

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

IITSEC (2020) Paper No. 20455 Page 1 of 14

Designing a Deep Learning and Computer-Vision Based Autonomous Vehicle

Within a Multimodal Traffic Simulation Framework

Vijay Kalivarapu, Adam Kohl, Jack Miller, Eliot Winer

Iowa State University

Ames, IA

vkk2@iastate.edu, adamkohl@iastate.edu, jackm@iastate.edu, ewiner@iastate.edu

ABSTRACT

In 2014, the industry had invested approximately $167 million into Autonomous Vehicle (AV) technologies and

research. By 2019, these investments totaled more than $100 billion. The Pentagon’s 2020 fiscal year budget proposal

included $3.7 billion for research and development of unmanned and autonomous technologies. Studies show that

52% of battlefield casualties occur when soldiers deliver food and other supplies in combat zones. AVs offer the

potential to mitigate such risks and save lives substantially. However, AVs must be tested in a multitude of scenarios

before they are practically viable for military and civilian applications. Physical AV data for testing is generally

unavailable from commercial or military entities due to proprietary or security concerns. This makes simulations a

feasible alternative to study them. However, creating AV simulations with the fidelity, scalability, and customization

comes with several research questions such as 1) How can AVs be trained for autonomous driving? 2) How can

communication be established between different traffic management subsystems? 3) How can multi-user coordination

and collaboration, in such an environment, be achieved?

A three-component visualization framework was developed to answer the above questions. First, multiple virtual

autonomous vehicles were trained using machine learning techniques to drive within a specific road intersection

scenario. Second, these virtual AVs were introduced to physical agents such as cars and bike riders. Third, the driving

states of the physical agents and the AVs were synchronized using a client-server architecture with a traffic simulator

that probabilistically generated vehicle and pedestrian traffic. The AVs and the physical agents appear as entities

within the traffic simulator to which the generated traffic computes responses and are network synchronized to form

a multimodal traffic simulation system collectively. Results from implementing and testing this framework in multiple

scenarios show that adequately trained AVs can serve as a crucial first step, a proof-of-concept validation, for

developing military and civilian AV applications.

ABOUT THE AUTHORS

Vijay Kalivarapu, Ph.D., is a staff research scientist at the Virtual Reality Applications Center, Iowa State University.

Dr. Kalivarapu has extensive experience in Virtual Reality, 3D Computer Graphics, and Design Optimization.

Adam Kohl is a Ph.D. candidate in Mechanical Engineering Computer Engineering at Iowa State University’s

Virtual Reality Applications Center. His research interests include the development of pattern recognition techniques

and supervised methods for engineering applications.

Jack Miller is a Ph.D. candidate in Computer Engineering and Human-Computer Interaction at the Iowa State

University’s Virtual Reality Applications Center. His current research interests include exploring multi-user

experiences in virtual and augmented reality environments, specifically for traffic simulation.

Eliot Winer, Ph.D., is the director of the Virtual Reality Applications Center and professor of Mechanical

Engineering, Electrical and Computer Engineering, and Aerospace Engineering at Iowa State University. Dr. Winer

has over 20 years of experience working in virtual reality and 3D computer graphics technologies on sponsored

projects for the Department of Defense, Air Force Office of Scientific Research, Department of the Army, National

Science Foundation, Department of Agriculture, Boeing, and John Deere.

mailto:vkk2@iastate.edu
mailto:adamkohl@iastate.edu
mailto:jackm@iastate.edu

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

IITSEC (2020) Paper No. 20455 Page 2 of 14

Designing a Deep Learning and Computer-Vision Based Autonomous Vehicle

Within a Multimodal Traffic Simulation Framework

Vijay Kalivarapu, Adam Kohl, Jack Miller, Eliot Winer

Iowa State University

Ames, IA

vkk2@iastate.edu, adamkohl@iastate.edu, jackm@iastate.edu, ewiner@iastate.edu

INTRODUCTION

The Defense Advanced Research Projects Agency (DARPA)’s $1 million grand challenge in 2004 called for a

driverless car competition to autonomously drive 132 miles of terrain in the Mojave Desert region within 10 hours

(Behringer, R, 2004). While there was no winner to claim the prize, the team from Carnegie Mellon University traveled

the furthest – 7.3 miles. This event jumpstarted the careers of many experts and companies, resulting in a $100 billion

commercial Autonomous Vehicle (AV) industry by 2019. In February 2019 alone, there was a $1.6 billion investment

in AV companies for civilian applications (Demaitre, E, 2019). The benefits of autonomous technologies for civilian

applications are very tangible. Fewer traffic congestions with improved safety, decreased driver fatigue, lower

emissions, improved health, and higher demand for new jobs are just some of the outcomes attributable to AV

technologies in the civilian sector.

Further, there is a pronounced interest in developing AV technologies in the US military. The Pentagon’s 2020 budget

proposal of $3.7 billion in research and development of ‘unmanned and autonomous technologies’ serves as credible

evidence that the US military is paying attention to these technologies for various battlespace applications (Muller, J,

2019). Reports and studies show that 52% of battlefield casualties occur when soldiers deliver food and supplies in

conflict and combat zones (United States Senate Committee on armed services transcript, 2018). It was theorized that

unmanned AVs with AI driving algorithms could substantially mitigate risks and save lives. However, detailed

intelligence, including road maps in war zones, are not always readily available or can change within a short period

of time. Additionally, road signs, if available, are prone to be damaged and can be misleading. These constraints,

which typically do not exist in civilian applications, make the development of AV technologies for military

applications a multifold challenge.

Regardless of civilian or military applications, the development of AV technologies requires substantial testing in a

multitude of scenarios before they are practically viable. Testing AVs during their development within live traffic on

US road systems is impractical due to safety reasons. Similarly, AV testing in combat zones can be chaotic and

dangerous. However, simulations of AVs are repeatable, and conditions can be controlled to mimic real scenarios,

making them a practical and safer alternative. The work presented in this paper demonstrates the design of an AV in

a multimodal traffic simulation framework, with several generalized research questions addressed, such as:

- How can AVs be trained for autonomous driving in a simulated driving environment?

- How can communication be established between different traffic management subsystems?

- How can multi-user coordination and collaboration, in a simulated driving environment, be achieved?

The remainder of the paper is organized as follows: First, the background literature of companies and organizations

developing civilian and military AVs is presented. Then, a list of commercial/open-source traffic simulator and AV

simulator applications are summarized. A literature review of applications used for simulation and testing of AV

algorithms will also be discussed, followed by a general procedure on how AVs are trained and integrated into traffic

simulator programs. The methodology section will include the architecture designed and created for a collaborative

client-server traffic simulation environment, including how AVs were trained and deployed within it. Two test cases

for single and three-lane roads are then discussed, followed by results and conclusions.

mailto:vkk2@iastate.edu
mailto:adamkohl@iastate.edu
mailto:jackm@iastate.edu

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

IITSEC (2020) Paper No. 20455 Page 3 of 14

BACKGROUND

Prior AV Work

Although AV technologies gained prominence in recent years, the

research areas is not new. The first reported instance of an unmanned

vehicle dates back to 1925 in New York, where Francis Houdina

modified a 1926 model Chandler car equipped with a transmitter

antenna, as seen in Figure 1 (Green, H., 1925). In 1957, the company

RCA embedded detectors within a patch of 400-ft road on US 77

highway in Nebraska to send impulses and guide a Chevrolet car as it

drove by (Hicks, N., 2017).

The first AV to use cameras was the Autonomous Land Vehicle (ALV) from the US

government’s Strategic Computing Initiative in the 1980s. It was built by Martin

Marietta (now merged to become Lockheed Martin) and the University of Maryland

through DARPA funding, and is shown in Figure 2 (Leighty, R, 1986) (Waxman,

A. 1987) (Lockheed Martin) (Paleofuture, 2007).

Although there were other lesser-known US federal government initiatives in the

late 1980s and 1990s (Dhawan, C., 2019), breakthroughs in AV development did

not occur until the 2000s. In addition to the DARPA grand challenge of 2004, which

did not yield any winners, the 2005 challenge resulted in five winners that

successfully were able to complete the autonomous driving course. LiDAR and

computer vision techniques were extensively used in the completion of the

challenge (Behringer, R., 2005). In 2007, Carnegie Mellon University was able to

modify a Chevy Tahoe to complete the DARPA grand challenge (Markoff, J., 2007). Several participants from these

challenges built the Google self-driving car in 2008 (Birrsall, M., 2014). The project, now re-branded as Waymo

(Waymo, 2020), performs active research in developing self-driving cars these days. Companies such as Uber (Uber,

2020) and Tesla (Tesla, 2020) are much invested in developing AVs for civilian applications. Pratt Miller Defense

(Fontaine, J. 2020), Oshkosh defense (Oshkosh Defense, 2020), and Lockheed Martin (Lockheed Martin, 2020) are

notable companies among others that cater to the development of AVs in the military sector.

Traffic Simulators and AV Simulators

Traffic simulators, as the name indicates, mathematically model transportation systems, including items such as

freeways, intersections, arterial routes, and roundabouts. These simulators are used in road traffic analysis and

simulation of urban mobility. Traffic simulators are typically classified as macroscopic, microscopic, and mesoscopic.

Simulations in macroscopic models usually take place on a section-by-section basis instead of tracking individual

vehicles. Traffic modeling in transportation subnetworks such as freeways and surface-street grid networks belong to

this category. Microscopic models simulate and track the movement of each vehicle and incorporate vehicle-to-vehicle

interactions. Mesoscopic models combine macroscopic and microscopic models. AVs can be integrated within a traffic

simulator to behave just as another entity generated by the simulator. These traffic simulators offer extensive features

in addition to generated vehicle traffic such as road lane lines, signals, traffic lights, pedestrians, etc. Several

commercial and open-source programs provide such functionality. Although not exhaustive, Table 1 shows a

representative list of surveyed and available traffic simulators along with their capabilities.

Table 1. Off-the-shelf traffic simulators and their capabilities

 SUMO MATSim VISSIM AIMSUN Paramics

Architecture

32- & 64-bit

(Windows,

Linux,

macOS)

32- & 64-

bit (Linux)

64-bit

(Windows)

64-bit

(Windows,

Linux,

macOS)

32- & 64-bit

(Windows)

Cost Open-source
Open-

source
Commercial Commercial Commercial

Figure 1. Driverless car from 1925

Figure 2. Autonomous Land

Vehicle

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

IITSEC (2020) Paper No. 20455 Page 4 of 14

Simulator model Microscopic Mesoscopic Microscopic Microscopic Microscopic

Network

communication
TCP - NA - COM TCP TCP

3rd party

visualization

support

Unity3D

Simunto

Via,

OTFVis

Unity3D - NA - - NA -

Programming

Language
C++ Java

C++, Python,

Matlab
C++ C++

Reference

(Krajzewicz,

D. 2002)

(Behrisch,

M. 2011)

(Horni, A.

2016)

(Fellendorf,

M. 2010)

(Casas, J.

2010)

(Cameron, G.

D. 1996)

Only a few of the surveyed traffic simulators support the integration of an AV entity controlled by an external program.

For example, the VISSIM traffic simulation software, from the PTV group, can embed up to 1000 externally connected

vehicle entities such as physically rigged cars, bikes, or AVs. Driving parameters such as steering and throttling from

these external entities can be sent via a Component Object Model (COM) protocol, and are simply recognized and

computed as new interactable traffic entities within VISSIM.

AV simulators such as CARLA (Dosovitskiy, A. 2017), Microsoft AirSim (Shah, S., 2018), and the NVIDIA DRIVE

Platform (NVIDIA DRIVE Platform, 2020)/NVIDIA DRIVE constellation (NVIDIA DRIVE Constellation, 2020),

Gazebo (Gazebo, 2020) help facilitate autonomous driving research. Most of these simulators provide a platform for

algorithmic development, training, and validation of autonomous urban driving systems. Additionally, they offer other

capabilities that distinguish one from another. For example, the NVIDIA DRIVE Platform includes a standalone in-

vehicle hardware capable of integrating vehicle sensors and processing images. Combined with software and deep

neural network training, the platform is capable of generating driving controls for an AV in real-time.

Most physical self-driving cars in their development use sensors such as cameras, radars, and LiDARs to sense the

surrounding world. Images and data captured from these sensors are processed using a combination of GPS

information, computer vision, and machine learning techniques, in real-time, to identify objects such as vehicles, road

lanes, pedestrians, etc. For example, Waymo uses a map-based approach to achieve full self-driving capabilities,

whereas Tesla uses a vision-based approach (Alvarez, S., 2020). A reality of this research area is that no matter what

approach is used, it is impossible to build a system that will not fail under some circumstances (Davies, A. 2019).

Hence, regulatory hurdles prevent companies from incorporating full self-driving autonomy. Several commercial

companies such as Acura, Audi, BMW, Cadillac, Subaru, and others offer partial self-driving capabilities such as lane

assist and centering, hands-free steering, and adaptive cruise control features (Mays, K. 2019). The development and

implementation of partial or full-self driving features are proprietary and primarily business driven to maintain

commercial competitiveness. Hence, algorithms and data are mostly unavailable outside of companies for further

research, analysis, and development. As such, academic research requires code implementation, often times, from the

ground up.

In a simulated AV, virtual cameras mounted on top of the vehicle perform the role of the image capturing. These

images are processed exactly like the images from a real self-driving car. When a simulated AV is placed amidst

vehicle traffic generated from a traffic simulator application like VISSIM, the system functions as a physical self-

driving car in the real-world. The work presented in this paper uses this approach.

METHODOLOGY

System Architecture

The system architecture for integrating AVs and traffic simulators into a multimodal traffic simulation is shown below

(See figure 3). It was designed and created for this research.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

IITSEC (2020) Paper No. 20455 Page 5 of 14

As the figure portrays, the architecture has three components: a) a traffic simulator, b) a server that does bi-directional

broadcasting of state changes and c) clients that represent physical vehicle rigs and AVs. The client-server

implementation was made using the game engine Unity, which also doubles as the visualization platform on desktop

and virtual reality environments. For a given driving environment such as an urban neighborhood or a highway, an

equivalent computational road network was constructed within VISSIM. This road network was then used to generate

vehicle and pedestrian traffic entities in VISSIM. The states of each vehicle entity were sent to the Unity server. The

server then broadcasted these updates to each client. The clients themselves are self-aware of their position and

direction, so, for example, a bike rider can automatically track the location of an AV within the scenario. The driving

states (i.e., position and orientation) of the clients are sent to VISSIM via the Unity3D server every frame. These client

states are processed and computed by the traffic simulator as new entities within VISSIM.

AV Design

The AV implementation was performed on a single lane road and a three-lane highway, with no other vehicle or

pedestrian traffic. This was primarily intended as the development of a proof of concept machine learning model using

supervised and imitation learning approaches that results in an AV staying true to the road track without showing any

abnormal behavior. The Python programming language, along with its suite of data analysis and machine learning

modules, was used in building the trained model. Aspects such as other vehicle traffic, pedestrians, and traffic signs

were not implemented.

Deep learning using Convolutional Neural Networks (CNN or ConvNets) was implemented in training the AV. CNNs

are a special category of Artificial Neural Networks (ANN) that are highly effective at image recognition and

classification (Hijazi, S., 2015). These include features such as faces, objects, traffic signs, and road lanes – the

building blocks for implementing an AV. CNNs can recognize useful patterns within images by understanding relevant

spatial structure that describes them as well as require fewer parameters than traditional ANNs. The primary structure

of a CNN pipeline includes an input layer, convolutional layers, pooling layers, fully-connected layers (also called

dense layers), and an output prediction layer. Figure 4 shows a simple CNN pipeline where the pixel values of an

Figure 3. Multimodal Traffic Simulation Framework Architecture

Figure 4. A Simple Convolutional Neural Network Pipeline

(Figure courtesy: github.com)

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

IITSEC (2020) Paper No. 20455 Page 6 of 14

input image of an animal are passed through convolution, pooling, and fully connected layers before predicting the

probability of the animal type belonging to a specific class. The CNNs differ from regular neural networks due to the

‘Convolution’ layer within the pipeline.

The goal of the convolutional layer is to extract and learn specific image features that help classify an image. For an

input image, each pixel corresponds to an input node that will be processed by a convolutional filter called the kernel

(also called a kernel matrix or a filter or a feature detector). The kernel matrix consists of integers and is generally

small in spatial dimensionality (e.g., 3 x 3). Convolution is performed by sequentially sliding the kernel at every

location on the input image by a specific stride length. With a stride of 1, the convolution is achieved by sliding the

kernel filter one pixel at a time. During convolution, every cell in the kernel matrix is multiplied element-wise by a

corresponding pixel value in the input image, and a summation of values is performed (i.e., a dot product). The result

is averaged and stored in a ‘convolved map’

or a ‘feature map’. A larger stride length will

result in a smaller feature map, and the

feature extraction will be less accurate.

Figure 5 shows an illustration of the

convolution process, where an input image

has a mix of gray and white pixel values.

Upon applying the kernel matrix to the first

set of 3x3 pixels in the input image and

performing a convolution, the first cell in the

feature map resulted in a -6.1. An analogy of

this process can be made to feature

extraction in images captured by a camera on

an AV, where a value of -6.1 indicates the feature is an asphalt road, and a value of 45.5 indicates white road lines.

The convolution operations make distinctive image features stored in a numerical format. In this example, the feature

map was able to extract a specific feature of interest, which is to show the distinction between lower and higher pixel

intensity while preserving all the image features. The feature map output will change for different kernel filter values.

For example, the kernel matrix in Figure 6 is used for performing image sharpening. With different kernel matrix

values, various features maps such as edge detection, gaussian blur, and box blurs can be constructed. The pooling

layer in the CNN pipeline acts to shrink the image stack by reducing the dimensionality of the representation of each

feature. This layer reduces the computational complexity of the model and avoids overfitting the model, while still

retaining the significant characteristics from within the feature map. A series of convolutional and pooling layers

further help filter the image and extract essential features. With a deeper CNN, feature maps become visually

unrecognizable, but more complex patterns get encoded into the model that helps identify the input image class.

While the combination of convolution and pooling in the first part of the

CNN pipeline performs feature extraction, the second part of the CNN is

a fully connected layer that performs feature classification. The output

from the convolution and pooling layers are flattened into a 1-D array of

pixels. They serve as an input to the fully connected network, where each

pixel corresponds to a node in the input layer (Figure 6). The fully

connected network processes these features and computes the final

probability of the class that an input image belongs to.

In the work presented in the paper, two different networks were created:

a) A 9-layer network with five convolutional layers and four fully-

connected (dense) layers without batch normalization and b) A 14-layer

network with five convolutional layers, each with corresponding batch normalization, followed by four dense layers.

Batch normalization (Ioffe, S., 2015) is typically used in improving the performance and stability of a neural network.

The normalization process re-centers and re-scales the input layer, i.e., the convolutional layer preceding it, in this

case. Both these networks were used for training the AV on a single lane and a three-lane road track.

Data was captured as the car was manually driven three times each in a clockwise and counterclockwise direction

along the outer perimeter of the road track. Driving both directions yielded non-zero steering values for both left and

Figure 5. CNN Convolution Process

Figure 6. Feature Classification

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

IITSEC (2020) Paper No. 20455 Page 7 of 14

right turns. A histogram of steering angles between -1 and +1, centered around a steering angle of 0, grouped into 25

bins is shown in Figure 7a. A high value for a zero-steering angle in the figure indicates that the car was predominantly

driving a straight path with only occasional left

or right steering. Too many data points with

zero steering angle could potentially result in a

trained AV to be biased in driving straight

regardless of the track. However, the road track

used for training and deployment were

identical, making the straight path dominance

in the trained model a potential benefit. Hence,

two training models were developed, one with

straight path dominance without any outlier

removal, and another with reduced straight

path dominance. The bias was reduced by removing excessive zero-steering data points while keeping a reasonable

straight path dominance (see Figure 7b). Of the ~5,900 data points captured overall for training, ~3,000 were retained

after straight path bias removal. In

both cases, the datasets were split

80%-20% for training and

validation. The distribution of

steering angles for the training and

validation datasets for reduced

straight path dominance is shown

in figure 8, which indicates that

there is approximately equal

representation of left and right

steering angles in the data.

The captured left, center and right images were pre-processed to prevent any additional data bias. Image augmentation

techniques such as random zoom, pan, flip,

brightness alteration were implemented at a

0.5 probability for all captured images to

increase diversity in the dataset resulting in a

more robust model. This prevents the

likelihood of the AV drifting off-road and

creates the effect of input images being in

various offsets from the center lane. The

purpose of these artificial offsets is to make

the neural network more robust so that it can

recover from a poor position or orientation

more quickly and in a broader range of

circumstances. The images were further auto-

cropped to only keep relevant road data and

remove cultural data such as the sky and the

surrounding neighborhood. Figure 9 (a – f)

shows a series of augmentation techniques

applied to the input images. A multi-layer

convolutional neural network, proposed by

NVIDIA (Bojarski, M., 2016) was

implemented for building the machine

learning model. This method is based on the

CNN pipeline described earlier and provided

an architecture specifically designed for

predicting AV steering values. In this method,

the weights of the network were trained to minimize the mean squared error between the steering data from manual

trained data/augmented images and the steering values created by the network.

Figure 7. (a) Straight path bias in data captured

(b) Straight path dominance reduced

(a) Captured image, (b) Zoom augmentation

(b) Captured image, (d) Pan augmentation

(e) Captured image, (f) Cropped image

Figure 9. Image Augmentation Techniques

Figure 8. Histograms (a) Training dataset, (b) Validation dataset

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

IITSEC (2020) Paper No. 20455 Page 8 of 14

TEST CASE SETUP

Figure 10 illustrates the scenario used for

testing. The training process for the AV

included capturing images from three forward-

facing virtual cameras positioned left, center,

and right on top of a car. As the car was

manually driven along the desired path within

the scenario, images from the cameras and

various driving parameters (steering, throttle,

reverse, and speed) were captured every frame.

The goal was to predict the steering value

(independent variable), given a single center

camera capture mounted on the virtual AV

(dependent variable). Clockwise or

counterclockwise, the track has four exits

leading to the town’s local neighborhood and

four exits leading outside of the region. Also, given the size of the track compared to the AV, much of the test track

is a straight path with only occasional left- or right-turns. As such, it became necessary to investigate the influence of

zero-steering straight path bias in the trained AV, as discussed earlier.

On the other hand, batch normalization, as discussed in the methodology section, adds computational time to build a

machine learning model and hence make steering predictions. However, it is unclear how much value it will add for

the test case set up. To investigate the influence of batch normalization, two sets of test cases were developed, one

with and another without batch normalization. For each AV deployed on single- and three-lane roads, the following

metrics were evaluated: i) model training time, ii) lane deviations, iii) incorrect exiting onto a local road, iv) accurate

path correction after deviation and v) staying on the road. A wall timer that measures elapsed time during the machine

learning model build was implemented to evaluate model training time. The metrics (ii) – (v) were visually assessed

by a human for each test case three times as the AV auto navigated around the road track.

The AV on the single lane road was trained on a PC with an Intel i7 3.6 GHz processor, 32GB memory, and an

NVIDIA GeForce GTX 2060 GPU. The AV on the three-lane road was trained on a PC with an Intel i7 4.2 GHz

processor, 16GB memory, and an NVIDIA GeForce GTX 1070 GPU. The Python module Keras, an easily accessible

deep learning API built using Tensorflow, was used to create the AV machine learning models. Images cropped, as

seen in Figure 10f, at the end of the image augmentation technique were converted from RGB to YUV color space for

data processing. YUV colorspace allows for reduced bandwidth for chrominance components in the images and is

more efficient than RGB representation. Since the augmented dataset was reasonably large and potentially exhausted

system memory resources while creating a machine learning model, a fit generator was used in batches and not on the

entire dataset. Error minimization was performed on the training dataset over ten epochs using Python Keras’ Adam

optimizer (Kingma, D.P., 2014). Adam is a first-order gradient-based method used in the optimization of stochastic

objective functions. It is computationally efficient, has fewer memory requirements, and is a popular optimizer used

in the machine learning community.

The AV captured about 6,000 images during the training process. The batch generation strategy used created subsets

of 100 images each, from the training dataset, with a limit of 10 epochs (generations), and 300 steps (iterations) per

epoch. Trained AV models were tested using a drive controller, implemented in Python. The drive controller loaded

the machine learning model and calculated the steering angle for images received from the AV via socket

communications. The images themselves were captured from a virtual camera mounted top center of the AV facing

forward.

RESULTS AND DISCUSSION

The operating characteristics of the AV in both the single-lane road and three-lane highway were independent of each

other and not correlated. Hence, the evaluation metrics were conducted for each scenario independently and tabulated

(Tables 2 and 3). As stated earlier, the defined metrics (ii) – (v) were visually evaluated by a human for each test case

three times as the AV auto navigated around the road track.

Figure 10. Aerial view of test road track and the training

car on single and three lanes

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

IITSEC (2020) Paper No. 20455 Page 9 of 14

Table 2. Test scenario setup for single-lane AV (3.6 GHz CPU, NVIDIA GeForce GTX 2060)

Cases

Metrics

With CNN batch normalization Without CNN batch normalization

With zero-steering

bias

Reduced zero-

steering bias

With zero-steering

bias

Reduced zero-

steering bias

Model training time 22.1 minutes 22.3 minutes 20.6 minutes 20.5 minutes

Lane departures? No No No No

Did the AV exit into

a local road?
No No No No

Did the AV perform

path correction?
Did not stray

Yes, recovered from

the green grass area
Did not stray Did not stray

Did the AV wander

off?
No No No No

It can be seen from Table 2 that the training time for the AV model built using

Convolutional Neural Network (CNN) with batch normalization took longer

than without batch normalization. This is expected because the batch

normalization process computes the mean and variance of each mini-batch of

data and normalizes each feature based on the mini-batch statistics, adding

more computational time. In each of the investigated cases within this

scenario, the AV consistently stayed on and successfully navigated the single-

lane road. In one instance with reduced zero-steering bias, however (i.e.,

reduced straight path dominance), the AV strayed from the single lane into the

grass area once, but instantly recovered from it and continued driving on the

single-lane road. Figure 11 shows screenshots of the AV auto-steer on the

single lane track. For this scenario, the AV did show an inclination to stay on

the left side of the road, indicating that the images with exits to the local

neighborhood might have factored in when determining the steering angle

during experimental runs.

Table 3 below shows the AV evaluation metrics on the three-lane highway

scenario. The mesh geometry for both the single-lane and three-lane scenarios

were identical. The only variation in the three-lane scenario was the road

texture with multiple lane markings, making it a distinctive scenario for the

AV training purpose. Four rounds of training were performed with/without CNN batch normalization, and

with/reduced zero-steering bias.

Table 3. Test scenario setup for three-lane AV (4.2 GHz CPU, NVIDIA GeForce GTX 1070)

Cases

Metrics

With CNN batch normalization Without CNN batch normalization

With zero-steering

bias

Reduced zero-

steering bias

With zero-steering

bias

Reduced zero-

steering bias

Model training time 48.5 minutes 47.9 minutes 45.7 minutes 45.8 minutes

Lane departures?

Continuous

fishtailing but

stayed in the lane

Fishtailed, and

deviated
None None

Did the AV exit into

a local road?
No Yes No No

Did the AV perform

path correction?
Corrected instantly

Eventually drove

back to the 3-lane

road

Instant correction

when the edge of

lane marking

reached

No correction

required

Did the AV wander

off?
No No No No

Figure 11. AV on Single Lane:

(a) Auto steering at the center

(b) Leaning towards the left

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

IITSEC (2020) Paper No. 20455 Page 10 of 14

Due to the use of a lower-powered GPU, the model training on the

three-lane highway was slower than the single-lane road. Training

without batch normalization, especially with reduced zero-steering

bias (i.e., reduced straight path dominance), resulted in very

smooth AV steering within the middle lane (i.e., no sudden path

corrections). The AV was trained while in the middle lane of the

three-lane highway. On the case with zero-steering bias (i.e., the

entire image dataset with all zero-steer angles), the AV stayed in

the middle lane but showed an inclination to drive straight until the

curve of the road was realized, before performing an instant

correction. Figure 12 shows the screenshot of the AV auto-steering

without CNN batch normalization, and with reduced zero-steering

bias.

The results were interesting when batch normalization was implemented within the training process (Figure 13). With

the zero-steering bias case, the AV continuously fishtailed but stayed true to the middle lane that it was trained on,

with instant path correction (Figure 13 a). With reduced zero-steering bias (i.e., reduced straight path dominance), the

AV deviated from the middle lane and took the first left exit it encountered and drove into the local neighborhood.

During this stage, the AV stayed true to the asphalt road and never veered off into the grassy area or the houses (Figure

13 b and c). This behavior, exiting the highway, was unexpected, since batch normalization has traditionally been

attributed to improved speed, performance, and stability of artificial neural networks. In an ideal network, the global

mean and variance would be a preferred feature to normalize the inputs to a layer. However, it is computationally

expensive to arrive at these values after each update in the network. Hence, the mean and variance are estimated using

mini-batch statistics. When using reduced zero-steering bias (i.e., reduced straight path dominance), the statistics for

each mini-batch significantly differed from the others due to the loss of some straight path data. It was theorized that

this caused the AV to veer and proceed toward the first exit it found. The AV departure from the middle lane with

zero-steering bias was much less pronounced because the mean and the variance for each mini-batch was influenced

by a larger set of straight path zero-steer values than the one with reduced zero-steering bias. This is an outcome that

certainly requires further investigation and future work.

Given the four cases on the three-lane highway scenario, the model without CNN batch normalization and reduced

zero-steering bias showed the most stability and accuracy. This AV model was hence considered for implementation

within the overall traffic simulation framework.

AV Within a Traffic Simulator Framework

The traffic simulator VISSIM used in this research is capable of probabilistically generating thousands of vehicles

within a road network. Each vehicle VISSIM created is capable of auto navigating based on the rules stipulated by its

computational environment. VISSIM supports the integration of external vehicles within its traffic network if their

positions and orientations are communicated in a specific format using a COM server architecture. The program can

also transmit the position and orientation of every vehicle it generates via the same COM server protocol to third-

party applications. These vehicles are not AVs as VISSIM is aware of what every vehicle is doing across the entire

simulation and can provide position and orientation updates to all to avoid collisions or other unintended possibilities.

Figure 12. AV trained without batch

normalization, reduced zero-steering bias

(a) With zero-steering bias
(b) Reduced zero-steering bias,

before taking exit

(c) Reduced zero-steering bias,

after taking exit

Figure 13. AV with batch normalization

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

IITSEC (2020) Paper No. 20455 Page 11 of 14

The position and orientation information of all VISSIM

entities was captured in real-time and used within a Unity

visualization application. The developed AV model was

integrated into the Unity client, whose data was network

communicated to VISSIM using the system architecture

described in the Methodology section (Figure 3). Figure 14

shows the integration of VISSIM traffic relayed to the Unity

AV client through the Unity server. Both the clients and server

were created in this research. The AV, identified by an oval

around it, was made to auto-navigate on the three-lane

highway, while VISSIM generated the vehicles seen in the vicinity.

It is to be noted that the VISSIM generated traffic was aware of the AV in its road network, except that its position

and orientation was controlled by a machine learning model loaded by a Python drive controller externally. However,

the AV was unaware of any traffic since it was trained only on an empty road. Therefore, as expected, the vehicles

generated by VISSIM were able to veer around the AV (Figure 15a). However, the AV itself ran through VISSIM

vehicles that stopped at a traffic intersection (Figure 15b). Figure 15a is a representative image showing that none of

the VISSIM vehicles ran into the AV since the program was aware of its position and orientation. However, as seen

in Figure 15b, the AV ran into a stopped VISSIM vehicle because it was not trained to veer around an existing vehicle.

The behavior of the AV in such situations was undefined. It produced effects during ad-hoc testing, such as the AV

deviating from the road path and veering into the green grass area before correcting its path back to an empty road

section. Ideally, computer vision techniques should be used in conjunction with a machine learning model to make

the AV aware of its neighborhood that includes other vehicles, pedestrians, and traffic lights. While these situations

were not accurate, they were expected. However, they do not diminish the accomplishment of a trained AV in a large,

multimodal simulation.

CONCLUSIONS AND FUTURE WORK

The scenarios presented in the paper showed the development and deployment of an AV in a simulated urban

neighborhood. The results demonstrated that the AV is capable of auto navigating on a track trained for deployment

using simple virtual RGB cameras – three for training, and one for deployment. This means that a limited set of

hardware was sufficient, in conjunction with an advanced deep learning model, to correctly steer an AV on a one and

three lane simulated roadway. Although the AV was implemented on an empty road (i.e., no other traffic or

pedestrians), the work presented in the paper is a proof of concept pre-work for a fully developed machine learning

model to recognize other vehicles, road signs, and pedestrians within a realistic traffic simulation framework. This is

one of the next tasks to be completed in future work. Another area for future work is to quantifiably investigate the

influence of CNN batch normalization in determining the steering angle.

This work can readily be extrapolated to military applications, where a battlefield scenario can replace the urban

neighborhood scenario. An army vehicle such as Humvee can be trained to auto-steer in the scenario with or without

CNN batch normalization. When the battlefield road path is predominantly straight with no unexpected curved paths,

it is recommended that reduced zero-steer bias be implemented for training. On the other hand, if the battlefield road

path is curvy, it is recommended that the training be implemented with zero-steer bias.

(a) VISSIM vehicles veer around the AV (b) AV runs into a VISSIM vehicle

Figure 15. Artifacts of AV aware VISSIM traffic but not vice-versa

Figure 14. Integration of AV within VISSIM

traffic simulator

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

IITSEC (2020) Paper No. 20455 Page 12 of 14

ACKNOWLEDGMENTS

The authors would like to thank the Turner-Fairbank Highway Research Center for providing funding support on the

project. Project support from the Institution of Transportation at Iowa State University is appreciated.

REFERENCES

Alvarez, S. (2020). Tesla’s controversial vision-based full self-driving approach is finally paying off. Retrieved June

21, 2020. Retrieved from https://www.teslarati.com/tesla-autopilot-full-self-driving-vision-based-approach-

validated-video/

Behringer, R., Sundareswaran, S., Gregory, B., Elsley, R., Addison, B., Guthmiller, W., Daily, R., Bevly, D., (2004).

The DARPA Grand Challenge – Development of an Autonomous Vehicle, IEEE Intelligent Vehicles Symposium,

Parma, Italy, pp. 226-231, DOI: 10.1109/IVS.2004.1336386.

Behringer, R., Travis, W., Daily, R., Bevly, D., Kubinger, W., Herzner, W., & Fehlberg, V. (2005, September).

RASCAL -an autonomous ground vehicle for desert driving in the darpa grand challenge 2005. In Proceedings. 2005

IEEE Intelligent Transportation Systems, 2005. (pp. 644-649). IEEE.

Behrisch, M., Bieker, L., Erdmann, J., Krajzewicz, D. (2011). SUMO-simulation of urban mobility: an overview. In

proceedings of SIMUL 2011. The Third International Conference on Advances in System Simulation. ThinkMind.

Birdsall, M., (2014). Google and ITE: The Road Ahead for Self-Driving Cars. Institute of Transportation Engineers,

ITE Journal, May 2014; 84, 5: ABI/INFORM Global

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L.D., Monfort, M., Muller, U.,

Zhang, J. and Zhang, X. (2016). End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316.

Cameron, G. D., Duncan G. I. (1996). PARAMICS – Parallel microscopic simulation of road traffic. The journal of

supercomputing, 10(1), pp. 25-53.

Casas, J., Ferrer, J. L., Garcia, D., Perarnau, J., Torday, A (2010). Traffic simulation with aimsun. In fundamentals of

traffic simulation (pp. 173-232). Springer, New York, NY.

Davies, A. (2019). Tesla’s latest auto-pilot death looks just like a prior crash. Retrieved June 21, 2020 from

https://www.wired.com/story/teslas-latest-autopilot-death-looks-like-prior-crash/

Demaitre, E., (2019). Driverless investment tops $1.6B so far this month. Retrieved May 22, 2020, from

https://www.therobotreport.com/driverless-investment-high-valentines/

Dhawan, C. (2019). Autonomous Vehicles Plus: A Critical Analysis of Challenges Delaying AV Nirvana. FriesenPress,

ISBN: 9781525539848.

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V. (2017). CARLA: An open urban driving simulator.

arXiv preprint arXiv: 1711.03938.

Fellendorf, M., Vortisch, P. (2010). Mircoscopic traffic simulator VISSIM. In fundamentals of traffic simulation (pp.

63-93). Springer, New York, NY.

Fontaine, J. (2020). Pratt Miller Defense Provides Robotic Platform for Army Evaluation. Retrieved May 24, 2020,

from https://www.prattmiller.com/news/article/524

Gazebo (2020). Gazebo Vehicle and City Simulation. Retrieved Jun 22, 2020 from http://gazebosim.org/blog/car_sim

https://www.teslarati.com/tesla-autopilot-full-self-driving-vision-based-approach-validated-video/
https://www.teslarati.com/tesla-autopilot-full-self-driving-vision-based-approach-validated-video/
https://www.wired.com/story/teslas-latest-autopilot-death-looks-like-prior-crash/
https://www.therobotreport.com/driverless-investment-high-valentines/
https://www.prattmiller.com/news/article/524
http://gazebosim.org/blog/car_sim

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

IITSEC (2020) Paper No. 20455 Page 13 of 14

Green, H., (1925). Radio Controlled Automobile. Electronic World Magazine. Retrieved June 17, 2020, from

http://www.americanradiohistory.com/Archive-Radio-News/20s/Radio-News-1925-11-R.pdf

Hicks, N., (2017). Nebraska Tested Driverless Car Technology 60 Years Ago. Lincoln Journal Star, Sep 13, 2017,

Page A1. Retrieved June 17, 2020, from https://journalstar.com/news/local/govt-and-politics/nebraska-tested-

driverless-car-technology-60-years-ago/article_a702fab9-cac3-5a6e-a95c-9b597fdab078.html

Hijazi, S., Kumar, R., & Rowen, C. (2015). Using convolutional neural networks for image recognition. Cadence

Design Systems Inc.: San Jose, CA, USA, 1-12.

Horni, A., Nagel, K., Axhausen, K. W. (2016). The multi-agent transport simulation MATSim. London: Ubiquity

Press.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal

covariate shift. arXiv preprint arXiv:1502.03167.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Krajzewicz, D., Hertkorn, G., Rössel, C., Wagner, P. (2002). SUMO (Simulation of Urban Mobility) – an open-source

traffic simulation. In proceedings of the 4th middle east symposium on simulation and modeling (MESM20002), pp.

183-187.

Leighty, R. D. (1986). DARPA ALV (autonomous land vehicle) summary. NO. ETL-R-085. ARMY ENGINEER

TOPOGRAPHIC LABS FORT BELVOIR VA.

Lockheed Martin. Driving Forces: Autonomous Land Vehicles. Retrieved May 23, 2020, from

https://www.lockheedmartin.com/en-us/news/features/history/alv.html

Lockheed Martin Defense (2020). Autonomous and Unmanned Systems | Lockheed Martin. Retrieved June 17, 2020,

from https://www.lockheedmartin.com/en-us/capabilities/autonomous-unmanned-systems.html

Markoff, J., (2007). Crashes and Traffic Jams in Military Test of Robotic Vehicles. The New York Times, Nov 5,

2007. Retrieved June 17, 2020, from https://www.nytimes.com/2007/11/05/technology/05robot.html

Mays, K. (2019). Which Cars have self-driving features for 2019? Retrieved June 21, 2020 from

https://www.cars.com/articles/which-cars-have-self-driving-features-for-2019-402645/

Muller, J., (2019). The Army Steps up its Pace on Self-Driving Cars. Retrieved May 22, 2020, from

https://www.axios.com/us-army-military-casualties-autonomous-vehicles-1ff51e01-3b16-4a1c-9587-

ce55dee74788.html

NVIDIA DRIVE CONSTELLATION. (2020). NVIDIA DRIVE CONSTELLATION – Virtual Reality Autonomous

Vehicle Simulator. Retrieved June 17, 2020 from https://www.nvidia.com/en-us/self-driving-cars/drive-constellation/

NVIDIA DRIVE Platform. (2020). NVIDIA DRIVE – Autonomous Vehicle Development Platforms. Retrieved June

17, 2020 from https://developer.nvidia.com/drive

Oshkosh Defense (2020). Terramax Unmanned Ground Vehicle Technology | Oshkosh Defense. Retrieved June 17,

2020, from https://oshkoshdefense.com/advanced-technologies/terramax-unmanned-ground-vehicle-technology/

Paleofuture – The history of the future (2007). DARPA Spent $1 Billion Trying to Build a Real-Life Skynet in the

1980s. Retrieved May 23, 2020, from https://paleofuture.com/blog/2019/4/30/darpa-spent-1-billion-trying-to-build-a-

real-life-skynet-in-the-1980s

Shah, S., Dey, D., Lovett, C., & Kapoor, A. (2018). Airsim: High-fidelity visual and physical simulation for

autonomous vehicles. In Field and service robotics (pp. 621-635). Springer, Cham.

http://www.americanradiohistory.com/Archive-Radio-News/20s/Radio-News-1925-11-R.pdf
https://journalstar.com/news/local/govt-and-politics/nebraska-tested-driverless-car-technology-60-years-ago/article_a702fab9-cac3-5a6e-a95c-9b597fdab078.html
https://journalstar.com/news/local/govt-and-politics/nebraska-tested-driverless-car-technology-60-years-ago/article_a702fab9-cac3-5a6e-a95c-9b597fdab078.html
https://www.lockheedmartin.com/en-us/news/features/history/alv.html
https://www.lockheedmartin.com/en-us/capabilities/autonomous-unmanned-systems.html
https://www.nytimes.com/2007/11/05/technology/05robot.html
https://www.cars.com/articles/which-cars-have-self-driving-features-for-2019-402645/
https://www.axios.com/us-army-military-casualties-autonomous-vehicles-1ff51e01-3b16-4a1c-9587-ce55dee74788.html
https://www.axios.com/us-army-military-casualties-autonomous-vehicles-1ff51e01-3b16-4a1c-9587-ce55dee74788.html
https://www.nvidia.com/en-us/self-driving-cars/drive-constellation/
https://developer.nvidia.com/drive
https://oshkoshdefense.com/advanced-technologies/terramax-unmanned-ground-vehicle-technology/
https://paleofuture.com/blog/2019/4/30/darpa-spent-1-billion-trying-to-build-a-real-life-skynet-in-the-1980s
https://paleofuture.com/blog/2019/4/30/darpa-spent-1-billion-trying-to-build-a-real-life-skynet-in-the-1980s

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

IITSEC (2020) Paper No. 20455 Page 14 of 14

Tesla (2020). Tesla Home page. Retrieved June 17, 2020, from https://tesla.com/

Uber (2016). Uber’s first self-driving fleet arrives in Pittsburgh this month. Bloomberg. Retrieved June 17, 2020, from

http://www.bloomberg.com/news/features/2016-08-18/uber-s-first-self-driving-fleet-arrives-in-pittsburgh-this-

month-is06r7on

(United States Senate committee on armed services transcript) (2018). Hearing to Receive Testimony on Accelerating

New Technologies to Meet Emerging Threats. Docket 18-40_04-18-18.

Waymo, (2020). Waymo home page. Retrieved June 17, 2020, from https://waymo.com/

Waxman, A., LeMoigne, J., Davis, L., Srinivasan, B., Kushner, T., Liang, E., Siddalingaiah, T. (1987). A Visual

Navigation System for Autonomous Land Vehicles. IEEE Journal on Robotics and Automation, vol. 3, No. 2., pp 124-

141.

https://tesla.com/
http://www.bloomberg.com/news/features/2016-08-18/uber-s-first-self-driving-fleet-arrives-in-pittsburgh-this-month-is06r7on
http://www.bloomberg.com/news/features/2016-08-18/uber-s-first-self-driving-fleet-arrives-in-pittsburgh-this-month-is06r7on
https://waymo.com/

