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ABSTRACT

The proliferation of automation within military contexts is a driving force in the effort to enhance and expand current
manned-unmanned teaming (MUM-T) programs and policies. However, the shift from manned teaming to a
collaboration between manned entities, unmanned entities, and automated and autonomous entities will also require a
shift in the knowledge, skills, and attitudes (KSAs) trained for these teams. Not only will new KSAs be needed, but
some currently trained KSAs will need to shift in function (e.g., communication will be different with autonomous
team members than with human team members). This will effect training content as well as delivery potentially with
new methods and technologies to support.

Overall, three broad constructs of concern for manned-unmanned teaming are: communication, trust, and workload
balance between manned entities and their unmanned/autonomous counterparts. Communication will change vastly
when operators are communicating with unmanned, and automated or autonomous entities. Appropriate calibration of
trust is also a large barrier to seamless MUM-T coordination, given that new technologies (especially automation)
often are either not trusted by operators, which directly affects their use (Dzindolet et al., 2003), or “over-trusted,”
resulting in automation-induced complacency (Parasuraman, Molloy, & Singh, 1993). In addition, the rapidly
changing abilities of technologies, as well as the needs of the warfighter, will require that operators be able to manage
their own workload, and take on or shed tasks when appropriate. From these three broad categories, several essential
KSAs will emerge or fundamentally change from how they are currently defined.

It is also important to consider is the influence of these KSAs in defining the training technologies being utilized. It is
likely that moving forward, the challenges presented by communication, trust, and workload balance can be partially
mitigated through training technology solutions such as synthetic crewmembers, unmanned team members designed
for appropriate trust calibration, and job aids for proper tasking allocation. The current paper will discuss these three
broad constructs, the KSAs associated with each, and the prospect of currently developing technologies to support the
training of these new and changing KSA needs. As a result, practitioners will be able to identify MUM-T training
barriers within their own efforts, as well as successfully determine effective training solutions focused on those
challenges.
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INTRODUCTION

Over the past decades, the Department of Defense (DoD) has focused significant resources toward the employment
of unmanned aerial, ground, maritime, and space systems to support a vast array of missions. These unmanned systems
are guided autonomously and/or by remote operation via ground or other manned assets. Many of the potential
advantages of employing unmanned systems are clear. For example, unmanned systems have potential to provide
better safety to our warfighters by expanding standoff capabilities from enemy forces and reducing exposure to life
threatening tasks (e.g., improvised explosive device (IED) neutralization). Moreover, unmanned systems can support
overcoming the limitations of human operators by potentially reducing workload, expanding continuity of operations,
and augmenting situational awareness (DoD, 2010). Rogoway (2016) cites benefits of unmanned combat aircraft
vehicles, such as lower cost, greater range, greater versatility, easier adaptation of hardware, and their inherent
expendability/disposability. Unmanned vehicles do not require onboard pilots, and therefore pose fewer safety risks
to the operators. Because of these many advantages, the fielding of unmanned systems to support tactical and
operational objectives has expanded exponentially.

Unfortunately, as was noted by the Science Board (2012), unmanned systems are often developed before the concepts
of operations (CONOPS) are fully understood and, therefore, these systems may not be used in actual operations as
designers had intended. Rapid acquisition strategies for numerous unmanned systems have allowed them to bypass
many of the burdensome constraints imposed by multiple stakeholders and bureaucracies. However, that has also
meant that unmanned systems may not have been able to capitalize on the benefits of optimizing total
(hardware/software/human) system performance resulting from a robust systems engineering and human systems
integration approach to development. Of particular concern is the development of optimal human-autonomy
interaction strategies. The potential pitfalls of applying automation without regard for its impact on human operators
and on total system performance have been well-documented and a source of concern for decades. For example,
Bainbridge (1983) warned that at times when automation fails or presents a significant anomaly, human operators are
often called upon to use the very skills the automation had usurped to mitigate the malfunction or anomaly at the very
time when issues are severe enough to exceed the capabilities of the automated system. Three and a half decades later,
Strauch (2017) noted that the same issues forewarned by Bainbridge are every bit as relevant today, even as we have
moved from the somewhat rigid, rule-based, automated systems of the past to the more independent and goal-oriented
autonomous systems of today. Although now we may have a better understanding of the factors involved in effective
human-autonomy teaming, there is still much to learn to optimize effectiveness via design and training.

Poor human-autonomy interaction continues to be cited as a causal factor in many of the most high-profile accidents
of our times. Beyond the safety concerns of automation failures and the “surprises” that they engender, Parasuraman
and Riley (1997) focused on the relationships between system reliability, mental workload, risk, trust, and how they
impacted use of the automation, whether it be underutilizing (disuse), over-compliance (misuse), or optimal use. In
sum, developers should be prudent in how they apply automation to tasks, and even more prudent in how autonomy
is applied. Automated technologies in the DoD have historically ranged from simple threshold-based automatic
systems onboard an aircraft (e.g., Stiitz & Schulte, 2017) to fully autonomous vehicles (e.g., Downs et al., 2007). To
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clarify, while automated processes refer to a system based approach (e.g. software and/or hardware) to a manual and
routine task by following a sequence of steps, autonomous systems seek to leverage advance techniques to replicate
human processing (e.g., machine learning, artificial intelligence) increasing the decision-making capability of the
system (Truszkowski, Hallock, Rouff, Karlin, Rash, Hinchey, & Sterritt, 2009). Because of the more independent
nature of autonomous systems under development today, concerns about human-system interaction have transformed
from manned supervisory control to concepts of manned-unmanned teaming (MUM-T). And, while there is indeed a
large role for incorporating considerations regarding the human operator into system development, there are also
challenges associated with how to prepare those operators to “team” with an autonomous unmanned system. For
example, the Defense Science Board (2012) recommended the following operational courses of action as they relate
to improved usage of autonomy:

e Include unmanned, autonomous system concepts (in all domains—air, ground, maritime and space) in war
games and pre-deployment operational training.

e Ensure that lessons learned from using unmanned systems in the current conflict are broadly disseminated
and are formally reviewed by the Military Services for training and operational improvements for current
systems.

o Develop a unified (all Military Services and domains) feedback mechanism in which operators can input
experiences and recommendations on autonomous system performance and behavior during both training
and mission operations so that common experiences can influence autonomous system design and human-
system collaboration.

o Develop operational training techniques that explicitly build trust in autonomous systems and validate
projected manning efficiencies.

e Invest in modeling and simulation capabilities required to support early operation training to influence
CONOPS development, mission planning, training, and logistics support.

Notably, each of the recommendations relies on training as a primary solution to the MUM-T challenges. Concurrent
development of training systems allows for an early approach to understanding how best to train MUM-T processes.
A review of current and historical performance issues can be used to derive knowledge, skills and attitudes (KSA)
relevant for MUM-T. A few well-documented issues include: incomplete or inaccurate knowledge and mental models
about the automated system’s capabilities, and the inability to transfer what is learned in the classroom to performance
in the aircraft (Sarter, Woods, & Billings, 1997); lack of operator confidence in being able to effectively use the
automated systems and a mis-calibration of trust (Lee & See, 2004); and lack of situational awareness resulting from
issues such as poor feedback, mode surprises, and undirected actions (Sarter et al., 1997). Operators will use
autonomous systems in a way they perceive is familiar and trusted in interactions (De Keyser & Woods, 1990). This
may limit or potentially hamper the human-autonomy teaming. For example, effective human teammates demonstrate
backup behaviors where teammates know other team members’ roles, responsibilities, and reliability (Salas, Sims, &
Burke, 2005), and provide effective communication, such as feedback responses and good coordination where the
right information is given to the appropriate teammate at the correct time (Cooke et al., 2013). Therefore, it is clear
that moving from human-only teams to teams consisting of a mix of humans and autonomy will require the training
of different KSAs. However, there is likely a benefit to performance, if the aforementioned teaming skills are used in
the context of teaming with autonomous systems (Smith-Jentsch, Cannon-Bowers, Tannenbaum & Salas, 2008).

In anticipation of a heavy reliance on training to address challenges of MUM-T solutions as outlined by the Defense
Science Board (2012), there is a need to continue improvements in training for manned platforms as well as an
anticipated need for training technologies to account for unique aspects of MUM-T (e.g., communication, trust,
workload). For example, leveraging unmanned and autonomous systems in war games and pre-deployment
operational training has implications for the Live, Virtual, and Constructive (LVC) training environment. Involving
platforms early in their development will increase safety risks and would therefore encourage integration via virtual
and constructive assets potentially based on modeling and simulation (M&S) data constructed via early design and
testing. This will allow researchers and developers to provide acquisition leadership with quantitative data to identify
future challenges or adjustments to CONOPS, mission planning, and training pipelines. However, MUM-T also has
known challenges for human operator training, including identification of strategies to maximize synthesis of data and
employment of critical thinking skills to determine when and how to investigate automated decisions and
recommendations.
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Based on a review of relevant literature and historical references to human factors contributors to mishaps and safety
issues, we have outlined three constructs for targeted focus in training solution design and development. Each of these
broad constructs — communication, trust, and workload balancing — provides perspective into how to optimize the
design of systems as well as associated learning objects that will inform training solutions, instructional strategies and
methods, and training aids to support remediation or point of need training. The purpose of this paper is to provide
insights into the efforts of researchers and instructional systems developers to better understand some of the KSAs
required to operate and team with unmanned systems and to determine how training systems must evolve to address
these shifting KSAs (see Table 1). In order to do so, this paper explores these three constructs to provide background,
as well to suggest how KSAs will likely change with the increased focus on MUM-T. We present necessary or helpful
changes in training technologies within these constructs to shed light on current changes being made in the training
sphere and to highlight the shifts that must be made moving forward.

Table 1. KSA Taxonomy and Definitions

KSA Type Relevant KSAs for Consideration Construct(s)
Procedure Rule Application: The ability to use two or more facts to perform or carry | Communication
Knowledge out a known algorithm, procedure or set of steps including decision steps

for a class of situations. The learner is able to respond to a particular class
of stimulus situations with a specific class of performances.
Relational System Functionality: Functional and theoretical knowledge of the | Communication;
Knowledge workings of an aircraft's internal systems and interactions. Workload Balance
Team Coordination: Mental model of organizational and team interaction | Communication;
constructs. Workload Balance
Situation Assessment. Awareness of surroundings. Workload Balance
Situated Deliberate Decision Making: Well thought out decisions made prior when | Communication;
Problem needed for effective action. Trust
Solving Troubleshooting: The ability to systematically and/or analytically | Communication
evaluate causes for malfunctions/faults in an aircraft.
Perceptual Cue Pattern Recognition: Identification/discrimination categorization that | Workload Balance
Skills is outside of normal and safe parameters
Attitudes Trust in Automation: Calibration of trust in autonomous diagnostic | Trust
software.
Team Concept: Willingness to work as a team, get a second option, or | Trust
share knowledge.

COMMUNICATION
Changing KSAs

Human-only teams develop a shared mental model of the performance environment, the equipment required, and the
expected interactions with teammates (DeChurch and Mesmer-Magnus, 2010). Having shared knowledge structures
and mental models of roles, responsibilities, and interaction patterns allow improved teaming performance, in which
each teammate aligns their behaviors to develop expectations and make predictions of others’ actions to effectively
communicate and coordinate tasks (Van den Bossche, Gijselaers, Segers, Woltjer & Kirschner, 2011). In human-
autonomy teaming, shared mental models and communications modes may not be possible with the current
technology. As part of this, addressing relational knowledge KSAs such as system functionality and team coordination
will be essential. Further, given that communication is identified as a critical component for effective teaming for
human-only teams (DeChurch & Mesmer-Magnus, 2010) and MUM-T (Sticha, Conzelman and Thibodeaux, 2012),
the human will have to learn how to communicate differently with their machine counterparts.

Communication is a transfer of information between two entities and is complex in nature as information can be
conveyed and interpreted in many ways. Human-human communication is conducted using a variety of methods, such
as spoken words, inflection (pitch and tone), nonverbal body language, written text and visualization, such as symbols,
maps and logos, in both formal and informal forms. In human-autonomous communication, the machine must present
information that the human can understand. The communication of information affects situated problem solving KSAs
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such as deliberate decision making and troubleshooting. Automation transparency is a form of communication to
provide the human insight into the system’s behavior, intentions, and goals (Panganiban et al., 2020). The human must
learn knowledge (e.g., system functionality, team coordination models) relating to communicating with autonomous
systems effectively, such as data location, communication modes, rule applications, system functionality, and team
coordination dynamics, while maintaining situational awareness of the current and expected modes to gain the
information. This information will influence strategic and dynamic decision-making skills (e.g., deliberate decision
making, troubleshooting) for evaluating the autonomous system’s performance. Effective communication and system
transparency can support the attitudinal components such as the calibration of trust (Endsley, 2017) and increase
confidence in the human-autonomy teaming concept. Dzindolet et al. (2003) also noted that training operators to
appropriately use and trust these systems should include instruction on how the system works in addition to providing
opportunities to use the system. Continuing training may be needed as automated capabilities increase for more
human-out-of-the-loop tasking; this continual capability evolution reinforces the importance of effective
communication (Chen, Lakhmani, Stowers, Selkowitz, Wright, & Barnes, 2018).

Effects on Training Technologies

The nature of communication will change as we shift from human-only teams to MUM-T supported by technology
and automated components. The most effective MUM-T strategies and, therefore, the training of those strategies is
heavily dependent on system design decisions related to the level(s) of system autonomy (e.g., manned systems,
remotely piloted aircraft, semi-automated components, and totally autonomous systems and aircraft). How to best
facilitate understanding and cooperation required between operators and the technology is a key question when
considering MUM-T communications training. This is addressed in part by current research regarding the benefits of
synthetic agents as teammates (e.g., Demir & Cooke, 2014). However, though synthetic teammates can perform many
of the necessary tasks in a team, team dynamics between humans and their synthetic teammates still need to be
improved (Demir et al., 2016; McNeese et al., 2018).

In addition, speech-based interfaces may provide a more intuitive communication method with systems. That is while
systems traditionally interact via visual or auditory alerts, speech-based interaction provides a more familiar way of
interaction with technology. However, speech technologies currently lack accuracy, and techniques and performance
vary greatly, depending on the sophistication of the speech capabilities. Automatic Speech Recognition (ASR)
capabilities are promising, although have not yet become a widespread feature in many training systems. This is likely
due to the inherent complexity of modern ASR systems. For example, the system must first be able to generate an
accurate text representation of the user’s speech. , Form an understanding of what that text means the system must
generate an accurate acknowledgement of the request. Finally, the system must perform the appropriate behavior
required of the request, while simultaneously tracking the previous and anticipated dialog of the conversation
(Stensrud et al., 2015).

A possible mitigation to this complex process is to provide training systems with a custom grammar and vocabulary
focusing solely on the doctrinal words and phrases used during training and operations. While this will hypothetically
increase recognition and accuracy, the ASR may not be as robust as more “generalist” ASR systems and will likely
suffer failures when words are spoken outside the custom grammar or vocabulary. Although custom grammars are
expensive to develop, there are strides being made to decrease the time and resources required to generate them, as
well as to enable users to modify their own grammars, without the need of speech engineers (Atkinson et al., 2017).
Additional research questions remain, such as whether the way users of MUM-T systems communicate with their
teammate should be standardized for all users, or whether communication flow is smoother if users are able to
customize their speech interaction with it. In theory, custom phrasing per user could increase the recognition success
rate, leading to a user perception of more reliability, leading to more trust within the manned-unmanned team.
However, implementation standards should be carefully evaluated to ensure that customization does not introduce
increased ambiguity and misinterpretation of human speech resulting in increased response errors.

TRUST
Changing KSAs

Trust is a complex construct, tied to many different KSAs, including knowledge about the other entity being trusted,
skills related to interacting with that entity, and attitudes held that affect that trusting relationship. However,
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understanding impacts of KSAs such as trust in automation and team concepts, as well as deliberate decision-making
regarding trust will be most critical. As MUM-T shifts toward more automated components, including autonomous
vehicles, the KSAs trained will need to reflect the shift to higher degrees of automation to include conditions in which
automation is even considered a team member. Previous research has indicated that human-automation trust (HAT)
has both significant similarities and differences to human-human trust (Jian, Bisantz, & Drury, 2000; Madhavan &
Wiegmann, 2007). Automation offers information differently than humans do — in terms of appearance, interaction,
capabilities, and familiarity. One of the largest influences on trust in automation is the automation’s reliability
(Hancock et al., 2011). If automation is unreliable below a certain threshold (approximately 70%), it can degrade
human operator performance rather than augment it (Wickens & Dixon, 2007). Therefore, it is important for operators
to appropriately calibrate their trust for the automation in question, which will support proper use of the system. Failure
to calibrate appropriately will result in not trusting or over-trusting the system, which may cause disuse or misuse,
respectively (Parasuraman & Riley, 1997). As a result, operators must be able to properly monitor and assess the
system’s responses in order to calibrate (and recalibrate) trust effectively.

The proper calibration of trust requires taking in the information in a rational, problem-solving way and having the
appropriate attitude of a propensity to trust the automation. Some research has found that implicit attitudes toward
automation have an effect on trust in that automation (Merritt, Heimbaugh, LaChapell, & Lee, 2013). When shifting
to teams that more heavily feature automation, these implicit attitudes will need to foster positive collaboration within
teams. Though difficult to train an attitude, propensity to trust can be measured through self-report means (Jessup,
Schneider, Alarcon, Ryan, & Capiola, 2019). Though operators continually work with technology, automation is
changing the tasks operators execute and the way those tasks are completed. Operators must have a propensity to trust
automation to take on these previously human-completed tasks. This is a significant part of individual adoption of
new technologies, which can drive organization-related automation policies.

Effects on Training Technologies

Training technologies must serve two important functions to train trust-related KSAs: train operators to calibrate trust
effectively and maintain a high enough fidelity within training simulations to the actual system. In order to mitigate
some trust calibration concerns, research has investigated ways that design of systems and interactions can contribute
to appropriate trust calibration. One of these ways includes automation transparency — the degree to which the
automation communicates its goals, actions, and reasoning (Chen et al., 2014). A substantial amount of research has
indicated that a higher level of automation transparency can benefit human-machine performance, support proper trust
calibration, and increase operator trust (Wortham & Theodorou, 2017; Yang, Unhelkar, & Shah, 2017; Matthews, Lin,
Panganiban, & Long, 2019). Depending on the complexity of the automated training system, or automation modeled
in a training system, it may be appropriate for the system to communicate varying amounts of different types of
information (e.g., goal, reasoning for actions, actions). While this continuum can range from “black box” automation,
where the operator has no awareness of the system’s actions and reasoning behind those actions, to a maximum state
of information communication such as code visibility, designers must carefully consider the appropriate level of
transparency for the specific use case or environment. Other design measures can be taken to foster proper trusting of
these systems, including the use of clear, consistent, concrete details (Lee & See, 2004).

As previously recognized, trust in automation will influence the performance not only of students, but also of
instructors (Anania, Killilea, & Atkinson, 2018). Automation’s integration in training systems (for MUM-T and
beyond) can re-allocate tasks that instructors previously executed (e.g., roleplaying other entities in a task that would
normally require additional human participants). This leads to a reduction in necessary manpower, time, and ultimately
cost. When designing automated training systems, instructor interfaces can benefit from following some of the same
guidelines to foster appropriate training calibration. It is important that operators be able to trust the technologies they
interact with (when appropriate), as distrusting automation, especially when distrust is unfounded, can significantly
increase operator workload, and overburden human members of the team. This is true for both instructors and students
in the training domain, as well as anyone in the operational domain. Given the tight connection of trust to usage of the
system, these constructs are inherently tied to workload-based KSAs and system design.
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WORKLOAD BALANCE
Changing KSAs

Before the technological advancements of more autonomous systems, automated systems utilized less complex data
sources, simple compartmentalized input-output algorithms with often predefined, rigid outputs. Identified human
performance issues were limited to “errors in interpretation of the data, maintaining situation awareness (SA) or
permitting flawed outputs” (Panganiban, Matthews & Long, 2020, p. 174). As the systems became more autonomous,
their capability to interpret the environment and develop courses of action allowed a shift of specific task loading
away from the operator. This leads to the system functioning more like a collaborative teammate than a tool. However,
with increased complexity, the human has less direct insight into the system’s processes and control of its actions
(Panganiban et al., 2020). In essence, the autonomy is a “black box.” This variation in task coordination and
collaboration teaming interactions with the evolving autonomous system leads to additional performance issues and
increases the difficulty to learn (French, Duenser, & Heathcote, 2018). This situation influences KSAs related to
relational knowledge (e.g., system functionality, team coordination, situation assessment) and perceptual skills (e.g.,
cue pattern recognition).

Human performance is highly dependent on workload,cognitive or otherwise (Parasuraman, Sheridan, & Wickens,
2008). A workload that is too heavy or too light can degrade performance and contribute to a loss of situational
awareness (Proctor and Zandt, 2008; Tsang & Vidulich, 2006). It has been demonstrated that automation and
autonomous systems can be utilized with the goal to reduce human workload, increase situational awareness, and
improve system performance. However, the human teammate gains an additional supervisory role for directing,
overseeing performance, and taking over tasking when necessary as well as becoming a collaborative partner (Endsley,
2017). Performance issues arise when the human lacks the skills or is too task-saturated to identify autonomy errors
by monitoring the system and performing corrective actions when an unexpected or incorrect action is performed
(Kaber & Endsley, 2004). Another performance issue arises when the human becomes complacent and over-reliant
on the system to perform tasks and fails to correctly monitor the actions for errors (e.g., Bailey & Scerbo, 2007).

Effects on Training Technologies

The proliferation of autonomous systems presents new tasks, KSAs, and MUM-T roles for operators that will affect
workload and necessitate the development of new training systems. However, on a more general level, training systems
must teach operators how to deal with shifting workload demands such as by task shedding and gaining whenever
possible to maximize tactical decision-making. In operational systems, this is largely supported by the concept of
adaptive automation, which allows both the user and the system to allocate functions of a task to either the human or
the automation (Inagaki, 2003). When developed prudently, adaptive automation has been shown to improve
situational awareness, benefit operators during high workload times, and ultimately enhance performance (Kaber &
Riley, 1999; Parasuraman, Cosenzo, & De Visser, 2009; de Visser & Parasuraman, 2011). However, there have been
even more examples of poorly designed adaptive automation applications that have produced the opposite effects
often at times when operator task load is at its highest (Weiner, 1989: Billings and Woods, 1994). Operational systems
that currently use adaptive automation can, in part, help with the requisite task shedding and gaining. The training
systems involved for these operational processes should mimic the functions of real-world adaptive automation
applications, potentially through embedded training that is part of the tactical system capabilities. In addition, training
system designers need to ensure they provide training on the KSAs needed for specific operator tasking. For example,
training systems may require the capability to adjust function allocation in order to train students to perform under
different constraints in a flexible way (such as may be experienced with optimal/optional crewing situations).

Opportunities may also arise to train in variable workload systems, such as optionally piloted vehicles in which the
pilot in the vehicle is able to choose when and how they interact with different systems (Miller, Goldman & Musliner,
2002). This would mitigate the possibility of work overload and allows the pilot to focus on other tasks. As roles and
responsibilities shift, the human must have the correct mental models and team coordination knowledge to be able to
identify changes in their workload leading into, during, and after utilization of each mode configuration and maintain
flight skills in order to transfer or take back control of selected tasks. This could mean that the pilot would operate the
aircraft in full manual mode to a fully automated controlled mode depending on what he or she felt was appropriate
(Miller, Goldman & Musliner, 2002). Training in systems that allow for crewing changes could be instrumental in
providing opportunities to practice identifying and constructively managing workload.
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CONCLUSIONS

Previous research into automated and autonomous systems has yielded a wealth of lessons learned that can be
expanded to the emerging needs of MUM-T operations, where operators are teaming with technology more than
simply providing supervisory control. In anticipation of training being the opportunity to correct for any limitations
in design or mismatches between expected and operational uses for automated and autonomous technologies,
considering current best practices that can be scalable and flexible to emerging needs will be critical to MUM-T
operational success. Three key broad constructs were discussed: communication, trust, and workload balance. Shifting
KSAs and the resulting necessary changes in training systems are necessary to investigate early on in the process, to
maintain optimal training and operational readiness.

For communication, aspects of crew resource management (CRM) are likely to transfer to MUM-T training. However,
expanding traditional CRM to investigate tools necessary to aid in building shared knowledge models such as
automation transparency will be an important factor in ensuring effective communication among human and non-
human teammates. Tactical design decisions on how humans interact with various automated or autonomous systems
will ultimately impact the training needs. While research in the last decade on use of synthetic teammates and speech
systems shows promise for communication and coordination, research to evaluate multi-modal interfaces to avoid
impacts to workload simply by adopting a standard human-to-human interaction method may be beneficial in addition
to continuing to advance these agent- and speech-based systems.

Research regarding trust and trust calibration provides insights into considerations for selection, interface design, and
training. While some individuals may be better suited due to attitudes and previous experiences to more readily self-
calibrate trust with automation, there will be opportunities to increase trust and support trust calibration within
operational systems and training. One important shift in system knowledge training may be to ensure that there are
targeted modules and refresher training that provide operators information on the system reliability and limitations.
Additionally, expanding on automation transparency research will be a critical component of the human-machine
interface design for operational systems as well as training systems development. First, investigating implications of
automation transparency levels on operator performance, situational awareness, and workload in specific use cases
will inform user interface design. However, although there may be an optimal solution for expert users in an
operational setting, a technology scaffolding approach (i.e., adjusting the transparency up or down based on trainee
skill level) may afford students with opportunities to calibrate trust and identify specific strategies for technology
implementation. Further, a lack of transparency on an instructor’s system not only influences their adoption of
technology and workload, but it also affects their ability to debrief trainees effectively. If an instructor does not
understand the actions taken by the automated or autonomous systems, it becomes impossible to provide diagnostic
feedback that is critical to increasing learning and performance.

The final construct of interest is workload balance. Automated and autonomous systems may enable workload
reductions due to offloading previously manual tasks such as synthesizing multiple system inputs, or they may increase
workload if operators must conduct significant monitoring to ensure accuracy or avoid losing (or having to regain)
situational awareness. Continuing to explore the operational and training impacts of technologies such as adaptive
automation to afford operators with opportunities to adjust based on operational tempo and competing priorities shows
promise. Additionally, increasing focused training on optimizing such systems based on missions, tasks, or individual
differences, as well as providing vigilance training to ensure operator awareness of the dynamic nature of operational
missions, will likely be necessary focus areas.

As technology rapidly advances and the doctrine for MUM-T evolves (Stitcha et al., 2012; p. 20), there remain
opportunities to increase our understanding of environment specific constructs to address the challenges that exist for
ensuring effective and efficient MUM-T operations. To ensure that operators are provided training tailored to the
KSAs required for MUM-T operations and environments, there is a need to revisit both training needs and
technologies. Continuing a close relationship between system designs and training considerations during the
development of autonomous technologies will be critical to providing effective rapid responses to future needs, with
focus on at least three critical constructs.
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