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ABSTRACT 

Fighter pilots face unique occupational stressors, including extreme gravitational forces, long and stressful missions, 

and rigorous physical and mental training. The physical demands can take their toll on the pilot’s body, as evidenced 

by the numerous health issues such as neck and back problems that have plagued the fighter pilot population for years. 

To help address this problem, several groups within the United States Air Force (USAF) are implementing wellness 

and human performance optimization programs. Most approaches are centered around increasing physical therapy and 

wellness efforts. While implementing these programs will undoubtedly make a positive impact towards the goal of 

rapid recovery and full operating capacity, there is an opportunity to create and implement artificial intelligence (AI) 

algorithms that can collect, analyze, store and present objective pain data. This would deliver critical information to 

provide better insights and enhance fighter pilots' rehabilitation decisions while also providing a unique and 

personalized approach for each fighter pilot.  

 

An unobtrusive physiological pain classifier was created for use by the USAF fighter pilot community by first  

collecting physiological measures (electrocardiogram [ECG]) from healthy, adult (N=41) participants during baseline 

and pain-induction tasks. These raw ECG signals were used to derive a series of cardiovascular features including 

time domain, frequency domain, and non-linear features. Using logistic regression, these features classified pain at an 

accuracy level of 79.6%. Field data collection is currently underway with the 56th Training Squadron at Luke Air 

Force Base (AFB) to determine classification accuracy and ruggedness in operational environments. For this effort, 

the classifier was integrated with a smartwatch and mobile application for classification in on- and off-duty 

environments. This data will ultimately assist the pilots and their medical staff in building a more robust, 

individualized physical therapy program. 
 

ABOUT THE AUTHORS 

Ms. Rebecca Kwasinski is a Data Scientist at Design Interactive, Inc. (DI) and has over five years of expertise in 

non-invasive physiological research, data collection, data processing, and data analysis. Rebecca earned her bachelor’s 

degree in biomedical engineering with a minor in chemistry from Florida International University where she worked 

as a research fellow in the Optical Imaging Laboratory focusing on near-infrared imaging of lower extremity ulcers 

to provide a quantitative assessment of the wound healing process. Upon gradution, Rebecca worked as a Project 

Engineer for ECRI where she worked to develop and execute test protocols and publish key findings to evaluate a 

wide variety of medical technologies based on the device performance, safety, workflow, interoperability, user/patient 

experience, cybersecurity, and maintenance. At DI, Rebecca focuses on utilizing non-invasive physiological sensor 

data to develop classifiers of the human state. 

 

Dr. Jeffrey Hullfish is a Senior Data Scientist and the Portfolio Manager for Digital Twins R&D at Design Interactive, 

Inc. (DI). He has over seven years of experience studying signals from the peripheral and central nervous systems. 

His primary research focus is reverse engineering the structure and function of the human brain via the study of 

neurological and psychiatric disorders. He led a clinical pilot study in collaboration with Interacoustics A/S, a 

Denmark-based medical device company, to improve the early detection of peripheral nerve tumors using auditory 

brainstem responses; this resulted in his successful master’s thesis. He went on to earn his Ph.D. from the University 

of Texas at Dallas, where he studied the neuropathology of tinnitus using functional magnetic resonance imaging 



 
 

 

2021 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 

IITSEC 2021 Paper No. 21188 Page 2 of 11 

(fMRI). At DI, he works primarily with physiological data collected non-invasively from human subjects. Using these 

data, he develops and implements algorithms for the real-time classification of cognitive and physiological status; 

recent examples include both stress and pain. 

 

Mr. Adam Lynch is a Senior Project Engineer at DI and has over 9 years of project management experience in both 

hardware manufacturing and software development. Adam has over 17 years of military experience as an officer in 

the Marine Corps Reserve and is currently serving as the Battalion Commander of 4th Air Naval Gunfire Liaison 

Company. 

 

Dr. Brent Winslow is Chief Scientist at DI and has over 15 years of experience in rehabilitation, training, biomedical 

engineering, and applied neuroscience. Dr. Winslow developed patented approaches to human stress quantification in 

natural environments, and has tested such approaches in law enforcement, first response, special operations, and with 

active duty service members. Dr. Winslow is active in advisory councils and advocacy groups from brain injury to 

bleeding disorders, has published articles from in vivo electrophysiology to military training, and has presented work 

in various international bioengineering, neuroscience, and imaging conferences. 

 

Mr. Adam Faurot is the Chief Commercial Officer (CCO) at SPEAR Human Performance, and has been a key 

influencer in the Human and Economic Performance Optimization industry. After finishing a career in professional 

baseball with the Milwaukee Brewers and Boston Red Sox organizations, Adam co-founded TITUS and has been 

instrumental in both services and solutions including the largest childhood obesity program in the U.S., a pioneering 

human factors data platform-SPEAR, impacting thousands of athletes, public safety and military personnel. 

 

Mr. Mitchell Ruble is a consultant in delivery services where he works with a team to provide application 

development and business intelligence recommendations. Mitchell has a strong background in rehabilitation with over 

6 years of experience where he has led software development efforts that focused on gamification of rehabilitation 

including a myoelectric pre-prosthetic training system for upper limb amputees and a rehabilitation-based game for 

children with cerebral palsy. He has also led several efforts focused on mobile application development including a 

mobile tool for detecting stress and providing stress mitigation strategies in cognitive behavioral therapy and 

developing a classifier for detecting learner engagement in classroom settings. 

 



 
 

 

2021 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 

IITSEC 2021 Paper No. 21188 Page 3 of 11 

Objective Pain Identification and Monitoring for Fighter Pilots 
 

Rebecca Kwasinski, Jeffrey Hullfish, 

Adam Lynch, Brent Winslow Adam Faurot 

 

Mitchell Ruble 

Design Interactive, Inc. SPEAR Human 

Performance 

Hylaine 

Orlando, FL Tallahassee, FL 

 

Charlotte, NC 

Rebecca.Kwasinski@designinteractive.net,  

Jeff.Hullfish@designinteractive.net, 

Adam.Lynch@designinteractive.net, 

Brent.Winslow@designinteractive.net 

adam@spearhhp.com mruble@hylaine.com 

BACKGROUND 

Fighter pilots face unique occupational stressors, including extreme gravitational forces, long and stressful missions, 

and rigorous physical and mental training. The physical demands can take their toll on the pilot’s body, as evidenced 

by the numerous health issues such as neck and back problems that have plagued the fighter pilot population for years 

(Kikukawa, Tachibana, and Yagura 1995). The lifetime prevalence rate of reported overall spinal (including cervical, 

thoracic, and lumbar) disorders among fighter pilots has been found to range from 89% (Kikukawa, Tachibana, and 

Yagura 1995) to 93%  (Rintala et al. 2015). When the quantity of acute musculoskeletal pain episodes was investigated 

(Kikukawa, Tachibana, and Yagura 1995), it was found that nearly one third of fighter pilots (average age= 33 years) 

reported more than 10 episodes of musculoskeletal pain during their career, and the mean recovery time for each 

episode was eight days.  

 

Musculoskeletal disorders may lead to temporary (Knudson et al. 1988) or permanent (Mccrary, Bf, and Van Svoc 

1995) flight disqualification and thereby affect a pilot’s career and result in the loss of predicted working years. 

Musculoskeletal disorders represent one of the most common reasons for permanent medical flight disqualification 

among United States Air Force (USAF) pilots and navigators after cardiovascular and neurological disorders 

(Mccrary, Bf, and Van Svoc 1995).The most common diagnostic categories in the group of musculoskeletal disorders 

are chronic (neck or back) pain or discus related (herniated nucleus pulposus) problems. Early career limitations and, 

in the worst-case scenario, permanent flight disqualification affect squadrons’ human resources and operational 

capability. As such, anecdotal evidence suggests that many pilots conceal or otherwise do not report pain, leading to 

exacerbation of the injury. Fully trained fighter pilots transferred to desk jobs or to flying non-high-performance 

aircraft (NHPA) are a  loss for the USAF , both economically and operationally. It is therefore important to detect the 

pain a fighter pilot experiences in an effort to identify injuries early and rehabilitate them (Honkanen et al. 2019). 

 

Along these lines, in June 2019, Gen. Mike Holmes of Air Combat Command (ACC) disclosed that USAF is looking 

for ways to incorporate more preventative medical care for pilots, including athletic trainers, massage therapists, 

strength and conditioning coaches, and physical therapists in fighter units and squadrons. ACC is investigating 

personalized methods to prevent and rehabilitate Service members through overall wellness improvements and early 

management of neck and back pain. To help address this problem, several groups within USAF are implementing 

wellness and human performance optimization programs. Most approaches are centered around increasing physical 

therapy efforts and wellness personnel. The 56th Operational Medical Readiness Squadron at Luke Air Force Base 

(AFB) has developed the Tactical Integrated Training and Nutrition (TITAN) arena for fighter pilots, a one-of-a-kind 

training facility with a dedicated human performance team focusing on enhancing mission capabilities and providing 

quality of life measures for pilots in and out of the cockpit. While implementing these programs will undoubtedly 

make a positive impact towards the goal of full operating capacity, there is a unique opportunity  to create and 

implement AI algorithms that can collect, analyze, store and present objective pain data. This would deliver critical 

information to provide better insights and enhance fighter pilots' treatment decisions while also providing a unique 

and personalized approach for each fighter pilot.  

 

Pain is an unpleasant sensory and emotional experience, which is induced by noxious stimuli that are detected by 

nociceptive neurons (Raja et al. 2020). Both forms of pain are associated with stereotypical physiological alterations 

(Cowen et al. 2015) including increasing cardiovascular activity such as heart rate, blood pressure and heart rate 
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variability (Cowen et al. 2015; Koenig et al. 2014; Lowery, Fillingim, and Wright 2003; Streff et al. 2010), respiration 

rate and depth (Jafari et al. 2017), and electrodermal activity (Ledowski et al. 2007; Loggia, Juneau, and Bushnell 

2011). Advances in non-invasive, persistent, physiological monitoring devices may allow for real-time, objective pain 

sensing and mitigation. In the current study, a physiological dataset associated with pain induction was leveraged to 

develop an algorithm capable of detecting pain. 

 

METHODS 

Experimental Procedure 

In order to develop an objective pain algorithm leveraging 

physiological data, healthy, adult, (N=41) participants were fitted 

with a 3-lead electrocardiogram (ECG), sampled at 500 Hz, and 

wirelessly sent to an MP-150 system running AcqKnowledge 

software (Biopac Systems, Goleta CA). All methods involving 

participants were approved by an independent Institutional 

Review Board (Copernicus Group, Durham, NC). The 

sociodemographic factors of the participants in the initial 

classifier study are listed in Table 1. Forty-one novice participants 

[thirty-eight male; average age 21.8 ± 2.4 (standard deviation; 

SD) years] completed and received payment of $100 USD for 

participation in the study. All participants were recruited from the 

community and met minimum requirements including age (18-

30), normal visual acuity, and no medical conditions such as 

endocrine disorders. Among the 11 individuals who did not 

complete the CPT, the average duration was 2.5 ± 0.80 (SD) min. 

 

Following placement of the ECG, a 5-minute recording of 

baseline (BL) physiological activity was taken while participants 

remained seated. Participants then underwent the cold pressor test 

(CPT), consisting of up to 3 minutes of non-dominant hand immersion in ice cold water under experimenter 

observation. While the CPT was initially developed as a clinical cardiovascular challenge to monitor changes to heart 

rate and blood pressure (Streff et al. 2010), it is also considered a reliable experimental method for controlled pain 

induction (Mitchell, MacDonald, and Brodie 2004). Physiological measures were captured throughout the baseline 

and pain-induction phases.  

Physiological Measurements 

The data used for this modeling effort was based on 

interbeat (RR) intervals calculated from the raw ECG 

data using AcqKnowledge software. The QRS complex 

represents the electrical impulse as it spreads through the 

ventricles in advance of ventricular depolarization. The 

RR interval is the time interval between consecutive R 

waves of the QRS signal on the ECG (Figure 1). The R-

peak is usually used as the fiducial point due to its readily 

distinguishable amplitude (Peltola 2012). This point is 

typically not influenced by noise or low amplitudes as 

other points on the ECG.   

 

In addition to ECG, photoplethysmography (PPG) can be utilized to derive heart rate measurements by measuring 

changes in blood volume under the skin (Bent et al. 2020). The integration of PPG in wearable devices such as 

smartwatches allows for better ease of use in comparison to ECG since it does not require electrodes and wire lead 

placement on the body. Both ECG and PPG signals contain waves associated with heart cycle 

 
 

 

Figure 1. RR interval representation on an ECG 

Table 1. Sociodemographic factors of the study 

sample. 

  %  n 

Gender    

Male 92.7 38 

Female 7.3 3 

Age Group    

18-21 51.2 21 

22-25 39 16 

26-30 9.8 4 

Education     

High School Diploma 26.8 11 

Some 

College/University 

51.2 21 

 

University Degree 21.4 9 
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information, allowing for derivation of heart rate (bpm), interbeat intervals (s), and time and frequency domain metrics 

(Figure 2). The ECG RR interval data is comprised of continuous, time-series waveforms (fs = 500 Hz) where the 

value changed only when a new ECG R peak is detected. 

 

The RR intervals were separated into 60-second, non-overlapping epochs for reduction of noise on the classification 

accuracy and to coordinate with the temporal dynamics of pain (Schneider et al. 2018). This RR interval data was 

analyzed to convert the time-series data into featurized observations for use as model inputs. These features (N= 46) 

fell into one of four categories: (1) respiration (n=4); (2) time-domain heart rate variability (n=10); (3) frequency-

domain heart rate variability (n=7); and (4) nonlinear heart rate variability (n=4). After calculating the features for 

each epoch, the features were baseline normalized. This was done to reduce the confounding influence of 

interindividual variability on the classifier. This normalization process began by pairing each participant’s BL epochs 

with all of their other epochs. The features were then subtracted between each of these BL/BL and BL/CPT epoch 

pairs and the absolute values of the differences were taken. The resulting data that were used as classifier inputs 

therefore describe the magnitude of the difference between an epoch of data and a physiological baseline for a given 

participant. 

 

RR interval data was used to derive respiratory information by leveraging the respiratory sinus arrhythmia (RSA). 

RSA is heart rate variability (HRV) in synchrony with respiration, by which the RR interval on an ECG is shortened 

during inspiration and prolonged during expiration (Yasuma and Hayano 2004). First, the RR intervals were linearly 

interpolated to create a uniformly sampled time-series (fs = 4 Hz). This interpolated time-series data was then filtered 

using a Butterworth bandpass filter in the range of .2–.8 Hz to isolate the frequency components relevant for 

respiration. Then, a peak detection algorithm was run on the bandpass-filtered signal to detect breaths. The inter-breath 

intervals—that is, the respiratory equivalent of interbeat intervals (IBI)—were then calculated (in ms) for each of the 

detected peak/breath. Finally, the IBIs were converted to respiration rate (in breaths per minute). The respiratory 

features used to create the pain classifier were calculated based on the instantaneous respiration rate data. These 

included a total of four features, all in the time domain: (1) minimum; (2) maximum; (3) mean and (4) standard 

deviation of respiration rate, in breaths/min.  

 

An open source toolbox, pyHRV, was utilized to calculate HRV features (Gomes 2021). The toolbox bundles a 

selection of functions to compute time domain, frequency domain, and nonlinear HRV features. The time domain 

features contain statistical information from two different classes: (a) features derived directly from the RR intervals 

or instantaneous heartrate, (b) those derived from the differences between successive RR intervals. An overview of 

the time domain features that were calculated is presented in Table 2.  

 

Frequency domain analysis started with the computation of a power spectral density (PSD), followed by splitting the 

PSD into frequency bands and deriving a series of overall features related to specific frequency bands including very 

low frequency (VLF; 0–.04 Hz), low frequency (LF; .04–.15 Hz), high frequency (HF; .15–.40 Hz), and very high 

frequency (VHF; .40–3.0 Hz). Segmenting the PSD into specific frequency bands provides a method to determine 

dominant frequencies in an RR interval series, which are ultimately linked to autonomic responses of a subject’s body. 

An overview of the frequency domain features that were calculated are presented in Table 3. 

 

Figure 2. Feature-based extraction techniques for deriving respiration from ECG and PPG including: baseline 

wander (top); amplitude modulation (middle); or frequency modulation (RSA, bottom). Derived from 

(Charlton et al. 2018).  
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Feature Engineering 

The nonlinear features are intended to enhance nonlinear characteristics and unpredictability of RR interval series, 

which are caused by the different complex physiological dynamics of the human body that lead to HRV (e.g. 

sympathetic vs. parasympathetic (Billman 2011; Shaffer and Ginsberg 2017). The Poincaré plot is a scatter plot where 

a given RR interval is plotted against its successor RR interval. It is a graphical tool for HRV analysis of a RR interval   

Table 2. HRV time-domain features 

Feature Unit Description 

RRI ms RR Interval features (min, max, mean, max, count) 

∆ RRI ms Successive RR interval differences features (min, max, mean) 

HR bpm Heart rate features (min, max, min) 

SDRR ms Standard deviation of the RR intervals 

RMSSD ms Root mean square of successive RR interval differences 

SDSD ms Standard deviation of successive RR interval differences 

RR50 - Number of RR interval differences greater than 50 ms 

pRR50 - Ratio between RR50 and total number of RR intervals 

RR20 - Number of RR interval differences greater than 20 ms 

pRR20 - Ratio between RR20 and total number of RR intervals 

 
Table 3. HRV frequency-domain features 

Feature Unit Description 

Total Power ms2 Power over all FC 

Absolute Power ms2 Power of each FC 

Relative Power % Relative power of each FC 

Log (Power) - Natural logarithm of FC’s absolute power 

Normalized Power - Normalized powers of each LF and HF component 

Peak Frequency Hz Frequency where maximum power of the FC occurs 

LF/HF Ratio % Ratio between the LF and HF components 

 

 

Figure 3. Poincaré plots for a subject at BL (left) and a subject undergoing CPT/ experiencing pain (right). 

There is a clear linear relationship between the given RR interval and its successor RR interval during the BL 

whereas there is no clear relationship while the subject is undergoing CPT. This subject halted the CPT early,  

indicating a high level of pain experienced. 
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dataset, which allows for a rapid first judgment of a subject’s health, as the shape of the scatter plot provides a visual 

representation of the overall HRV (Tayel and AlSaba 2015). A Poincaré plot depicting a sample participant’s BL and 

CPT is shown in Figure 3 and an overview of the nonlinear Poincaré plot features that were calculated are presented 

in Table 4. The cluster in Figure 3 when the subject is undergoing CPT appears in the top right corner. Such appearance 

is an evidence of the parasympathetic nervous system having a high impact on subject’s heart rate. Often, the main 

cluster in the upper right position tends to be rather wide reflecting the fact that HRV becomes higher with lower heart 

rates/higher RR (CardioPoint 2014). Additionally, the width of this cluster shows how respiratory sinus arrhythmia 

and parasympathetic nervous system contributes to the total HRV. The wider the cluster, the higher the effect of 

respiratory arrhythmia to the total HRV (CardioPoint 2014).  

Model Selection  

Modeling efforts began by generating training, test, and holdout subsets to be used as inputs for the model with a 60%, 

20%, and 20% split, respectively. Efforts were made to ensure that each of the training, test, and holdout subsets was 

representative of the entire dataset. This meant that each of the subsets included either 60% (training set) or 20% (test 

and holdout sets) of the total participants as well as the total BL and CPT epochs. For example, the representative 

percentages of subjects ended the CPT early and consequently have shorter pain recordings were considered across 

each of the subsets. A holdout subset was created to prevent overfitting (Brownlee 2016). The holdout set was not 

used for model fitting or model selection, otherwise, this would result in an unrealistically optimistic estimate of the 

performance of the method (Murphy 2012).  

 

To account for the class imbalance between the BL and CPT epochs, the Synthetic Minority Oversampling Technique 

(SMOTE) was utilized within scikit-learn on the training set. SMOTE is a statistical technique for increasing the 

number of cases in a dataset in a balanced way (Chawla et al. 2002). The module works by generating new instances 

from existing minority cases that are supplied as inputs. The new instances are not just copies of existing minority 

cases; instead, the algorithm takes samples of the feature space for each target class and its nearest neighbors, 

generating new examples that combine features of the target case with features of its neighbors. This approach 

increases the features available to each class and makes the samples more general (Chawla et al. 2002). 

 

A preprocessing and classification pipeline to differentiate pain vs. not-pain was developed utilizing Python’s scikit-

learn library. The pipeline applied standard scaling (Z-normalization) as well as dimensionality reduction via principal 

component analysis (PCA) before modeling. Five-fold cross-validation was implemented to evaluate the average 

performance of the algorithm on the train set. Logistic regression classifier was chosen to differentiate CPT (pain) vs. 

baseline (not-pain).   

Pain Classifier Implementation and Validation Study 

 

To validate the performance of the pain classifier within the 

fighter pilot community, the classifier was integrated with a 

flight-approved smartwatch (Garmin fēnix 5) and mobile 

application. The Python developed algorithm was translated 

to Kotlin and Swift for integration with Android operating 

system and Apple operating system, respectively. Field data 

collection is currently underway with the 56th Training 

Squadron at Luke Air Force Base (AFB) to determine 

classification accuracy and ruggedness in operational 

environments. Each participant was given a mobile 

application for download  in addition to their flight-approved 

smartwatch and were instructed on the use of the application 

in conjunction with the smartwatch. The application measures 

pain levels and provides participants with pain alerts once 

their unique thresholds are crossed. Participants are then 

prompted to fill out pain surveys which provide additional 

context of the pain event to assess algorithm accuracy. The 

end user has the ability to select a specific location on a 3-D 

model in a specific region. Once the region is selected, the end 

Figure 4. Conceptual mobile application designs 

for self-reporting pain functions. 
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user then goes through a series of questions identifying the pain intensity, type of pain, and provide a brief description 

on the event that caused the pain (Figure 4). Results will allow us to validate the accuracy between cardiovascular 

metrics derived using our algorithm and the gold standard approach. 

 

RESULTS 

ECG RR intervals were used for analysis, feature 

generation, and initial model selection in an effort to mimic 

a real-world collection scenario from a smartwatch that can 

be deployed within the USAF pilot community. This initial 

modeling approach with the RR intervals was reliable in 

creating an algorithm capable of classifying pain at an 

accuracy level of 79.6% with 81% sensitivity and 78% 

specificity. This initial model was generated utilizing all 

features (N=46). After analyzing the permutation 

importance of all the features , it was clear that the HRV 

time domain features heavily influenced the model. The 

permutation importance is an intuitive, model-agnostic 

method to estimate the feature importance for classifier and 

regression models. Further inspection using boxplots was 

done to visualize the difference in features for the BL and 

CPT classes. Boxplots are a standardized way of displaying 

the distribution of data by showing the five-number 

summary of a set of data: including the minimum score, first 

(lower) quartile, median, third (upper) quartile, and 

maximum score. The boxplots of the top four contributing 

features showed a clear difference between the features for 

the BL and CPT classes (Figure 5). These top 4 contributing 

features were all in the HRV time-domain, and specifically 

included the maximum and minimum heart rate and RR 

interval.  

 

Since the HRV time-domain features influenced the model 

heavily, only the HRV time-domain features (n=18) were 

utilized with the initial classification pipeline. This 

optimized algorithm was capable of classifying pain at an 

accuracy level of 78.7% with 85% sensitivity and 73% 

specificity. Finding the optimal balance between model 

complexity and performance ensures that the model can run 

efficiently when deployed and minimizes the potential for 

overfitting. 

 

The pain algorithm was then integrated with a flight-

approved smartwatch (Garmin fēnix 5) and mobile 

application for classification in real-world environments. 

Field data collection is currently underway with the 56th 

Training Squadron at Luke Air Force Base (AFB) to 

determine classification accuracy and ruggedness in 

operational environments. Results will allow us to validate 

the accuracy between cardiovascular metrics derived using 

our algorithm and the gold standard approach. 

 

DISCUSSION 

The standard method for prediction of the absence and presence of pain has long been self-report. The current study 

shows the feasibility of creating an individualized, physiological classifier of pain with a high degree of accuracy and 

Figure 5. These four plots represent the features 

contributing most to the model. Each boxplot 

represents all of the subject’s epochs for the feature 

present. 
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compatible with a flight approved smartwatch. The use of such an algorithm in the fighter pilot community may allow 

for early pain detection to help augment rehabilitation and enhance pilots’ treatment decisions. Given the large number 

of individuals in the fighter pilot community that experience musculoskeletal pain and the unmet need for detecting 

pain, such an algorithm can have the potential to augment treatment. Current approaches to provide preventative care 

for pilots for early management of neck and back pain has been centered around increasing physical therapy efforts 

and wellness personnel. There is a unique opportunity to implement an algorithm that can collect, analyze, store and 

present objective pain data.  

 

A number of previous groups have reported physiology-based approaches to pain classification, but such approaches 

generally require the use of laboratory equipment or controlled settings. For instance, one group leveraged fMRI data 

and support vector machines (SVMs) to develop an algorithm of pain with 81% accuracy (Brown et al. 2011). Another 

group reported an electroencephalography (EEG)-based algorithm of pain by analyzing 64 channels of EEG data with 

an accuracy of 80% (Huang et al. 2013). Another group leveraged blood volume pulse (BVP), ECG, and skin 

conductance level (SCL) to create a pain classifier with a 75% accuracy  (Chu et al. 2017). The current effort was able 

to achieve comparable accuracy by leveraging cardiovascular sensors from emerging wearable fitness devices.  This 

also represents the first effort to provide a fully fieldable solution which does not require controlled laboratory 

conditions.  

 

Classification of pain was based on features gathered from a user group that underwent a pain induction task (CPT), 

which is considered a reliable experimental method for controlled pain induction (Mitchell, MacDonald, and Brodie 

2004) and is currently being validated with USAF pilots to determine classification accuracy and ruggedness in 

operational environments. Pain classification was based on cardiovascular inputs and variance due to individual 

differences was addressed by individual baseline normalization. The current classifier is a binary output signaling if 

an individual is in pain or not in pain. Future work will focus on reporting pain on scale to show the level of pain that 

an individual is experiencing.  

 

Future research efforts will be to integrate the pain classification algorithm with a broader class of algorithms such as 

stress and fatigue that can be utilized within the fighter pilot community. Raw physiological data, including blood 

volume pulse, electrodermal activity, temperature, and movement data, can be processed in real time to present 

objective stress of a fighter pilot (Chadderdon et al. 2014; Winslow et al. 2016). This stress algorithm  can be used to 

keep tabs on the mental strain faced by fighter pilots during training, operations, and outside of work, thereby 

contributing to a holistic wellness approach. Additionally, by utilizing a combination of sleep (actigraphy) data from 

wearable sensors, self-reported information such as caffeine intake, and a game-based cognitive assessment, there is 

the capability to predict an individual’s current and future mental and physical fatigue over the next 72 hours 

(Winslow, Nguyen, and Venta 2017).  A valid assessment of current and future mental/physical fatigue could be used 

to adjust fighter pilot training and mission schedules, inform optimal times for fatigue interventions, and support a 

more personalized rehabilitation regimen (Strahler et al. 2016). Combining pain, stress, fatigue algorithms allows for 

a more holistic, individualized approach to pilot wellness. 

 

Pilot health and readiness are critical to success of the squadron and to meet the overall mission of the unit. Within 

the aviation community, pilots are either in an “UP” status and able to fly or in a “Medically Down” status and unable 

to fly due to injuries or illness. There is a concern of pilot acceptance to wearing a physiological sensor that provides 

an output on the level of pain they are experiencing that is accessible by their medical staff. To combat this, the data 

must be utilized as an identifier to enhance the individual pilot’s physical training and physical therapy program and 

not utilized as a tool to downgrade or bypass the pilot’s own assessment of their physical state. Utilizing physiological 

sensors to monitor a pilot’s level of pain can positively impact the fighter pilot community by providing valuable data 

to the medical staff and leadership. The capability to identify trends associated with pilots showing variable signs of 

pain throughout the training curriculum, down to specific maneuvers or duration in flight, can provide highly valuable 

data to the medical staff and human performance teams. This data can allow the training staff to modify their physical 

therapy routines and adjust their strength and conditioning programs for the individual pilot.  
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