week study period. The x symbols
indicate stress events, which were determined based on factors such as the physiological stress data and the
absence of confounds, e.g., significant physical activity, which was measured using the sensor band’s embedded
inertial measurement unit (IMU). Shaded areas indicate sleep periods based on actigraphy measurements also
performed by the sensor band. Missing data at 2021-01-06 corresponds to the sensor band not being worn
overnight while charging.

DISCUSSION

Though there have been an estimated 180,000 cases of U.S. military Veterans with PTSD over the past two decades,
many do not seek care. Challenges include long wait times experienced in the VA medical system, low participation
rates in clinical studies, and a high dropout rate during CBT. The mHealth system discussed in this article was
evaluated for its effects on CBT outcomes in Veteran and active-duty Service member populations. The Veteran study
demonstrated that use of the system achieved better CBT outcomes—including stress, anxiety, and anger—than CBT
alone (Winslow et al., 2016). The active-duty study, once complete, is expected to replicate these results.

The success of CBT depends largely on participants’ compliance, e.g., practicing the coping strategies and relaxation
techniques they learn in each session. While CBT sessions are useful for learning the techniques, much of the work
required to achieve successful outcomes occurs in between sessions. A primary function of the mHealth system in the
present study is to provide resources in support of this work in between sessions. Alerts triggered by the stress
classifier, for instance, help users learn how to recognize the physiological symptoms of stress they might otherwise
miss or ignore. Similarly, the in-app biofeedback tool provides users with increased awareness of stress—and of the
positive effects that relaxation techniques have on stress—through the use of visualizations that are synced with real-
time data from the sensor band. The goal is to help users gain conscious awareness, and eventually control, over
physiological functions that are normally subconscious.

Stress Classifier Enhancements

Unsurprisingly, the asymptomatic control participants exhibited low stress levels on average over the course of the
study (Table 3). However, the number of identified stress events did vary greatly within this group, with two
participants (9000 and 9090) exceeding 200 individual stress events over the course of 12 weeks. While this may be
explained by individual differences in stress experienced, it is also at least partially due to the way the mHealth system
determines suprathreshold stress events for each user.

Because of individual differences, accurate stress classification is not possible by simply comparing an individual’s

physiology to population-level data. Instead, the classifier must be “calibrated” to some fixed, baseline level for each
individual so that stress can be determined as a function of the difference from said baseline. The implementation of
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the stress classifier in the current study requires participants to manually calibrate their baseline by remaining at rest
for a fixed, 5-minute period. This led to reliability issues, as it required user input. Even otherwise compliant users
may not remain still for long enough to allow for an accurate baseline to be measured. A too-high baseline results in
a less sensitive (but more specific) classifier, reducing the number of identified stress events. On the other hand, if the
baseline was too low—e.g., the user calibrated the baseline immediately after waking up, near their resting heart rate—
then the classifier can become too sensitive, increasing the number of identified stress events and thus the number of
false alarms. Done correctly, individualized baselining can improve classifier performance on the order of 30
percentage points over using a population-level baseline (Winslow, 2018). The next step for improving the stress
classifier is therefore to develop an algorithm that can automatically and adaptively determine the physiological
baseline for each user.

Applications for mHealth-Based Stress Classification and Management Beyond CBT

Human performance is affected by exposure to stress in a dose-dependent manner, as originally posited more than a
century ago (Yerkes & Dodson, 1908). While moderate stress can improve cognitive and physical performance, e.g.,
via increases in brain glucose utilization (Cousijn et al., 2012) or other mechanisms, severe or prolonged stress can
reduce physical performance (Lieberman et al., 2005), attention (McHugh et al., 2010), and cognitive function (van
Wingen et al., 2012). Given high-stress occupations such as military service and emergency response, there is a need
to measure the impacts of stress on performance in order to effectively train individuals to perform successfully in the
field (van Wingen et al., 2012); see Table 5 for an overview of general approaches. Furthermore, there is a need to
identify individuals experiencing or at risk for stress-related decrements to physical and cognitive performance prior
to operating under severe stress or developing clinical stress disorders such as major depressive disorder (MDD), post-
traumatic stress disorder (PTSD), or suicide ideation and attempt, as prolonged exposure to stress increases the risk
of such conditions (Hoge et al., 2004).

The mHealth system discussed in the present study has broader applications to education and training in support of
mental health and overall human performance. Work-related stress is the top workforce health issue, outranking both
physical inactivity and obesity. Many occupations—particularly in the military, law enforcement, first response, and
niche high-stress occupations (e.g., air traffic control, emergency room medical professionals, nuclear power
technicians, etc.)—have a need to quantify user stress to better understand and improve performance and readiness
under operational conditions. The mHealth system—and the stress classifier in particular—can improve workers’
readiness to meet the challenges of their job assignments, e.g., by reducing or preventing performance decrements,
safety violations, and poor decision making associated with stress overload.

Law Enforcement

There are approximately 800,000 law enforcement officers (LEOS) in the United States (U.S. Bureau of Labor
Statistics, 2020b), represented by 18,000 agencies (Violanti, 2011). LEOs are exposed to a number of stressors on the
job, including extended work schedules, shift work, traumatic events, and negative interpersonal interactions with

Table 5. General approaches to stress measurement.

Category Description Example Real-time? Weaknesses
Self-Report Participants rate their State-trait anxiety No Exaggeration or
stress based on validated inventory (STAI) under/over reporting
scales and questionnaires
Observation Experts in stress Observer-based stress No Based on natural or
physiology or behavior observation and notes learned behaviors,
observe participants and which may not reflect
rate stress stress physiology
Saliva/Plasma Stress-based proteins Cortisol; a-amylase No Invasive; requires
Proteins assessed via saliva or laboratory or higher
serum samples expense
Physiological Physiological sensors Cardiovascular changes Yes Limited approaches
Monitoring (invasive or non-invasive) associated with stress currently available to
measure stress responses | via ECG or PPG sensors simplify use
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coworkers and the public (Charles et al., 2011). There is a high incidence of injury associated with law enforcement,
as well, due to overexertion and violence (Schafer et al., 2015). Chronic occupational exposure to stress reduces
officers’ real-world performance. Such stressors also put LEOs at risk for health problems, including metabolic
syndrome, stomach disorders, anxiety, depression, heart disease, and PTSD; as well as behavioral problems including
alcoholism and drug abuse, divorce, and suicidality. Additionally, LEOs’ level of depression is double that of the
general population, and officers are four times more likely to sleep less than 6 hours in a 24-hour period. The ability
to quantify and reduce stress in LEOs is expected to significantly improve the impacts of stress on performance and
long-term health and wellness. Beyond helping to improve LEO performance directly, stress classification can also
be used to increase accountability, namely by improving the adoption of body cameras.

In operational settings, the use of body-worn cameras by LEOs has increased rapidly over the past few decades.
Evidence from the Rialto, CA police department (PD) indicates that the use of a body-worn camera reduces the
likelihood of LEO use of force by roughly one half and reduces complaints against LEOs by a factor of 10. Similar
results were observed with the Orlando, FL, and Mesa, AZ PDs. While body camera technology holds the promise of
increasing public—police trust and reducing use of force, significant concerns remain in implementing the technology.
For instance, many LEOs choose not to activate body cameras; LEOs in Phoenix, AZ recorded only 24% of reportable
incidents over the course of one year. There is also an issue of cost. Concerns with the cost of outfitting a PD with
body camera technology have been alleviated somewhat by companies routinely providing the devices at no cost. Data
storage is still costly, however, as large forces may generate tens of thousands of hours of video each week and most
agencies require storage of body-camera videos for a minimum of one year. Such a large amount of footage requires
high-volume, cloud-based storage approaches, which come at a steep cost to already strained budgets. As a result,
some agencies have indicated that the costs outweigh the benefits and have chosen not to implement the technology.
The ability to restrict recording to threatening situations, use of force, or vehicle/foot chases, which are associated
with officer stress responses, is therefore of high interest from both a monetary and a judicial standpoint. Under a
DHS-funded effort, we performed literature and tradespace reviews of body camera technology and developed an
implementation approach such that body cameras were automatically activated in response to officers’ stress.

Healthcare

There are approximately 3 million nurses in the United States, not including medical assistants and others working
similarly high-stress jobs within the medical field. Furthermore, a recent survey found that 69% of surgical residents
reported experiencing burnout, which is a major predictor of turnover. The loss and replacement of a physician is
around $250,000, not including lost revenue. The financial impact of stress extends to nurses as well, who are
frequently exposed to traumatic events. Currently 90% of the workforce is contemplating leaving their position
because of poor work/life balance while 70% of them are suffering from burnout. Nurses’ stress levels are highly
unlikely to decrease as their role begins to take on additional responsibilities in the patient care management process.
Turnover also remains costly for healthcare organizations, with the average cost to replace a nurse being $37-59K per
nurse, potentially costing hospitals $5-8M annually. High turnover in the medical field has downstream consequences,
as well, including reduced quality of patient care and increased financial spending for hiring and training new staff.
Voluntary turnover has a far greater negative impact on organizations than involuntary turnover because high-
performing employees are more likely to leave voluntarily than low-performing ones. However, a potential labor force
crisis may be averted if interventions are deployed that assist employees in coping with stressful working conditions
on a daily basis. Stress monitoring would allow healthcare providers to accurately monitor employees in their high-
stress environments and help prevent or otherwise mitigate the effects of burnout.

Firefighting

There are approximately 350,000 firefighters in the United States, approximately 70% of which are volunteers (U.S.
Bureau of Labor Statistics, 2020a). Firefighters respond to emergency calls, travel to sites of emergency in trucks,
ambulances, and helicopters, extinguish fires, find and rescue victims, and treat sick and injured people, among other
duties. Firefighting is very physically challenging, and firefighters have the highest occupational fatality rate in the
U.S., frequently due to ischemic heart disease (Fabio et al., 2002). Sudden cardiovascular events, i.e., heart attacks
and strokes, remain the top cause of firefighter on-duty deaths despite significant improvements in personal protective
equipment (Holsworth et al., 2013). According to FEMA, these sudden cardiovascular deaths are often due to
overexertion, rising from 45% in 2007 to 55% of all firefighter deaths as reported in 2012 (U.S. Fire Administration,
2007). The immediate causes of sudden cardiovascular events present themselves approximately one hour prior to the
actual event, and evidence suggests that the success of surviving a cardiac event is twice as likely if it is witnessed
(Welch et al., 2012). Such events are associated with the high physical toll of firefighting, associated with heart rates
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within 85-100% of maximum (~190 bpm) for prolonged periods, elevated core temperature, and respiratory distress
(Petruzzello et al., 2016).

Firefighters are exposed to physical stressors including heat stress and fluid loss capable of decreasing cardiac output
as well as increasing hematocrit and whole blood viscosity (Holsworth et al., 2013). While fighting urban and rural
fires, responding to vehicular accidents, and participating in rescue missions, firefighters are exposed to other stressors
such as physical danger, physiological exertion, and mental stress (Gomes et al., 2013). Critical incidents include
responding to motor vehicle accidents, burned bodies, chemical hazards, suicides, failed rescue efforts, knowing the
victim, and witnessing the death of a co-worker (Jacobsson et al., 2015). Previous research has indicated that the
biggest stressors firefighters face include dealing with the death or rescue of a child and being responsible for the
quality of a victim’s life (Katsavouni et al., 2016).

Due to the stress of their work, and the associated physical toll, firefighters frequently experience low back pain
(Nuwayhid et al., 1993), and other musculoskeletal and respiratory problems (Dirkzwager et al., 2004), which result
in 1 in 4 firefighters retiring early due to line of duty injury or occupational disease (International Association of
Firefighters, 2000). Frequently, psychological symptoms are experienced by firefighters, including PTSD (Mitani et
al., 2006), substance abuse (Murphy et al., 1999), and depression (Fullerton et al., 2004). Self-reported stress, anger
and depression has been shown to increase with age among firefighters (de Oliveira et al., 2012). Based on interviews
with firefighter subject matter experts (SMEs), many firefighters may not be aware of the effects of stress on their
performance, and many do not immediately seek to alter their physiological state “in the moment” to reduce stress.
Adopting stress classification and management tools such as the mHealth system may help prevent stress-related
injuries in firefighters.

Future Work

A primary target for further expansion of this mHealth system is an enhancement of its sleep functionality. Mental
fatigue is defined as “a condition of low alertness or cognitive impairment, usually associated with prolonged mental
activities or stress” (National Center for Biotechnology Information (NCBI), 1995). Indeed, fatigue is consistently
associated with stress, especially work-related stressors such as work overload or burnout, even after controlling for
confounding factors such as depression (Rose et al., 2017). The current implementation of the mHealth system only
collects and reports on sleep actigraphy data from the Garmin Connect API. However, previous work by the authors
includes the development and implementation of an algorithm and mobile application for assessing and predicting
mental fatigue. Over a series of multi-week assessments, this application was able to non-invasively model cognitive
and motor function with high accuracy up to 72 hours in the future, leading to improved scheduling as well as cognitive
and physical performance for university students, shift workers, and international athletes (Winslow et al., 2017).
Future work therefore shall include the integration of these two systems for sleep and stress management. The
improved capability to measure fatigue and alertness will empower users to better manage their sleep, which will help
contribute to overall reductions in stress achieved via use of the integrated mHealth system.

Beyond traditional approaches to human state quantification via body-worn or remote biosensors, machine learning
is being pursued to infer meaning from the increasingly sophisticated sensors embedded in modern smartphones. The
inclusion of passive digital phenotypes is expected to improve user compliance and system ease of use by eliminating
the need for a separate wearable device, increase data security by removing the need for wireless communication
between a wearable and mobile device, and more seamlessly integrate with smartphone functions such as contacting
support groups.

In addition, integrating additional data input sources, such as questionnaires, fitness testing, or other applications will
expand the scope of the system beyond stress and sleep into general health and wellness. This aggregate data dashboard
can provide better insights and inform treatment decisions to improve individual and team effectiveness while also
providing a unique and personalized approach for each Service member.
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