Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

Designing a Deep Learning and Computer-Vision Based Autonomous Vehicle
Within a Multimodal Traffic Simulation Framework

Vijay Kalivarapu, Adam Kohl, Jack Miller, Eliot Winer
lowa State University
Ames, 1A
vkk2@iastate.edu, adamkohl@iastate.edu, jackm@iastate.edu, ewiner@iastate.edu

ABSTRACT

In 2014, the industry had invested approximately $167 million into Autonomous Vehicle (AV) technologies and
research. By 2019, these investments totaled more than $100 billion. The Pentagon’s 2020 fiscal year budget proposal
included $3.7 billion for research and development of unmanned and autonomous technologies. Studies show that
52% of battlefield casualties occur when soldiers deliver food and other supplies in combat zones. AVs offer the
potential to mitigate such risks and save lives substantially. However, AVs must be tested in a multitude of scenarios
before they are practically viable for military and civilian applications. Physical AV data for testing is generally
unavailable from commercial or military entities due to proprietary or security concerns. This makes simulations a
feasible alternative to study them. However, creating AV simulations with the fidelity, scalability, and customization
comes with several research questions such as 1) How can AVs be trained for autonomous driving? 2) How can
communication be established between different traffic management subsystems? 3) How can multi-user coordination
and collaboration, in such an environment, be achieved?

A three-component visualization framework was developed to answer the above questions. First, multiple virtual
autonomous vehicles were trained using machine learning techniques to drive within a specific road intersection
scenario. Second, these virtual AVs were introduced to physical agents such as cars and bike riders. Third, the driving
states of the physical agents and the AVs were synchronized using a client-server architecture with a traffic simulator
that probabilistically generated vehicle and pedestrian traffic. The AVs and the physical agents appear as entities
within the traffic simulator to which the generated traffic computes responses and are network synchronized to form
a multimodal traffic simulation system collectively. Results from implementing and testing this framework in multiple
scenarios show that adequately trained AVs can serve as a crucial first step, a proof-of-concept validation, for
developing military and civilian AV applications.

ABOUT THE AUTHORS

Vijay Kalivarapu, Ph.D., is a staff research scientist at the Virtual Reality Applications Center, lowa State University.
Dr. Kalivarapu has extensive experience in Virtual Reality, 3D Computer Graphics, and Design Optimization.

Adam Kohl is a Ph.D. candidate in Mechanical Engineering Computer Engineering at ITowa State University’s
Virtual Reality Applications Center. His research interests include the development of pattern recognition techniques
and supervised methods for engineering applications.

Jack Miller is a Ph.D. candidate in Computer Engineering and Human-Computer Interaction at the lowa State
University’s Virtual Reality Applications Center. His current research interests include exploring multi-user
experiences in virtual and augmented reality environments, specifically for traffic simulation.

Eliot Winer, Ph.D., is the director of the Virtual Reality Applications Center and professor of Mechanical
Engineering, Electrical and Computer Engineering, and Aerospace Engineering at lowa State University. Dr. Winer
has over 20 years of experience working in virtual reality and 3D computer graphics technologies on sponsored
projects for the Department of Defense, Air Force Office of Scientific Research, Department of the Army, National
Science Foundation, Department of Agriculture, Boeing, and John Deere.

IITSEC (2020) Paper No. 20455 Page 1 of 14

mailto:vkk2@iastate.edu
mailto:adamkohl@iastate.edu
mailto:jackm@iastate.edu

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

Designing a Deep Learning and Computer-Vision Based Autonomous Vehicle
Within a Multimodal Traffic Simulation Framework

Vijay Kalivarapu, Adam Kohl, Jack Miller, Eliot Winer
lowa State University
Ames, 1A
vkk2@iastate.edu, adamkohl@iastate.edu, jackm@iastate.edu, ewiner@iastate.edu

INTRODUCTION

The Defense Advanced Research Projects Agency (DARPA)’s $1 million grand challenge in 2004 called for a
driverless car competition to autonomously drive 132 miles of terrain in the Mojave Desert region within 10 hours
(Behringer, R, 2004). While there was no winner to claim the prize, the team from Carnegie Mellon University traveled
the furthest — 7.3 miles. This event jumpstarted the careers of many experts and companies, resulting in a $100 billion
commercial Autonomous Vehicle (AV) industry by 2019. In February 2019 alone, there was a $1.6 billion investment
in AV companies for civilian applications (Demaitre, E, 2019). The benefits of autonomous technologies for civilian
applications are very tangible. Fewer traffic congestions with improved safety, decreased driver fatigue, lower
emissions, improved health, and higher demand for new jobs are just some of the outcomes attributable to AV
technologies in the civilian sector.

Further, there is a pronounced interest in developing AV technologies in the US military. The Pentagon’s 2020 budget
proposal of $3.7 billion in research and development of ‘unmanned and autonomous technologies’ serves as credible
evidence that the US military is paying attention to these technologies for various battlespace applications (Muller, J,
2019). Reports and studies show that 52% of battlefield casualties occur when soldiers deliver food and supplies in
conflict and combat zones (United States Senate Committee on armed services transcript, 2018). It was theorized that
unmanned AVs with Al driving algorithms could substantially mitigate risks and save lives. However, detailed
intelligence, including road maps in war zones, are not always readily available or can change within a short period
of time. Additionally, road signs, if available, are prone to be damaged and can be misleading. These constraints,
which typically do not exist in civilian applications, make the development of AV technologies for military
applications a multifold challenge.

Regardless of civilian or military applications, the development of AV technologies requires substantial testing in a
multitude of scenarios before they are practically viable. Testing AVs during their development within live traffic on
US road systems is impractical due to safety reasons. Similarly, AV testing in combat zones can be chaotic and
dangerous. However, simulations of AVs are repeatable, and conditions can be controlled to mimic real scenarios,
making them a practical and safer alternative. The work presented in this paper demonstrates the design of an AV in
a multimodal traffic simulation framework, with several generalized research questions addressed, such as:

- How can AVs be trained for autonomous driving in a simulated driving environment?
- How can communication be established between different traffic management subsystems?
- How can multi-user coordination and collaboration, in a simulated driving environment, be achieved?

The remainder of the paper is organized as follows: First, the background literature of companies and organizations
developing civilian and military AVs is presented. Then, a list of commercial/open-source traffic simulator and AV
simulator applications are summarized. A literature review of applications used for simulation and testing of AV
algorithms will also be discussed, followed by a general procedure on how AVs are trained and integrated into traffic
simulator programs. The methodology section will include the architecture designed and created for a collaborative
client-server traffic simulation environment, including how AVs were trained and deployed within it. Two test cases
for single and three-lane roads are then discussed, followed by results and conclusions.

IITSEC (2020) Paper No. 20455 Page 2 of 14

mailto:vkk2@iastate.edu
mailto:adamkohl@iastate.edu
mailto:jackm@iastate.edu

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

BACKGROUND
Prior AV Work

Although AV technologies gained prominence in recent years, the
research areas is not new. The first reported instance of an unmanned
vehicle dates back to 1925 in New York, where Francis Houdina
modified a 1926 model Chandler car equipped with a transmitter
antenna, as seen in Figure 1 (Green, H., 1925). In 1957, the company
RCA embedded detectors within a patch of 400-ft road on US 77
highway in Nebraska to send impulses and guide a Chevrolet car as it | i |
drove by (Hicks, N., 2017). Figure 1. Driverless car from 1925

The first AV to use cameras was the Autonomous Land Vehicle (ALV) from the US
government’s Strategic Computing Initiative in the 1980s. It was built by Martin
Marietta (now merged to become Lockheed Martin) and the University of Maryland
through DARPA funding, and is shown in Figure 2 (Leighty, R, 1986) (Waxman,
A. 1987) (Lockheed Martin) (Paleofuture, 2007).

Although there were other lesser-known US federal government initiatives in the
late 1980s and 1990s (Dhawan, C., 2019), breakthroughs in AV development did
not occur until the 2000s. In addition to the DARPA grand challenge of 2004, which
did not yield any winners, the 2005 challenge resulted in five winners that
. successfully were able to complete the autonomous driving course. LiDAR and
Figure 2. Auto_nomous Land computer vision techniques were extensively used in the completion of the

Vehicle challenge (Behringer, R., 2005). In 2007, Carnegie Mellon University was able to
modify a Chevy Tahoe to complete the DARPA grand challenge (Markoff, J., 2007). Several participants from these
challenges built the Google self-driving car in 2008 (Birrsall, M., 2014). The project, now re-branded as Waymo
(Waymo, 2020), performs active research in developing self-driving cars these days. Companies such as Uber (Uber,
2020) and Tesla (Tesla, 2020) are much invested in developing AVs for civilian applications. Pratt Miller Defense
(Fontaine, J. 2020), Oshkosh defense (Oshkosh Defense, 2020), and Lockheed Martin (Lockheed Martin, 2020) are
notable companies among others that cater to the development of AVs in the military sector.

Traffic Simulators and AV Simulators

Traffic simulators, as the name indicates, mathematically model transportation systems, including items such as
freeways, intersections, arterial routes, and roundabouts. These simulators are used in road traffic analysis and
simulation of urban mobility. Traffic simulators are typically classified as macroscopic, microscopic, and mesoscopic.
Simulations in macroscopic models usually take place on a section-by-section basis instead of tracking individual
vehicles. Traffic modeling in transportation subnetworks such as freeways and surface-street grid networks belong to
this category. Microscopic models simulate and track the movement of each vehicle and incorporate vehicle-to-vehicle
interactions. Mesoscopic models combine macroscopic and microscopic models. AVs can be integrated within a traffic
simulator to behave just as another entity generated by the simulator. These traffic simulators offer extensive features
in addition to generated vehicle traffic such as road lane lines, signals, traffic lights, pedestrians, etc. Several
commercial and open-source programs provide such functionality. Although not exhaustive, Table 1 shows a
representative list of surveyed and available traffic simulators along with their capabilities.

Table 1. Off-the-shelf traffic simulators and their capabilities

SUMO MATSim VISSIM AIMSUN Paramics
32- & 64-bit 64-bit
Architecture (Wi_ndows, 3_2- & 64- Q4-bit (Wi_ndows, 32- & 64-bit
Linux, bit (Linux) (Windows) Linux, (Windows)
macOS) macQS)
Cost Open-source gﬂ?gé Commercial Commercial Commercial

IITSEC (2020) Paper No. 20455 Page 3 of 14

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

Simulator model Microscopic Mesoscopic Microscopic Microscopic ~ Microscopic

Network TCP -NA - COM TCP TCP
communication
31 party Simunto
visualization Unity3D Via, Unity3D -NA - -NA -
support OTFVis
Programming Cit Java C++, Python, Cit Cit
Language Matlab
(Krajzewicz,
D. 2002) (Horni, A. (Fellendorf, (Casas, J. (Cameron, G.
Reference .
(Behrisch, 2016) M. 2010) 2010) D. 1996)
M. 2011)

Only a few of the surveyed traffic simulators support the integration of an AV entity controlled by an external program.
For example, the VISSIM traffic simulation software, from the PTV group, can embed up to 1000 externally connected
vehicle entities such as physically rigged cars, bikes, or AVs. Driving parameters such as steering and throttling from
these external entities can be sent via a Component Object Model (COM) protocol, and are simply recognized and
computed as new interactable traffic entities within VISSIM.

AV simulators such as CARLA (Dosovitskiy, A. 2017), Microsoft AirSim (Shah, S., 2018), and the NVIDIA DRIVE
Platform (NVIDIA DRIVE Platform, 2020)/NVIDIA DRIVE constellation (NVIDIA DRIVE Constellation, 2020),
Gazebo (Gazebo, 2020) help facilitate autonomous driving research. Most of these simulators provide a platform for
algorithmic development, training, and validation of autonomous urban driving systems. Additionally, they offer other
capabilities that distinguish one from another. For example, the NVIDIA DRIVE Platform includes a standalone in-
vehicle hardware capable of integrating vehicle sensors and processing images. Combined with software and deep
neural network training, the platform is capable of generating driving controls for an AV in real-time.

Most physical self-driving cars in their development use sensors such as cameras, radars, and LiDARS to sense the
surrounding world. Images and data captured from these sensors are processed using a combination of GPS
information, computer vision, and machine learning techniques, in real-time, to identify objects such as vehicles, road
lanes, pedestrians, etc. For example, Waymo uses a map-based approach to achieve full self-driving capabilities,
whereas Tesla uses a vision-based approach (Alvarez, S., 2020). A reality of this research area is that no matter what
approach is used, it is impossible to build a system that will not fail under some circumstances (Davies, A. 2019).
Hence, regulatory hurdles prevent companies from incorporating full self-driving autonomy. Several commercial
companies such as Acura, Audi, BMW, Cadillac, Subaru, and others offer partial self-driving capabilities such as lane
assist and centering, hands-free steering, and adaptive cruise control features (Mays, K. 2019). The development and
implementation of partial or full-self driving features are proprietary and primarily business driven to maintain
commercial competitiveness. Hence, algorithms and data are mostly unavailable outside of companies for further
research, analysis, and development. As such, academic research requires code implementation, often times, from the
ground up.

In a simulated AV, virtual cameras mounted on top of the vehicle perform the role of the image capturing. These
images are processed exactly like the images from a real self-driving car. When a simulated AV is placed amidst
vehicle traffic generated from a traffic simulator application like VISSIM, the system functions as a physical self-
driving car in the real-world. The work presented in this paper uses this approach.

METHODOLOGY

System Architecture

The system architecture for integrating AVs and traffic simulators into a multimodal traffic simulation is shown below
(See figure 3). It was designed and created for this research.

IITSEC (2020) Paper No. 20455 Page 4 of 14

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

Server receives and Unity3D based Multi-
broadcasts state player scenario
changes AN

| Bike Slatlon

Trafﬁc “ P ﬁ
o ! Driving station 1

smulator / — : J
4 7 i Driving station 2

workers
First
responders
Autonomous vehicles 1, 2, .

Figure 3. Multimodal Traffic Slmulatlon Framework Architecture

i
!
l
l 2
! -
I L ’,"
VISSIM — 1
\ ,x’ Pedestrians

As the figure portrays, the architecture has three components: a) a traffic simulator, b) a server that does bi-directional
broadcasting of state changes and c) clients that represent physical vehicle rigs and AVs. The client-server
implementation was made using the game engine Unity, which also doubles as the visualization platform on desktop
and virtual reality environments. For a given driving environment such as an urban neighborhood or a highway, an
equivalent computational road network was constructed within VISSIM. This road network was then used to generate
vehicle and pedestrian traffic entities in VISSIM. The states of each vehicle entity were sent to the Unity server. The
server then broadcasted these updates to each client. The clients themselves are self-aware of their position and
direction, so, for example, a bike rider can automatically track the location of an AV within the scenario. The driving
states (i.e., position and orientation) of the clients are sent to VISSIM via the Unity3D server every frame. These client
states are processed and computed by the traffic simulator as new entities within VISSIM.

AV Design

The AV implementation was performed on a single lane road and a three-lane highway, with no other vehicle or
pedestrian traffic. This was primarily intended as the development of a proof of concept machine learning model using
supervised and imitation learning approaches that results in an AV staying true to the road track without showing any
abnormal behavior. The Python programming language, along with its suite of data analysis and machine learning
modules, was used in building the trained model. Aspects such as other vehicle traffic, pedestrians, and traffic signs
were not implemented.

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected

, \') | 1 d
o 1 og (0.01)
bird (0.02)
. B ti FHHHEY flamingo(0.04)
. = r =3
e Lo Yt A i ® = 4l © . cat(0.93)

Figure 4. A Simple Convolutional Neural Network Pipeline
(Figure courtesy: github.com)

Deep learning using Convolutional Neural Networks (CNN or ConvNets) was implemented in training the AV. CNNs
are a special category of Artificial Neural Networks (ANN) that are highly effective at image recognition and
classification (Hijazi, S., 2015). These include features such as faces, objects, traffic signs, and road lanes — the
building blocks for implementing an AV. CNNs can recognize useful patterns within images by understanding relevant
spatial structure that describes them as well as require fewer parameters than traditional ANNs. The primary structure
of a CNN pipeline includes an input layer, convolutional layers, pooling layers, fully-connected layers (also called
dense layers), and an output prediction layer. Figure 4 shows a simple CNN pipeline where the pixel values of an

IITSEC (2020) Paper No. 20455 Page 5 of 14

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

input image of an animal are passed through convolution, pooling, and fully connected layers before predicting the
probability of the animal type belonging to a specific class. The CNNs differ from regular neural networks due to the
‘Convolution’ layer within the pipeline.

The goal of the convolutional layer is to extract and learn specific image features that help classify an image. For an
input image, each pixel corresponds to an input node that will be processed by a convolutional filter called the kernel
(also called a kernel matrix or a filter or a feature detector). The kernel matrix consists of integers and is generally
small in spatial dimensionality (e.g., 3 x 3). Convolution is performed by sequentially sliding the kernel at every
location on the input image by a specific stride length. With a stride of 1, the convolution is achieved by sliding the
kernel filter one pixel at a time. During convolution, every cell in the kernel matrix is multiplied element-wise by a
corresponding pixel value in the input image, and a summation of values is performed (i.e., a dot product). The result
is averaged and stored in a ‘convolved map’

or a ‘feature map’. A larger stride length will I = | =
result in a smaller feature map, and the o e o |10 [61 | ass
feature extraction will be less accurate. R = | 15 |1 &1 | ass
Figure 5 shows an |Ilustrat|_on o_f the 0 T 100 255 — OKem;Matri?(o1 | a5
convolut_lon process, where_ an |_nput image 200 | 100 | 255 | 255 f o1 | a5
has a mix of gray and white pixel values. 200 | 100 | 255 | 255 ((2,{11%%,) +((.51x113&)+(((:x€55?) ' TR
H H H -1x +(5x + (-1x + - .

Upon applying the kernel matrix to the first 200 | 200 | 255 | 255 (0x100) + (-1x100) + (0x255) = -56 o1 | s
set of 3x3 pixels in the input image and }

. . . . 100 100 | 255 255 A . 55/9 = -6.1 —— Feature Map
performing a convolution, the first cell in the Input Image verage: -o%/9 = 5.

feature map resulted in a -6.1. An analogy of i)
this process can be made to feature Figure 5. CNN Convolution Process

extraction in images captured by a camera on

an AV, where a value of -6.1 indicates the feature is an asphalt road, and a value of 45.5 indicates white road lines.
The convolution operations make distinctive image features stored in a numerical format. In this example, the feature
map was able to extract a specific feature of interest, which is to show the distinction between lower and higher pixel
intensity while preserving all the image features. The feature map output will change for different kernel filter values.
For example, the kernel matrix in Figure 6 is used for performing image sharpening. With different kernel matrix
values, various features maps such as edge detection, gaussian blur, and box blurs can be constructed. The pooling
layer in the CNN pipeline acts to shrink the image stack by reducing the dimensionality of the representation of each
feature. This layer reduces the computational complexity of the model and avoids overfitting the model, while still
retaining the significant characteristics from within the feature map. A series of convolutional and pooling layers
further help filter the image and extract essential features. With a deeper CNN, feature maps become visually
unrecognizable, but more complex patterns get encoded into the model that helps identify the input image class.

L]
[R .
Cat

(0.93)

s

While the combination of convolution and pooling in the first part of the
CNN pipeline performs feature extraction, the second part of the CNN is .
a fully connected layer that performs feature classification. The output
from the convolution and pooling layers are flattened into a 1-D array of .
pixels. They serve as an input to the fully connected network, where each .
pixel corresponds to a node in the input layer (Figure 6). The fully

connected network processes these features and computes the final .

/1

Flamingo
(0.04)

probability of the class that an input image belongs to. . A .
In the work presented in the paper, two different networks were created: Fully Cannected Layer Output Layer
a) A 9-layer network with five convolutional layers and four fully- Figure 6. Feature Classification

connected (dense) layers without batch normalization and b) A 14-layer

network with five convolutional layers, each with corresponding batch normalization, followed by four dense layers.
Batch normalization (loffe, S., 2015) is typically used in improving the performance and stability of a neural network.
The normalization process re-centers and re-scales the input layer, i.e., the convolutional layer preceding it, in this
case. Both these networks were used for training the AV on a single lane and a three-lane road track.

Data was captured as the car was manually driven three times each in a clockwise and counterclockwise direction
along the outer perimeter of the road track. Driving both directions yielded non-zero steering values for both left and

IITSEC (2020) Paper No. 20455 Page 6 of 14

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

right turns. A histogram of steering angles between -1 and +1, centered around a steering angle of 0, grouped into 25
bins is shown in Figure 7a. A high value for a zero-steering angle in the figure indicates that the car was predominantly

4000

driving a straight path with only occasional left

3500
3000
2500
2000
1500
1000

500

1000

800

600

400

200

or right steering. Too many data points with
zero steering angle could potentially result in a
trained AV to be biased in driving straight
regardless of the track. However, the road track
used for training and deployment were
identical, making the straight path dominance

0
-1.00 -0.75 -0.50 -0.25 000 025 050 075 100

Figure 7. (a) Straight path bias in data captured
(b) Straight path dominance reduced

in the trained model a potential benefit. Hence,
two training models were developed, one with
straight path dominance without any outlier
removal, and another with reduced straight

-0.25 000 025 050 075 100

path dominance. The bias was reduced by removing excessive zero-steering data points while keeping a reasonable
straight path dominance (see Figure 7b). Of the ~5,900 data points captured overall for training, ~3,000 were retained

after straight path bias removal. In
both cases, the datasets were split
80%-20% for training and
validation. The distribution of
steering angles for the training and
validation datasets for reduced
straight path dominance is shown
in figure 8, which indicates that
there is approximately equal
representation of left and right
steering angles in the data.

Training set validation set

1400 350

1200 300
1000 250
800 200
] 150

400

ol AN N I‘

200
-1.0 -05

Figure 8. Histograms (a) Training dataset, (b) Validation dataset

100

|I- n_mm 0
05

50
10

-1.0 -05

|I- m _mm
05

00 00 10

The captured left, center and right images were pre-processed to prevent any additional data bias. Image augmentation

Original Image

(a) Captured |mage (b) Zoom augmentatlon ‘

Original Image

(b) Captured |mage (d) Pan augmentatlon

Original Image

(e) Cabturedv‘image, (f) Cropped image
Figure 9. Image Augmentation Techniques

techniques such as random zoom, pan, flip,
brightness alteration were implemented at a
0.5 probability for all captured images to
increase diversity in the dataset resulting in a
more robust model. This prevents the
likelihood of the AV drifting off-road and
creates the effect of input images being in
various offsets from the center lane. The
purpose of these artificial offsets is to make
the neural network more robust so that it can
recover from a poor position or orientation
more quickly and in a broader range of
circumstances. The images were further auto-
cropped to only keep relevant road data and
remove cultural data such as the sky and the
surrounding neighborhood. Figure 9 (a — f)
shows a series of augmentation techniques
applied to the input images. A multi-layer
convolutional neural network, proposed by
NVIDIA (Bojarski, M., 2016) was
implemented for building the machine
learning model. This method is based on the
CNN pipeline described earlier and provided
an architecture specifically designed for
predicting AV steering values. In this method,

the weights of the network were trained to minimize the mean squared error between the steering data from manual
trained data/augmented images and the steering values created by the network.

IITSEC (2020) Paper No. 20455 Page 7 of 14

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

TEST CASE SETUP

Figure 10 illustrates the scenario used for
testing. The training process for the AV
included capturing images from three forward-
facing virtual cameras positioned left, center,
and right on top of a car. As the car was
manually driven along the desired path within
the scenario, images from the cameras and
various driving parameters (steering, throttle,
reverse, and speed) were captured every frame.
The goal was to predict the steering value
(independent variable), given a single center
camera capture mounted on the virtual AV
Figure 10. Aerial view of test road track and the training (dependent variable). Clockwise or
car on single and three lanes counterclockwise, the track has four exits
leading to the town’s local neighborhood and
four exits leading outside of the region. Also, given the size of the track compared to the AV, much of the test track
is a straight path with only occasional left- or right-turns. As such, it became necessary to investigate the influence of

zero-steering straight path bias in the trained AV, as discussed earlier.

On the other hand, batch normalization, as discussed in the methodology section, adds computational time to build a
machine learning model and hence make steering predictions. However, it is unclear how much value it will add for
the test case set up. To investigate the influence of batch normalization, two sets of test cases were developed, one
with and another without batch normalization. For each AV deployed on single- and three-lane roads, the following
metrics were evaluated: i) model training time, ii) lane deviations, iii) incorrect exiting onto a local road, iv) accurate
path correction after deviation and v) staying on the road. A wall timer that measures elapsed time during the machine
learning model build was implemented to evaluate model training time. The metrics (ii) — (v) were visually assessed
by a human for each test case three times as the AV auto navigated around the road track.

The AV on the single lane road was trained on a PC with an Intel i7 3.6 GHz processor, 32GB memory, and an
NVIDIA GeForce GTX 2060 GPU. The AV on the three-lane road was trained on a PC with an Intel i7 4.2 GHz
processor, 16GB memory, and an NVIDIA GeForce GTX 1070 GPU. The Python module Keras, an easily accessible
deep learning API built using Tensorflow, was used to create the AV machine learning models. Images cropped, as
seen in Figure 10f, at the end of the image augmentation technique were converted from RGB to YUV color space for
data processing. YUV colorspace allows for reduced bandwidth for chrominance components in the images and is
more efficient than RGB representation. Since the augmented dataset was reasonably large and potentially exhausted
system memory resources while creating a machine learning model, a fit generator was used in batches and not on the
entire dataset. Error minimization was performed on the training dataset over ten epochs using Python Keras’ Adam
optimizer (Kingma, D.P., 2014). Adam is a first-order gradient-based method used in the optimization of stochastic
objective functions. It is computationally efficient, has fewer memory requirements, and is a popular optimizer used
in the machine learning community.

The AV captured about 6,000 images during the training process. The batch generation strategy used created subsets
of 100 images each, from the training dataset, with a limit of 10 epochs (generations), and 300 steps (iterations) per
epoch. Trained AV models were tested using a drive controller, implemented in Python. The drive controller loaded
the machine learning model and calculated the steering angle for images received from the AV via socket
communications. The images themselves were captured from a virtual camera mounted top center of the AV facing
forward.

RESULTS AND DISCUSSION
The operating characteristics of the AV in both the single-lane road and three-lane highway were independent of each
other and not correlated. Hence, the evaluation metrics were conducted for each scenario independently and tabulated

(Tables 2 and 3). As stated earlier, the defined metrics (ii) — (v) were visually evaluated by a human for each test case
three times as the AV auto navigated around the road track.

IITSEC (2020) Paper No. 20455 Page 8 of 14

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

Table 2. Test scenario setup for single-lane AV (3.6 GHz CPU, NVIDIA GeForce GTX 2060)

Cases

With CNN batch normalization

Without CNN batch normalization

With zero-steering

Reduced zero- With zero-steering Reduced zero-

a local road?

Metrics bias steering bias bias steering bias

Model training time 22.1 minutes 22.3 minutes 20.6 minutes 20.5 minutes
Lane departures? No No No No

Did the AV exit into No No No No

Did the AV perform
path correction?

Did not stray

Yes, recovered from

the green grass area Did not stray

Did not stray

Did the AV wander
off?

No

No No No

Figure 11. AV on Single Lane:
(a) Auto steering at the center
(b) Leaning towards the left

It can be seen from Table 2 that the training time for the AV model built using
Convolutional Neural Network (CNN) with batch normalization took longer
than without batch normalization. This is expected because the batch
normalization process computes the mean and variance of each mini-batch of
data and normalizes each feature based on the mini-batch statistics, adding
more computational time. In each of the investigated cases within this
scenario, the AV consistently stayed on and successfully navigated the single-
lane road. In one instance with reduced zero-steering bias, however (i.e.,
reduced straight path dominance), the AV strayed from the single lane into the
grass area once, but instantly recovered from it and continued driving on the
single-lane road. Figure 11 shows screenshots of the AV auto-steer on the
single lane track. For this scenario, the AV did show an inclination to stay on
the left side of the road, indicating that the images with exits to the local
neighborhood might have factored in when determining the steering angle
during experimental runs.

Table 3 below shows the AV evaluation metrics on the three-lane highway
scenario. The mesh geometry for both the single-lane and three-lane scenarios
were identical. The only variation in the three-lane scenario was the road
texture with multiple lane markings, making it a distinctive scenario for the

AV training purpose. Four rounds of training were performed with/without CNN batch normalization, and
with/reduced zero-steering bias.

Table 3. Test scenario setup for three-lane AV (4.2 GHz CPU, NVIDIA GeForce GTX 1070)

Cases

With CNN batch normalization

Without CNN batch normalization

With zero-steering

Reduced zero- With zero-steering Reduced zero-

a local road?

Metrics bias steering bias bias steering bias
Model training time 48.5 minutes 47.9 minutes 45.7 minutes 45.8 minutes
Continuous S
Lane departures? fishtailing but F'Shta'!ed’ and None None
. deviated
stayed in the lane
Did the AV exit into No Yes No No

Did the AV perform

Corrected instantly

Instant correction

Eventually drove when the edge of

back to the 3-lane No correction

off?

path correction? lane marking required
road
reached
Did the AV wander No No No No

IITSEC (2020) Paper No. 20455 Page 9 of 14

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

Due to the use of a lower-powered GPU, the model training on the
three-lane highway was slower than the single-lane road. Training
without batch normalization, especially with reduced zero-steering
bias (i.e., reduced straight path dominance), resulted in very
smooth AV steering within the middle lane (i.e., no sudden path
corrections). The AV was trained while in the middle lane of the
three-lane highway. On the case with zero-steering bias (i.e., the
entire image dataset with all zero-steer angles), the AV stayed in
the middle lane but showed an inclination to drive straight until the
curve of the road was realized, before performing an instant
correction. Figure 12 shows the screenshot of the AV auto-steering
without CNN batch normalization, and with reduced zero-steering
bias.

Figure 12. AV trained without batch
normalization, reduced zero-steering bias

(b) Reduced zero-steering bias, (c) Reduced zero-steering bias,

(a) With zero-steering bias before taking exit after taking exit

Figure 13. AV with batch normalization

The results were interesting when batch normalization was implemented within the training process (Figure 13). With
the zero-steering bias case, the AV continuously fishtailed but stayed true to the middle lane that it was trained on,
with instant path correction (Figure 13 a). With reduced zero-steering bias (i.e., reduced straight path dominance), the
AV deviated from the middle lane and took the first left exit it encountered and drove into the local neighborhood.
During this stage, the AV stayed true to the asphalt road and never veered off into the grassy area or the houses (Figure
13 b and c). This behavior, exiting the highway, was unexpected, since batch normalization has traditionally been
attributed to improved speed, performance, and stability of artificial neural networks. In an ideal network, the global
mean and variance would be a preferred feature to normalize the inputs to a layer. However, it is computationally
expensive to arrive at these values after each update in the network. Hence, the mean and variance are estimated using
mini-batch statistics. When using reduced zero-steering bias (i.e., reduced straight path dominance), the statistics for
each mini-batch significantly differed from the others due to the loss of some straight path data. It was theorized that
this caused the AV to veer and proceed toward the first exit it found. The AV departure from the middle lane with
zero-steering bias was much less pronounced because the mean and the variance for each mini-batch was influenced
by a larger set of straight path zero-steer values than the one with reduced zero-steering bias. This is an outcome that
certainly requires further investigation and future work.

Given the four cases on the three-lane highway scenario, the model without CNN batch normalization and reduced
zero-steering bias showed the most stability and accuracy. This AV model was hence considered for implementation
within the overall traffic simulation framework.

AV Within a Traffic Simulator Framework

The traffic simulator VISSIM used in this research is capable of probabilistically generating thousands of vehicles
within a road network. Each vehicle VISSIM created is capable of auto navigating based on the rules stipulated by its
computational environment. VISSIM supports the integration of external vehicles within its traffic network if their
positions and orientations are communicated in a specific format using a COM server architecture. The program can
also transmit the position and orientation of every vehicle it generates via the same COM server protocol to third-
party applications. These vehicles are not AVs as VISSIM is aware of what every vehicle is doing across the entire
simulation and can provide position and orientation updates to all to avoid collisions or other unintended possibilities.

IITSEC (2020) Paper No. 20455 Page 10 of 14

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

The position and orientation information of all VISSIM
entities was captured in real-time and used within a Unity
visualization application. The developed AV model was
integrated into the Unity client, whose data was network
communicated to VISSIM using the system architecture
described in the Methodology section (Figure 3). Figure 14
shows the integration of VISSIM traffic relayed to the Unity
AV client through the Unity server. Both the clients and server
were created in this research. The AV, identified by an oval
around it, was made to auto-navigate on the three-lane
highway, while VISSIM generated the vehicles seen in the vicinity.

Figure 14. Integration of AV within VISSIM
traffic simulator

It is to be noted that the VISSIM generated traffic was aware of the AV in its road network, except that its position
and orientation was controlled by a machine learning model loaded by a Python drive controller externally. However,
the AV was unaware of any traffic since it was trained only on an empty road. Therefore, as expected, the vehicles

(a) VISSIM vehicles veer around the AV (b) AV runs into a VISSIM vehicle
Figure 15. Artifacts of AV aware VISSIM traffic but not vice-versa

generated by VISSIM were able to veer around the AV (Figure 15a). However, the AV itself ran through VISSIM
vehicles that stopped at a traffic intersection (Figure 15b). Figure 15a is a representative image showing that none of
the VISSIM vehicles ran into the AV since the program was aware of its position and orientation. However, as seen
in Figure 15b, the AV ran into a stopped VISSIM vehicle because it was not trained to veer around an existing vehicle.
The behavior of the AV in such situations was undefined. It produced effects during ad-hoc testing, such as the AV
deviating from the road path and veering into the green grass area before correcting its path back to an empty road
section. Ideally, computer vision techniques should be used in conjunction with a machine learning model to make
the AV aware of its neighborhood that includes other vehicles, pedestrians, and traffic lights. While these situations
were not accurate, they were expected. However, they do not diminish the accomplishment of a trained AV in a large,
multimodal simulation.

CONCLUSIONS AND FUTURE WORK

The scenarios presented in the paper showed the development and deployment of an AV in a simulated urban
neighborhood. The results demonstrated that the AV is capable of auto navigating on a track trained for deployment
using simple virtual RGB cameras — three for training, and one for deployment. This means that a limited set of
hardware was sufficient, in conjunction with an advanced deep learning model, to correctly steer an AV on a one and
three lane simulated roadway. Although the AV was implemented on an empty road (i.e., no other traffic or
pedestrians), the work presented in the paper is a proof of concept pre-work for a fully developed machine learning
model to recognize other vehicles, road signs, and pedestrians within a realistic traffic simulation framework. This is
one of the next tasks to be completed in future work. Another area for future work is to quantifiably investigate the
influence of CNN batch normalization in determining the steering angle.

This work can readily be extrapolated to military applications, where a battlefield scenario can replace the urban
neighborhood scenario. An army vehicle such as Humvee can be trained to auto-steer in the scenario with or without
CNN batch normalization. When the battlefield road path is predominantly straight with no unexpected curved paths,
it is recommended that reduced zero-steer bias be implemented for training. On the other hand, if the battlefield road
path is curvy, it is recommended that the training be implemented with zero-steer bias.

IITSEC (2020) Paper No. 20455 Page 11 of 14

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

ACKNOWLEDGMENTS

The authors would like to thank the Turner-Fairbank Highway Research Center for providing funding support on the
project. Project support from the Institution of Transportation at lowa State University is appreciated.
REFERENCES

Alvarez, S. (2020). Tesla’s controversial vision-based full self-driving approach is finally paying off. Retrieved June

21, 2020. Retrieved from https://www.teslarati.com/tesla-autopilot-full-self-driving-vision-based-approach-
validated-video/

Behringer, R., Sundareswaran, S., Gregory, B., Elsley, R., Addison, B., Guthmiller, W., Daily, R., Bevly, D., (2004).
The DARPA Grand Challenge — Development of an Autonomous Vehicle, IEEE Intelligent Vehicles Symposium,
Parma, Italy, pp. 226-231, DOI: 10.1109/1VS.2004.1336386.

Behringer, R., Travis, W., Daily, R., Bevly, D., Kubinger, W., Herzner, W., & Fehlberg, V. (2005, September).
RASCAL -an autonomous ground vehicle for desert driving in the darpa grand challenge 2005. In Proceedings. 2005
IEEE Intelligent Transportation Systems, 2005. (pp. 644-649). IEEE.

Behrisch, M., Bieker, L., Erdmann, J., Krajzewicz, D. (2011). SUMO-simulation of urban mobility: an overview. In
proceedings of SIMUL 2011. The Third International Conference on Advances in System Simulation. ThinkMind.

Birdsall, M., (2014). Google and ITE: The Road Ahead for Self-Driving Cars. Institute of Transportation Engineers,
ITE Journal, May 2014; 84, 5: ABI/INFORM Global

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L.D., Monfort, M., Muller, U.,
Zhang, J. and Zhang, X. (2016). End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316.

Cameron, G. D., Duncan G. I. (1996). PARAMICS - Parallel microscopic simulation of road traffic. The journal of
supercomputing, 10(1), pp. 25-53.

Casas, J., Ferrer, J. L., Garcia, D., Perarnau, J., Torday, A (2010). Traffic simulation with aimsun. In fundamentals of
traffic simulation (pp. 173-232). Springer, New York, NY.

Davies, A. (2019). Tesla’s latest auto-pilot death looks just like a prior crash. Retrieved June 21, 2020 from
https://www.wired.com/story/teslas-latest-autopilot-death-looks-like-prior-crash/

Demaitre, E., (2019). Driverless investment tops $1.6B so far this month. Retrieved May 22, 2020, from
https://www.therobotreport.com/driverless-investment-high-valentines/

Dhawan, C. (2019). Autonomous Vehicles Plus: A Critical Analysis of Challenges Delaying AV Nirvana. FriesenPress,
ISBN: 9781525539848.

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V. (2017). CARLA: An open urban driving simulator.
arXiv preprint arxXiv: 1711.03938.

Fellendorf, M., Vortisch, P. (2010). Mircoscopic traffic simulator VISSIM. In fundamentals of traffic simulation (pp.
63-93). Springer, New York, NY.

Fontaine, J. (2020). Pratt Miller Defense Provides Robotic Platform for Army Evaluation. Retrieved May 24, 2020,
from https://www.prattmiller.com/news/article/524

Gazebo (2020). Gazebo Vehicle and City Simulation. Retrieved Jun 22, 2020 from http://gazebosim.org/blog/car_sim

IITSEC (2020) Paper No. 20455 Page 12 of 14

https://www.teslarati.com/tesla-autopilot-full-self-driving-vision-based-approach-validated-video/
https://www.teslarati.com/tesla-autopilot-full-self-driving-vision-based-approach-validated-video/
https://www.wired.com/story/teslas-latest-autopilot-death-looks-like-prior-crash/
https://www.therobotreport.com/driverless-investment-high-valentines/
https://www.prattmiller.com/news/article/524
http://gazebosim.org/blog/car_sim

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

Green, H., (1925). Radio Controlled Automobile. Electronic World Magazine. Retrieved June 17, 2020, from
http://www.americanradiohistory.com/Archive-Radio-News/20s/Radio-News-1925-11-R.pdf

Hicks, N., (2017). Nebraska Tested Driverless Car Technology 60 Years Ago. Lincoln Journal Star, Sep 13, 2017,
Page Al. Retrieved June 17, 2020, from https://journalstar.com/news/local/govt-and-politics/nebraska-tested-
driverless-car-technology-60-years-ago/article_a702fab9-cac3-5a6e-a95¢-9b597fdab078.html

Hijazi, S., Kumar, R., & Rowen, C. (2015). Using convolutional neural networks for image recognition. Cadence
Design Systems Inc.: San Jose, CA, USA, 1-12.

Horni, A., Nagel, K., Axhausen, K. W. (2016). The multi-agent transport simulation MATSim. London: Ubiquity
Press.

loffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal
covariate shift. arXiv preprint arXiv:1502.03167.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Krajzewicz, D., Hertkorn, G., Rossel, C., Wagner, P. (2002). SUMO (Simulation of Urban Mobility) —an open-source
traffic simulation. In proceedings of the 4" middle east symposium on simulation and modeling (MESM20002), pp.
183-187.

Leighty, R. D. (1986). DARPA ALV (autonomous land vehicle) summary. NO. ETL-R-085. ARMY ENGINEER
TOPOGRAPHIC LABS FORT BELVOIR VA.

Lockheed Martin. Driving Forces: Autonomous Land Vehicles. Retrieved May 23, 2020, from
https://www.lockheedmartin.com/en-us/news/features/history/alv.html

Lockheed Martin Defense (2020). Autonomous and Unmanned Systems | Lockheed Martin. Retrieved June 17, 2020,
from https://www.lockheedmartin.com/en-us/capabilities/autonomous-unmanned-systems.html

Markoff, J., (2007). Crashes and Traffic Jams in Military Test of Robotic Vehicles. The New York Times, Nov 5,
2007. Retrieved June 17, 2020, from https://www.nytimes.com/2007/11/05/technology/05robot.html

Mays, K. (2019). Which Cars have self-driving features for 2019? Retrieved June 21, 2020 from
https://www.cars.com/articles/which-cars-have-self-driving-features-for-2019-402645/

Muller, J., (2019). The Army Steps up its Pace on Self-Driving Cars. Retrieved May 22, 2020, from
https://www.axios.com/us-army-military-casualties-autonomous-vehicles-1ff51e01-3b16-4alc-9587-
ce55dee74788.html

NVIDIA DRIVE CONSTELLATION. (2020). NVIDIA DRIVE CONSTELLATION - Virtual Reality Autonomous
Vehicle Simulator. Retrieved June 17, 2020 from https://www.nvidia.com/en-us/self-driving-cars/drive-constellation/

NVIDIA DRIVE Platform. (2020). NVIDIA DRIVE — Autonomous Vehicle Development Platforms. Retrieved June
17, 2020 from https://developer.nvidia.com/drive

Oshkosh Defense (2020). Terramax Unmanned Ground Vehicle Technology | Oshkosh Defense. Retrieved June 17,
2020, from https://oshkoshdefense.com/advanced-technologies/terramax-unmanned-ground-vehicle-technology/

Paleofuture — The history of the future (2007). DARPA Spent $1 Billion Trying to Build a Real-Life Skynet in the
1980s. Retrieved May 23, 2020, from https://paleofuture.com/blog/2019/4/30/darpa-spent-1-billion-trying-to-build-a-
real-life-skynet-in-the-1980s

Shah, S., Dey, D., Lovett, C., & Kapoor, A. (2018). Airsim: High-fidelity visual and physical simulation for
autonomous vehicles. In Field and service robotics (pp. 621-635). Springer, Cham.

IITSEC (2020) Paper No. 20455 Page 13 of 14

http://www.americanradiohistory.com/Archive-Radio-News/20s/Radio-News-1925-11-R.pdf
https://journalstar.com/news/local/govt-and-politics/nebraska-tested-driverless-car-technology-60-years-ago/article_a702fab9-cac3-5a6e-a95c-9b597fdab078.html
https://journalstar.com/news/local/govt-and-politics/nebraska-tested-driverless-car-technology-60-years-ago/article_a702fab9-cac3-5a6e-a95c-9b597fdab078.html
https://www.lockheedmartin.com/en-us/news/features/history/alv.html
https://www.lockheedmartin.com/en-us/capabilities/autonomous-unmanned-systems.html
https://www.nytimes.com/2007/11/05/technology/05robot.html
https://www.cars.com/articles/which-cars-have-self-driving-features-for-2019-402645/
https://www.axios.com/us-army-military-casualties-autonomous-vehicles-1ff51e01-3b16-4a1c-9587-ce55dee74788.html
https://www.axios.com/us-army-military-casualties-autonomous-vehicles-1ff51e01-3b16-4a1c-9587-ce55dee74788.html
https://www.nvidia.com/en-us/self-driving-cars/drive-constellation/
https://developer.nvidia.com/drive
https://oshkoshdefense.com/advanced-technologies/terramax-unmanned-ground-vehicle-technology/
https://paleofuture.com/blog/2019/4/30/darpa-spent-1-billion-trying-to-build-a-real-life-skynet-in-the-1980s
https://paleofuture.com/blog/2019/4/30/darpa-spent-1-billion-trying-to-build-a-real-life-skynet-in-the-1980s

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

Tesla (2020). Tesla Home page. Retrieved June 17, 2020, from https://tesla.com/

Uber (2016). Uber’s first self-driving fleet arrives in Pittsburgh this month. Bloomberg. Retrieved June 17, 2020, from
http://www.bloomberg.com/news/features/2016-08-18/uber-s-first-self-driving-fleet-arrives-in-pittsburgh-this-
month-is06r7on

(United States Senate committee on armed services transcript) (2018). Hearing to Receive Testimony on Accelerating
New Technologies to Meet Emerging Threats. Docket 18-40_04-18-18.

Waymo, (2020). Waymo home page. Retrieved June 17, 2020, from https://waymo.com/

Waxman, A., LeMoigne, J., Davis, L., Srinivasan, B., Kushner, T., Liang, E., Siddalingaiah, T. (1987). A Visual
Navigation System for Autonomous Land Vehicles. IEEE Journal on Robotics and Automation, vol. 3, No. 2., pp 124-
141.

IITSEC (2020) Paper No. 20455 Page 14 of 14

https://tesla.com/
http://www.bloomberg.com/news/features/2016-08-18/uber-s-first-self-driving-fleet-arrives-in-pittsburgh-this-month-is06r7on
http://www.bloomberg.com/news/features/2016-08-18/uber-s-first-self-driving-fleet-arrives-in-pittsburgh-this-month-is06r7on
https://waymo.com/

