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ABSTRACT

Fighter pilots face unique occupational stressors, including extreme gravitational forces, long and stressful missions,
and rigorous physical and mental training. The physical demands can take their toll on the pilot’s body, as evidenced
by the numerous health issues such as neck and back problems that have plagued the fighter pilot population for years.
To help address this problem, several groups within the United States Air Force (USAF) are implementing wellness
and human performance optimization programs. Most approaches are centered around increasing physical therapy and
wellness efforts. While implementing these programs will undoubtedly make a positive impact towards the goal of
rapid recovery and full operating capacity, there is an opportunity to create and implement artificial intelligence (Al)
algorithms that can collect, analyze, store and present objective pain data. This would deliver critical information to
provide better insights and enhance fighter pilots' rehabilitation decisions while also providing a unique and
personalized approach for each fighter pilot.

An unobtrusive physiological pain classifier was created for use by the USAF fighter pilot community by first
collecting physiological measures (electrocardiogram [ECG]) from healthy, adult (N=41) participants during baseline
and pain-induction tasks. These raw ECG signals were used to derive a series of cardiovascular features including
time domain, frequency domain, and non-linear features. Using logistic regression, these features classified pain at an
accuracy level of 79.6%. Field data collection is currently underway with the 56th Training Squadron at Luke Air
Force Base (AFB) to determine classification accuracy and ruggedness in operational environments. For this effort,
the classifier was integrated with a smartwatch and mobile application for classification in on- and off-duty
environments. This data will ultimately assist the pilots and their medical staff in building a more robust,
individualized physical therapy program.
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BACKGROUND

Fighter pilots face unique occupational stressors, including extreme gravitational forces, long and stressful missions,
and rigorous physical and mental training. The physical demands can take their toll on the pilot’s body, as evidenced
by the numerous health issues such as neck and back problems that have plagued the fighter pilot population for years
(Kikukawa, Tachibana, and Yagura 1995). The lifetime prevalence rate of reported overall spinal (including cervical,
thoracic, and lumbar) disorders among fighter pilots has been found to range from 89% (Kikukawa, Tachibana, and
Yagura 1995) to 93% (Rintala et al. 2015). When the quantity of acute musculoskeletal pain episodes was investigated
(Kikukawa, Tachibana, and Yagura 1995), it was found that nearly one third of fighter pilots (average age= 33 years)
reported more than 10 episodes of musculoskeletal pain during their career, and the mean recovery time for each
episode was eight days.

Musculoskeletal disorders may lead to temporary (Knudson et al. 1988) or permanent (Mccrary, Bf, and Van Svoc
1995) flight disqualification and thereby affect a pilot’s career and result in the loss of predicted working years.
Musculoskeletal disorders represent one of the most common reasons for permanent medical flight disqualification
among United States Air Force (USAF) pilots and navigators after cardiovascular and neurological disorders
(Mccrary, Bf, and Van Svoc 1995).The most common diagnostic categories in the group of musculoskeletal disorders
are chronic (neck or back) pain or discus related (herniated nucleus pulposus) problems. Early career limitations and,
in the worst-case scenario, permanent flight disqualification affect squadrons’ human resources and operational
capability. As such, anecdotal evidence suggests that many pilots conceal or otherwise do not report pain, leading to
exacerbation of the injury. Fully trained fighter pilots transferred to desk jobs or to flying non-high-performance
aircraft (NHPA) are a loss for the USAF , both economically and operationally. It is therefore important to detect the
pain a fighter pilot experiences in an effort to identify injuries early and rehabilitate them (Honkanen et al. 2019).

Along these lines, in June 2019, Gen. Mike Holmes of Air Combat Command (ACC) disclosed that USAF is looking
for ways to incorporate more preventative medical care for pilots, including athletic trainers, massage therapists,
strength and conditioning coaches, and physical therapists in fighter units and squadrons. ACC is investigating
personalized methods to prevent and rehabilitate Service members through overall wellness improvements and early
management of neck and back pain. To help address this problem, several groups within USAF are implementing
wellness and human performance optimization programs. Most approaches are centered around increasing physical
therapy efforts and wellness personnel. The 56th Operational Medical Readiness Squadron at Luke Air Force Base
(AFB) has developed the Tactical Integrated Training and Nutrition (TITAN) arena for fighter pilots, a one-of-a-kind
training facility with a dedicated human performance team focusing on enhancing mission capabilities and providing
quality of life measures for pilots in and out of the cockpit. While implementing these programs will undoubtedly
make a positive impact towards the goal of full operating capacity, there is a unique opportunity to create and
implement Al algorithms that can collect, analyze, store and present objective pain data. This would deliver critical
information to provide better insights and enhance fighter pilots' treatment decisions while also providing a unique
and personalized approach for each fighter pilot.

Pain is an unpleasant sensory and emotional experience, which is induced by noxious stimuli that are detected by

nociceptive neurons (Raja et al. 2020). Both forms of pain are associated with stereotypical physiological alterations
(Cowen et al. 2015) including increasing cardiovascular activity such as heart rate, blood pressure and heart rate
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variability (Cowen et al. 2015; Koenig et al. 2014; Lowery, Fillingim, and Wright 2003; Streff et al. 2010), respiration
rate and depth (Jafari et al. 2017), and electrodermal activity (Ledowski et al. 2007; Loggia, Juneau, and Bushnell
2011). Advances in non-invasive, persistent, physiological monitoring devices may allow for real-time, objective pain
sensing and mitigation. In the current study, a physiological dataset associated with pain induction was leveraged to
develop an algorithm capable of detecting pain.

METHODS
Experimental Procedure

In order to develop an objective pain algorithm leveraging Table 1. Sociodemographic factors of the study
physiological data, healthy, adult, (N=41) participants were fitted Sample.

with a 3-lead electrocardiogram (ECG), sampled at 500 Hz, and

wirelessly sent to an MP-150 system running AcgKnowledge % n
software (Biopac Systems, Goleta CA). All methods involving Gender
participants were approved by an independent Institutional Male 927 38

Review Board (Copernicus Group, Durham, NC). The Fernal 23 3
sociodemographic factors of the participants in the initial emale :

classifier study are listed in Table 1. Forty-one novice participants | Age Group

[thirty-eight male; average age 21.8 £ 2.4 (standard deviation; 18-21 51.2 21

SD) years] completed and received payment of $100 USD for 22-95 39 16

participation in the study. All participants were recruited from the 26-30 98 4

community and met minimum requirements including age (18- -
30), normal visual acuity, and no medical conditions such as | Education

endocrine disorders. Among the 11 individuals who did not | High School Diploma 26.8 11
complete the CPT, the average duration was 2.5 + 0.80 (SD) min. Some 51.2 21
College/University

Following placement of the ECG, a 5-minute recording of University Degree 214 9

baseline (BL) physiological activity was taken while participants
remained seated. Participants then underwent the cold pressor test
(CPT), consisting of up to 3 minutes of non-dominant hand immersion in ice cold water under experimenter
observation. While the CPT was initially developed as a clinical cardiovascular challenge to monitor changes to heart
rate and blood pressure (Streff et al. 2010), it is also considered a reliable experimental method for controlled pain
induction (Mitchell, MacDonald, and Brodie 2004). Physiological measures were captured throughout the baseline
and pain-induction phases.

Physiological Measurements

The data used for this modeling effort was based on R R-R Interval R
interbeat (RR) intervals calculated from the raw ECG

data using AcqKnowledge software. The QRS complex

represents the electrical impulse as it spreads through the p T

ventricles in advance of ventricular depolarization. The

RR interval is the time interval between consecutive R N

waves of the QRS signal on the ECG (Figure 1). The R- Qs

peak is usually used as the fiducial point due to its readily

distinguishable amplitude (Peltola 2012). This point is Figure 1. RR interval representation on an ECG
typically not influenced by noise or low amplitudes as

other points on the ECG.

In addition to ECG, photoplethysmography (PPG) can be utilized to derive heart rate measurements by measuring
changes in blood volume under the skin (Bent et al. 2020). The integration of PPG in wearable devices such as
smartwatches allows for better ease of use in comparison to ECG since it does not require electrodes and wire lead
placement on the body. Both ECG and PPG signals contain waves associated with heart cycle
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Figure 2. Feature-based extraction techniques for deriving respiration from ECG and PPG including: baseline
wander (top); amplitude modulation (middle); or frequency modulation (RSA, bottom). Derived from
(Charlton et al. 2018).

information, allowing for derivation of heart rate (bpm), interbeat intervals (s), and time and frequency domain metrics
(Figure 2). The ECG RR interval data is comprised of continuous, time-series waveforms (fs = 500 Hz) where the
value changed only when a new ECG R peak is detected.

The RR intervals were separated into 60-second, non-overlapping epochs for reduction of noise on the classification
accuracy and to coordinate with the temporal dynamics of pain (Schneider et al. 2018). This RR interval data was
analyzed to convert the time-series data into featurized observations for use as model inputs. These features (N= 46)
fell into one of four categories: (1) respiration (n=4); (2) time-domain heart rate variability (n=10); (3) frequency-
domain heart rate variability (n=7); and (4) nonlinear heart rate variability (n=4). After calculating the features for
each epoch, the features were baseline normalized. This was done to reduce the confounding influence of
interindividual variability on the classifier. This normalization process began by pairing each participant’s BL epochs
with all of their other epochs. The features were then subtracted between each of these BL/BL and BL/CPT epoch
pairs and the absolute values of the differences were taken. The resulting data that were used as classifier inputs
therefore describe the magnitude of the difference between an epoch of data and a physiological baseline for a given
participant.

RR interval data was used to derive respiratory information by leveraging the respiratory sinus arrhythmia (RSA).
RSA is heart rate variability (HRV) in synchrony with respiration, by which the RR interval on an ECG is shortened
during inspiration and prolonged during expiration (Yasuma and Hayano 2004). First, the RR intervals were linearly
interpolated to create a uniformly sampled time-series (fs = 4 Hz). This interpolated time-series data was then filtered
using a Butterworth bandpass filter in the range of .2—.8 Hz to isolate the frequency components relevant for
respiration. Then, a peak detection algorithm was run on the bandpass-filtered signal to detect breaths. The inter-breath
intervals—that is, the respiratory equivalent of interbeat intervals (IBI)—were then calculated (in ms) for each of the
detected peak/breath. Finally, the IBIs were converted to respiration rate (in breaths per minute). The respiratory
features used to create the pain classifier were calculated based on the instantaneous respiration rate data. These
included a total of four features, all in the time domain: (1) minimum; (2) maximum; (3) mean and (4) standard
deviation of respiration rate, in breaths/min.

An open source toolbox, pyHRYV, was utilized to calculate HRV features (Gomes 2021). The toolbox bundles a
selection of functions to compute time domain, frequency domain, and nonlinear HRV features. The time domain
features contain statistical information from two different classes: (a) features derived directly from the RR intervals
or instantaneous heartrate, (b) those derived from the differences between successive RR intervals. An overview of
the time domain features that were calculated is presented in Table 2.

Frequency domain analysis started with the computation of a power spectral density (PSD), followed by splitting the
PSD into frequency bands and deriving a series of overall features related to specific frequency bands including very
low frequency (VLF; 0-.04 Hz), low frequency (LF; .04—.15 Hz), high frequency (HF; .15-.40 Hz), and very high
frequency (VHF; .40-3.0 Hz). Segmenting the PSD into specific frequency bands provides a method to determine
dominant frequencies in an RR interval series, which are ultimately linked to autonomic responses of a subject’s body.
An overview of the frequency domain features that were calculated are presented in Table 3.

IITSEC 2021 Paper No. 21188 Page 5 of 11



Feature Engineering

2021 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

Table 2. HRV time-domain features

Feature  Unit Description

RRI ms  RR Interval features (min, max, mean, max, count)
ARRI ms  Successive RR interval differences features (min, max, mean)
HR bpm  Heart rate features (min, max, min)

SDRR ms  Standard deviation of the RR intervals

RMSSD ms  Root mean square of successive RR interval differences
SDSD ms  Standard deviation of successive RR interval differences
RR50 - Number of RR interval differences greater than 50 ms
pRR50 - Ratio between RR50 and total number of RR intervals
RR20 - Number of RR interval differences greater than 20 ms
pRR20 - Ratio between RR20 and total number of RR intervals

Table 3. HRV frequency-domain features

Feature

Unit  Description

Total Power

Absolute Power

Relative Power

Log (Power)

ms2  Power over all FC

ms?  Power of each FC

% Relative power of each FC

- Natural logarithm of FC’s absolute power

Normalized Power - Normalized powers of each LF and HF component

Peak Frequency
LF/HF Ratio

Hz  Frequency where maximum power of the FC occurs
% Ratio between the LF and HF components

The nonlinear features are intended to enhance nonlinear characteristics and unpredictability of RR interval series,
which are caused by the different complex physiological dynamics of the human body that lead to HRV (e.g.
sympathetic vs. parasympathetic (Billman 2011; Shaffer and Ginsberg 2017). The Poincaré plot is a scatter plot where
a given RR interval is plotted against its successor RR interval. It is a graphical tool for HRV analysis of a RR interval
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Figure 3. Poincaré plots for a subject at BL (left) and a subject undergoing CPT/ experiencing pain (right).
There is a clear linear relationship between the given RR interval and its successor RR interval during the BL
whereas there is no clear relationship while the subject is undergoing CPT. This subject halted the CPT early,
indicating a high level of pain experienced.
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dataset, which allows for a rapid first judgment of a subject’s health, as the shape of the scatter plot provides a visual
representation of the overall HRV (Tayel and AlSaba 2015). A Poincaré plot depicting a sample participant’s BL and
CPT is shown in Figure 3 and an overview of the nonlinear Poincaré plot features that were calculated are presented
in Table 4. The cluster in Figure 3 when the subject is undergoing CPT appears in the top right corner. Such appearance
is an evidence of the parasympathetic nervous system having a high impact on subject’s heart rate. Often, the main
cluster in the upper right position tends to be rather wide reflecting the fact that HRV becomes higher with lower heart
rates/higher RR (CardioPoint 2014). Additionally, the width of this cluster shows how respiratory sinus arrhythmia
and parasympathetic nervous system contributes to the total HRV. The wider the cluster, the higher the effect of
respiratory arrhythmia to the total HRV (CardioPoint 2014).

Model Selection

Modeling efforts began by generating training, test, and holdout subsets to be used as inputs for the model with a 60%,
20%, and 20% split, respectively. Efforts were made to ensure that each of the training, test, and holdout subsets was
representative of the entire dataset. This meant that each of the subsets included either 60% (training set) or 20% (test
and holdout sets) of the total participants as well as the total BL and CPT epochs. For example, the representative
percentages of subjects ended the CPT early and consequently have shorter pain recordings were considered across
each of the subsets. A holdout subset was created to prevent overfitting (Brownlee 2016). The holdout set was not
used for model fitting or model selection, otherwise, this would result in an unrealistically optimistic estimate of the
performance of the method (Murphy 2012).

To account for the class imbalance between the BL and CPT epochs, the Synthetic Minority Oversampling Technique
(SMOTE) was utilized within scikit-learn on the training set. SMOTE is a statistical technique for increasing the
number of cases in a dataset in a balanced way (Chawla et al. 2002). The module works by generating new instances
from existing minority cases that are supplied as inputs. The new instances are not just copies of existing minority
cases; instead, the algorithm takes samples of the feature space for each target class and its nearest neighbors,
generating new examples that combine features of the target case with features of its neighbors. This approach
increases the features available to each class and makes the samples more general (Chawla et al. 2002).

A preprocessing and classification pipeline to differentiate pain vs. not-pain was developed utilizing Python’s scikit-
learn library. The pipeline applied standard scaling (Z-normalization) as well as dimensionality reduction via principal
component analysis (PCA) before modeling. Five-fold cross-validation was implemented to evaluate the average
performance of the algorithm on the train set. Logistic regression classifier was chosen to differentiate CPT (pain) vs.
baseline (not-pain).

Pain Classifier Implementation and Validation Study 941 -y o:at e

To validate the performance of the pain classifier within the
fighter pilot community, the classifier was integrated with a
flight-approved smartwatch (Garmin fénix 5) and mobile
application. The Python developed algorithm was translated
to Kotlin and Swift for integration with Android operating
system and Apple operating system, respectively. Field data
collection is currently underway with the 56th Training
Squadron at Luke Air Force Base (AFB) to determine
classification accuracy and ruggedness in operational
environments. Each participant was given a mobile
application for download in addition to their flight-approved
smartwatch and were instructed on the use of the application
in conjunction with the smartwatch. The application measures Rl Neck ”

pain levels and provides participants with pain alerts once
their unique thresholds are crossed. Participants are then ®
prompted to fill out pain surveys which provide additional

context of the pain event to assess algorithm accuracy. The =~ e

end user has the ability to select a specific location on a 3-D  Figure 4. Conceptual mobile application designs
model in a specific region. Once the region is selected, theend for self-reporting pain functions.

Type of pain
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user then goes through a series of questions identifying the pain intensity, type of pain, and provide a brief description
on the event that caused the pain (Figure 4). Results will allow us to validate the accuracy between cardiovascular
metrics derived using our algorithm and the gold standard approach.

RESULTS

ECG RR intervals were used for analysis, feature
generation, and initial model selection in an effort to mimic
a real-world collection scenario from a smartwatch that can
be deployed within the USAF pilot community. This initial
modeling approach with the RR intervals was reliable in
creating an algorithm capable of classifying pain at an
accuracy level of 79.6% with 81% sensitivity and 78%
specificity. This initial model was generated utilizing all
features (N=46). After analyzing the permutation
importance of all the features , it was clear that the HRV
time domain features heavily influenced the model. The
permutation importance is an intuitive, model-agnostic
method to estimate the feature importance for classifier and
regression models. Further inspection using boxplots was
done to visualize the difference in features for the BL and
CPT classes. Boxplots are a standardized way of displaying
the distribution of data by showing the five-number
summary of a set of data: including the minimum score, first
(lower) quartile, median, third (upper) quartile, and
maximum score. The boxplots of the top four contributing
features showed a clear difference between the features for
the BL and CPT classes (Figure 5). These top 4 contributing
features were all in the HRV time-domain, and specifically
included the maximum and minimum heart rate and RR
interval.

Since the HRV time-domain features influenced the model
heavily, only the HRV time-domain features (n=18) were
utilized with the initial classification pipeline. This
optimized algorithm was capable of classifying pain at an
accuracy level of 78.7% with 85% sensitivity and 73%
specificity. Finding the optimal balance between model
complexity and performance ensures that the model can run
efficiently when deployed and minimizes the potential for
overfitting.

The pain algorithm was then integrated with a flight-

approved smartwatch (Garmin fénix 5) and mobile

application for classification in real-world environments.

Field data collection is currently underway with the 56th

Training Squadron at Luke Air Force Base (AFB) to
determine classification accuracy and ruggedness in
operational environments. Results will allow us to validate
the accuracy between cardiovascular metrics derived using
our algorithm and the gold standard approach.

DISCUSSION
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Figure 5. These four plots represent the features
contributing most to the model. Each boxplot
represents all of the subject’s epochs for the feature
present.

W
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The standard method for prediction of the absence and presence of pain has long been self-report. The current study
shows the feasibility of creating an individualized, physiological classifier of pain with a high degree of accuracy and
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compatible with a flight approved smartwatch. The use of such an algorithm in the fighter pilot community may allow
for early pain detection to help augment rehabilitation and enhance pilots’ treatment decisions. Given the large number
of individuals in the fighter pilot community that experience musculoskeletal pain and the unmet need for detecting
pain, such an algorithm can have the potential to augment treatment. Current approaches to provide preventative care
for pilots for early management of neck and back pain has been centered around increasing physical therapy efforts
and wellness personnel. There is a unique opportunity to implement an algorithm that can collect, analyze, store and
present objective pain data.

A number of previous groups have reported physiology-based approaches to pain classification, but such approaches
generally require the use of laboratory equipment or controlled settings. For instance, one group leveraged fMRI data
and support vector machines (SVMs) to develop an algorithm of pain with 81% accuracy (Brown et al. 2011). Another
group reported an electroencephalography (EEG)-based algorithm of pain by analyzing 64 channels of EEG data with
an accuracy of 80% (Huang et al. 2013). Another group leveraged blood volume pulse (BVP), ECG, and skin
conductance level (SCL) to create a pain classifier with a 75% accuracy (Chu et al. 2017). The current effort was able
to achieve comparable accuracy by leveraging cardiovascular sensors from emerging wearable fitness devices. This
also represents the first effort to provide a fully fieldable solution which does not require controlled laboratory
conditions.

Classification of pain was based on features gathered from a user group that underwent a pain induction task (CPT),
which is considered a reliable experimental method for controlled pain induction (Mitchell, MacDonald, and Brodie
2004) and is currently being validated with USAF pilots to determine classification accuracy and ruggedness in
operational environments. Pain classification was based on cardiovascular inputs and variance due to individual
differences was addressed by individual baseline normalization. The current classifier is a binary output signaling if
an individual is in pain or not in pain. Future work will focus on reporting pain on scale to show the level of pain that
an individual is experiencing.

Future research efforts will be to integrate the pain classification algorithm with a broader class of algorithms such as
stress and fatigue that can be utilized within the fighter pilot community. Raw physiological data, including blood
volume pulse, electrodermal activity, temperature, and movement data, can be processed in real time to present
objective stress of a fighter pilot (Chadderdon et al. 2014; Winslow et al. 2016). This stress algorithm can be used to
keep tabs on the mental strain faced by fighter pilots during training, operations, and outside of work, thereby
contributing to a holistic wellness approach. Additionally, by utilizing a combination of sleep (actigraphy) data from
wearable sensors, self-reported information such as caffeine intake, and a game-based cognitive assessment, there is
the capability to predict an individual’s current and future mental and physical fatigue over the next 72 hours
(Winslow, Nguyen, and Venta 2017). A valid assessment of current and future mental/physical fatigue could be used
to adjust fighter pilot training and mission schedules, inform optimal times for fatigue interventions, and support a
more personalized rehabilitation regimen (Strahler et al. 2016). Combining pain, stress, fatigue algorithms allows for
a more holistic, individualized approach to pilot wellness.

Pilot health and readiness are critical to success of the squadron and to meet the overall mission of the unit. Within
the aviation community, pilots are either in an “UP” status and able to fly or in a “Medically Down” status and unable
to fly due to injuries or illness. There is a concern of pilot acceptance to wearing a physiological sensor that provides
an output on the level of pain they are experiencing that is accessible by their medical staff. To combat this, the data
must be utilized as an identifier to enhance the individual pilot’s physical training and physical therapy program and
not utilized as a tool to downgrade or bypass the pilot’s own assessment of their physical state. Utilizing physiological
sensors to monitor a pilot’s level of pain can positively impact the fighter pilot community by providing valuable data
to the medical staff and leadership. The capability to identify trends associated with pilots showing variable signs of
pain throughout the training curriculum, down to specific maneuvers or duration in flight, can provide highly valuable
data to the medical staff and human performance teams. This data can allow the training staff to modify their physical
therapy routines and adjust their strength and conditioning programs for the individual pilot.

ACKNOWLEDGEMENTS

This work was supported by grants from the Office of Naval Research (N00014-12-G-0427) and the US Air Force
(FA864920P0199).

IITSEC 2021 Paper No. 21188 Page 9 of 11



2021 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

REFERENCES

Bent, Brinnae, Benjamin A. Goldstein, Warren A. Kibbe, and Jessilyn P. Dunn. 2020. “Investigating Sources of
Inaccuracy in Wearable Optical Heart Rate Sensors.” npj Digital Medicine 3(1): 1-9.
https://doi.org/10.1038/s41746-020-0226-6 (June 29, 2021).

Billman, George E. 2011. “Heart Rate Variability - A Historical Perspective.” Frontiers in Physiology 2 NOV: 86.
www.frontiersin.org (June 29, 2021).

Brown, Justin E., Neil Chatterjee, Jarred Younger, and Sean Mackey. 2011. “Towards a Physiology-Based Measure
of Pain: Patterns of Human Brain Activity Distinguish Painful from Non-Painful Thermal Stimulation.” PL0S
ONE 6(9). https://pubmed.ncbi.nlm.nih.gov/21931652/ (June 29, 2021).

Brownlee, Jason. 2016. “Overfitting and Underfitting With Machine Learning Algorithms.”
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/ (June 29,
2021).

CardioPoint, BTL. 2014. BTL CardioPoint-Poincaré Graph Poincaré Graph Complete ECG Record in One Sight.

Chadderdon, George L., Brent D. Winslow, Sara J. Dechmerowski, and David Jones. 2014. “System, Method, and
Computer Program Product for the Real-Time Mobile Evaluation of Physiological Stress.”

Charlton, Peter H. et al. 2018. “Breathing Rate Estimation from the Electrocardiogram and Photoplethysmogram: A
Review.” IEEE Reviews in Biomedical Engineering 11: 2-20. https://pubmed.ncbhi.nIm.nih.gov/29990026/
(June 29, 2021).

Chawla, Nitesh V., Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. 2002. “SMOTE: Synthetic
Minority over-Sampling Technique.” Journal of Artificial Intelligence Research 16: 321-57.
https://www.jair.org/index.php/jair/article/view/10302 (June 29, 2021).

Chu, Yagqi, Xingang Zhao, Jianda Han, and Yang Su. 2017. “Physiological Signal-Based Method for Measurement of
Pain Intensity.” Frontiers in Neuroscience 11(MAY): 279. www.frontiersin.org (June 29, 2021).

Cowen, R., M. K. Stasiowska, H. Laycock, and C. Bantel. 2015. “Assessing Pain Objectively: The Use of
Physiological Markers.” Anaesthesia 70(7): 828-47. https://pubmed.ncbi.nim.nih.gov/25772783/ (June 29,
2021).

Gomes, Pedro. 2021. “PyHRV - OpenSource Python Toolbox for Heart Rate Variability Documentation.”
https://pyhrv.readthedocs.io/en/latest/ (June 29, 2021).

Honkanen, Tuomas et al. 2019. “Cross-Sectional Area of the Paraspinal Muscles and Its Association with Muscle
Strength among Fighter Pilots: A 5-Year Follow-Up.” BMC Musculoskeletal Disorders 20(1): 1-8.
https://doi.org/10.1186/512891-019-2551-y (June 29, 2021).

Huang, G. et al. 2013. “A Novel Approach to Predict Subjective Pain Perception from Single-Trial Laser-Evoked
Potentials.” Neurolmage 81: 283-93. https://pubmed.ncbi.nlm.nih.gov/23684861/ (June 29, 2021).

Jafari, Hassan et al. 2017. “Pain and Respiration: A Systematic Review.” Pain 158(6): 995-1006.
https://pubmed.ncbi.nlm.nih.gov/28240995/ (June 29, 2021).

Kikukawa, A, S Tachibana, and S Yagura. 1995. “G-Related Musculoskeletal Spine Symptoms in Japan Air Self
Defense Force F-15 Pilots.” Aviat Space Environ Med 66(3): 269-72.

Knudson, R., D. McMillan, D. Doucette, and M. Seidel. 1988. “A Comparative Study of G-Induced Neck Injury in
Pilots of the F/A-18, A-7, and A-4.” Aviation Space and Environmental Medicine 59(8): 758-60.
https://europepmc.org/article/med/3178626 (June 29, 2021).

Koenig, J. et al. 2014. “Heart Rate Variability and Experimentally Induced Pain in Healthy Adults: A Systematic
Review.” European Journal of Pain (United Kingdom) 18(3): 301-14.
https://pubmed.ncbi.nlm.nih.gov/23922336/ (June 29, 2021).

Ledowski, Thomas et al. 2007. “The Assessment of Postoperative Pain by Monitoring Skin Conductance: Results of
a Prospective Study.” Anaesthesia 62(10): 989-93. https://pubmed.ncbi.nIm.nih.gov/17845649/ (June 29,
2021).

Loggia, Marco L., Mylne Juneau, and M. Catherine Bushnell. 2011. “Autonomic Responses to Heat Pain: Heart Rate,
Skin Conductance, and Their Relation to Verbal Ratings and Stimulus Intensity.” Pain 152(3): 592-98.
https://pubmed.ncbi.nlm.nih.gov/21215519/ (June 29, 2021).

Lowery, Daniel, Roger B. Fillingim, and Rex A. Wright. 2003. “Sex Differences and Incentive Effects on Perceptual
and Cardiovascular Responses to Cold Pressor Pain.” Psychosomatic Medicine 65(2): 284-91.
https://pubmed.ncbi.nlm.nih.gov/12651996/ (June 29, 2021).

Mccrary, Brian F, Daniel L. V A N Syoc Mccrary Bf, and D L Van Svoc. 1995. 73 Aviat Space Environ Med
Permanent  Flying  Disqualifications of = USAF  Pilots and  Navigators  (1995-1999).
https://www.researchgate.net/publication/11034708 (June 29, 2021).

IITSEC 2021 Paper No. 21188 Page 10 of 11



2021 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

Mitchell, Laura A., Raymond A.R. MacDonald, and Eric E. Brodie. 2004. “Temperature and the Cold Pressor Test.”
Journal of Pain 5(4): 233-37. https://pubmed.ncbi.nIm.nih.gov/15162346/ (June 29, 2021).

Murphy, Kevin P. 2012. Machine Learning A Probabilistic Perspective.

Peltola, Mirja A. 2012. “Role of Editing of R-R Intervals in the Analysis of Heart Rate Variability.” Frontiers in
Physiology 3 MAY. /pmc/articles/PMC3358711/ (June 29, 2021).

Raja, Srinivasa N. et al. 2020. “The Revised International Association for the Study of Pain Definition of Pain:
Concepts, Challenges, and Compromises.” Pain 161(9): 1976-82. https://pubmed.ncbi.nim.nih.gov/32694387/
(June 29, 2021).

Rintala, Harri, Arja Hakkinen, Simo Siitonen, and Heikki Kyr6ldinen. 2015. “Relationships between Physical Fitness,
Demands of Flight Duty, and Musculoskeletal Symptoms among Military Pilots.” Military Medicine 180(12):
1233-38. https://academic.oup.com/milmed/article/180/12/1233/4160603 (June 29, 2021).

Schneider, Stefan, Doerte U. Junghaenel, Masakatsu Ono, and Arthur A. Stone. 2018. “Temporal Dynamics of Pain:
An Application of Regime-Switching Models to Ecological Momentary Assessments in Patients with
Rheumatic Diseases.” Pain 159(7): 1346-58. https://pubmed.ncbi.nlm.nih.gov/29557930/ (June 29, 2021).

Shaffer, Fred, and J. P. Ginsberg. 2017. “An Overview of Heart Rate Variability Metrics and Norms.” Frontiers in
Public Health 5: 258. /pmc/articles/PMC5624990/ (June 29, 2021).

Strahler, Jana, Nadine Skoluda, Nicolas Rohleder, and Urs M. Nater. 2016. “Dysregulated Stress Signal Sensitivity
and Inflammatory Disinhibition as a Pathophysiological Mechanism of Stress-Related Chronic Fatigue.”
Neuroscience and Biobehavioral Reviews 68: 298-318. https://pubmed.ncbi.nlm.nih.gov/27208412/ (June 30,
2021).

Streff, Anouk, Linn K. Kuehl, Gilles Michaux, and Fernand Anton. 2010. “Differential Physiological Effects during
Tonic Painful Hand Immersion Tests Using Hot and Ice Water.” European Journal of Pain 14(3): 266-72.
https://pubmed.ncbi.nlm.nih.gov/19540783/ (June 29, 2021).

Tayel, Mazhar B., and Eslam 1. AlSaba. 2015. “Poincaré Plot for Heart Rate Variability.”
https://zenodo.org/record/1109321 (June 29, 2021).

Winslow, Brent D. et al. 2016. “Development and Clinical Evaluation of an MHealth Application for Stress
Management.” Frontiers in Psychiatry 7(JUL): 130. /pmc/articles/PMC4960497/ (June 30, 2021).

Winslow, Brent D., Nam Nguyen, and Kimberly E. Venta. 2017. “Improved Mental Acuity Forecasting with an
Individualized Quantitative Sleep Model.” Frontiers in Neurology 8(APR): 160. www:.frontiersin.org (June 30,
2021).

Yasuma, Fumihiko, and Jun Ichiro Hayano. 2004. “Respiratory Sinus Arrhythmia: Why Does the Heartbeat
Synchronize with Respiratory Rhythm?”” Chest 125(2): 683-90.

IITSEC 2021 Paper No. 21188 Page 11 of 11



