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ABSTRACT 

 

The proliferation of automation within military contexts is a driving force in the effort to enhance and expand current 

manned-unmanned teaming (MUM-T) programs and policies. However, the shift from manned teaming to a 

collaboration between manned entities, unmanned entities, and automated and autonomous entities will also require a 

shift in the knowledge, skills, and attitudes (KSAs) trained for these teams. Not only will new KSAs be needed, but 

some currently trained KSAs will need to shift in function (e.g., communication will be different with autonomous 

team members than with human team members). This will effect training content as well as delivery potentially with 

new methods and technologies to support. 

 

Overall, three broad constructs of concern for manned-unmanned teaming are: communication, trust, and workload 

balance between manned entities and their unmanned/autonomous counterparts. Communication will change vastly 

when operators are communicating with unmanned, and automated or autonomous entities. Appropriate calibration of 

trust is also a large barrier to seamless MUM-T coordination, given that new technologies (especially automation) 

often are either not trusted by operators, which directly affects their use (Dzindolet et al., 2003), or “over-trusted,” 

resulting in automation-induced complacency (Parasuraman, Molloy, & Singh, 1993). In addition, the rapidly 

changing abilities of technologies, as well as the needs of the warfighter, will require that operators be able to manage 

their own workload, and take on or shed tasks when appropriate. From these three broad categories, several essential 

KSAs will emerge or fundamentally change from how they are currently defined.  

 

It is also important to consider is the influence of these KSAs in defining the training technologies being utilized. It is 

likely that moving forward, the challenges presented by communication, trust, and workload balance can be partially 

mitigated through training technology solutions such as synthetic crewmembers, unmanned team members designed 

for appropriate trust calibration, and job aids for proper tasking allocation. The current paper will discuss these three 

broad constructs, the KSAs associated with each, and the prospect of currently developing technologies to support the 

training of these new and changing KSA needs. As a result, practitioners will be able to identify MUM-T training 

barriers within their own efforts, as well as successfully determine effective training solutions focused on those 

challenges. 
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INTRODUCTION 

 

Over the past decades, the Department of Defense (DoD) has focused significant resources toward the employment 

of unmanned aerial, ground, maritime, and space systems to support a vast array of missions. These unmanned systems 

are guided autonomously and/or by remote operation via ground or other manned assets. Many of the potential 

advantages of employing unmanned systems are clear. For example, unmanned systems have potential to provide 

better safety to our warfighters by expanding standoff capabilities from enemy forces and reducing exposure to life 

threatening tasks (e.g., improvised explosive device (IED) neutralization). Moreover, unmanned systems can support 

overcoming the limitations of human operators by potentially reducing workload, expanding continuity of operations, 

and augmenting situational awareness (DoD, 2010). Rogoway (2016) cites benefits of unmanned combat aircraft 

vehicles, such as lower cost, greater range, greater versatility, easier adaptation of hardware, and their inherent 

expendability/disposability. Unmanned vehicles do not require onboard pilots, and therefore pose fewer safety risks 

to the operators. Because of these many advantages, the fielding of unmanned systems to support tactical and 

operational objectives has expanded exponentially.   

 

Unfortunately, as was noted by the Science Board (2012), unmanned systems are often developed before the concepts 

of operations (CONOPS) are fully understood and, therefore, these systems may not be used in actual operations as 

designers had intended. Rapid acquisition strategies for numerous unmanned systems have allowed them to bypass 

many of the burdensome constraints imposed by multiple stakeholders and bureaucracies. However, that has also 

meant that unmanned systems may not have been able to capitalize on the benefits of optimizing total 

(hardware/software/human) system performance resulting from a robust systems engineering and human systems 

integration approach to development. Of particular concern is the development of optimal human-autonomy 

interaction strategies. The potential pitfalls of applying automation without regard for its impact on human operators 

and on total system performance have been well-documented and a source of concern for decades. For example, 

Bainbridge (1983) warned that at times when automation fails or presents a significant anomaly, human operators are 

often called upon to use the very skills the automation had usurped to mitigate the malfunction or anomaly at the very 

time when issues are severe enough to exceed the capabilities of the automated system. Three and a half decades later, 

Strauch (2017) noted that the same issues forewarned by Bainbridge are every bit as relevant today, even as we have 

moved from the somewhat rigid, rule-based, automated systems of the past to the more independent and goal-oriented 

autonomous systems of today. Although now we may have a better understanding of the factors involved in effective 

human-autonomy teaming, there is still much to learn to optimize effectiveness via design and training.  

 

Poor human-autonomy interaction continues to be cited as a causal factor in many of the most high-profile accidents 

of our times. Beyond the safety concerns of automation failures and the “surprises” that they engender, Parasuraman 

and Riley (1997) focused on the relationships between system reliability, mental workload, risk, trust, and how they 

impacted use of the automation, whether it be underutilizing (disuse), over-compliance (misuse), or optimal use. In 

sum, developers should be prudent in how they apply automation to tasks, and even more prudent in how autonomy 

is applied. Automated technologies in the DoD have historically ranged from simple threshold-based automatic 

systems onboard an aircraft (e.g., Stütz & Schulte, 2017) to fully autonomous vehicles (e.g., Downs et al., 2007). To 
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clarify, while automated processes refer to a system based approach (e.g. software and/or hardware) to a manual and 

routine task by following a sequence of steps, autonomous systems seek to leverage advance techniques to replicate 

human processing (e.g., machine learning, artificial intelligence) increasing the decision-making capability of the 

system (Truszkowski, Hallock, Rouff, Karlin, Rash, Hinchey, & Sterritt, 2009). Because of the more independent 

nature of autonomous systems under development today, concerns about human-system interaction have transformed 

from manned supervisory control to concepts of manned-unmanned teaming (MUM-T). And, while there is indeed a 

large role for incorporating considerations regarding the human operator into system development, there are also 

challenges associated with how to prepare those operators to “team” with an autonomous unmanned system. For 

example, the Defense Science Board (2012) recommended the following operational courses of action as they relate 

to improved usage of autonomy:  

 

• Include unmanned, autonomous system concepts (in all domains—air, ground, maritime and space) in war 

games and pre-deployment operational training. 

• Ensure that lessons learned from using unmanned systems in the current conflict are broadly disseminated 

and are formally reviewed by the Military Services for training and operational improvements for current 

systems. 

• Develop a unified (all Military Services and domains) feedback mechanism in which operators can input 

experiences and recommendations on autonomous system performance and behavior during both training 

and mission operations so that common experiences can influence autonomous system design and human-

system collaboration. 

• Develop operational training techniques that explicitly build trust in autonomous systems and validate 

projected manning efficiencies. 

• Invest in modeling and simulation capabilities required to support early operation training to influence 

CONOPS development, mission planning, training, and logistics support. 

Notably, each of the recommendations relies on training as a primary solution to the MUM-T challenges. Concurrent 

development of training systems allows for an early approach to understanding how best to train MUM-T processes. 

A review of current and historical performance issues can be used to derive knowledge, skills and attitudes (KSA) 

relevant for MUM-T. A few well-documented issues include: incomplete or inaccurate knowledge and mental models 

about the automated system’s capabilities, and the inability to transfer what is learned in the classroom to performance 

in the aircraft (Sarter, Woods, & Billings, 1997); lack of operator confidence in being able to effectively use the 

automated systems and a mis-calibration of trust (Lee & See, 2004); and lack of situational awareness resulting from 

issues such as poor feedback, mode surprises, and undirected actions (Sarter et al., 1997). Operators will use 

autonomous systems in a way they perceive is familiar and trusted in interactions (De Keyser & Woods, 1990). This 

may limit or potentially hamper the human-autonomy teaming. For example, effective human teammates demonstrate 

backup behaviors where teammates know other team members’ roles, responsibilities, and reliability (Salas, Sims, & 

Burke, 2005), and provide effective communication, such as feedback responses and good coordination where the 

right information is given to the appropriate teammate at the correct time (Cooke et al., 2013). Therefore, it is clear 

that moving from human-only teams to teams consisting of a mix of humans and autonomy will require the training 

of different KSAs. However, there is likely a benefit to performance, if the aforementioned teaming skills are used in 

the context of teaming with autonomous systems (Smith-Jentsch, Cannon-Bowers, Tannenbaum & Salas, 2008).  

 

In anticipation of a heavy reliance on training to address challenges of MUM-T solutions as outlined by the Defense 

Science Board (2012), there is a need to continue improvements in training for manned platforms as well as an 

anticipated need for training technologies to account for unique aspects of MUM-T (e.g., communication, trust, 

workload). For example, leveraging unmanned and autonomous systems in war games and pre-deployment 

operational training has implications for the Live, Virtual, and Constructive (LVC) training environment. Involving 

platforms early in their development will increase safety risks and would therefore encourage integration via virtual 

and constructive assets potentially based on modeling and simulation (M&S) data constructed via early design and 

testing. This will allow researchers and developers to provide acquisition leadership with quantitative data to identify 

future challenges or adjustments to CONOPS, mission planning, and training pipelines. However, MUM-T also has 

known challenges for human operator training, including identification of strategies to maximize synthesis of data and 

employment of critical thinking skills to determine when and how to investigate automated decisions and 

recommendations.  
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Based on a review of relevant literature and historical references to human factors contributors to mishaps and safety 

issues, we have outlined three constructs for targeted focus in training solution design and development. Each of these 

broad constructs – communication, trust, and workload balancing – provides perspective into how to optimize the 

design of systems as well as associated learning objects that will inform training solutions, instructional strategies and 

methods, and training aids to support remediation or point of need training. The purpose of this paper is to provide 

insights into the efforts of researchers and instructional systems developers to better understand some of the KSAs 

required to operate and team with unmanned systems and to determine how training systems must evolve to address 

these shifting KSAs (see Table 1). In order to do so, this paper explores these three constructs to provide background, 

as well to suggest how KSAs will likely change with the increased focus on MUM-T. We present necessary or helpful 

changes in training technologies within these constructs to shed light on current changes being made in the training 

sphere and to highlight the shifts that must be made moving forward. 

 

Table 1. KSA Taxonomy and Definitions 

KSA Type Relevant KSAs for Consideration Construct(s) 

Procedure 

Knowledge  

 

Rule Application: The ability to use two or more facts to perform or carry 

out a known algorithm, procedure or set of steps including decision steps 

for a class of situations. The learner is able to respond to a particular class 

of stimulus situations with a specific class of performances. 

Communication 

Relational 

Knowledge 

 

System Functionality: Functional and theoretical knowledge of the 

workings of an aircraft's internal systems and interactions. 

Communication; 

Workload Balance 

Team Coordination: Mental model of organizational and team interaction 

constructs. 

Communication; 

Workload Balance 

Situation Assessment: Awareness of surroundings. Workload Balance 

Situated 

Problem 

Solving  

 

Deliberate Decision Making: Well thought out decisions made prior when 

needed for effective action.  

Communication; 

Trust 

Troubleshooting: The ability to systematically and/or analytically 

evaluate causes for malfunctions/faults in an aircraft. 

Communication 

Perceptual 

Skills  

Cue Pattern Recognition: Identification/discrimination categorization that 

is outside of normal and safe parameters 

Workload Balance 

Attitudes 

 

Trust in Automation: Calibration of trust in autonomous diagnostic 

software. 

Trust 

Team Concept: Willingness to work as a team, get a second option, or 

share knowledge. 

Trust 

 

 

COMMUNICATION 

 

Changing KSAs 

 

Human-only teams develop a shared mental model of the performance environment, the equipment required, and the 

expected interactions with teammates (DeChurch and Mesmer-Magnus, 2010). Having shared knowledge structures 

and mental models of roles, responsibilities, and interaction patterns allow improved teaming performance, in which 

each teammate aligns their behaviors to develop expectations and make predictions of others’ actions to effectively 

communicate and coordinate tasks (Van den Bossche, Gijselaers, Segers, Woltjer & Kirschner, 2011). In human-

autonomy teaming, shared mental models and communications modes may not be possible with the current 

technology. As part of this, addressing relational knowledge KSAs such as system functionality and team coordination 

will be essential. Further, given that communication is identified as a critical component for effective teaming for 

human-only teams (DeChurch & Mesmer-Magnus, 2010) and MUM-T (Sticha, Conzelman and Thibodeaux, 2012), 

the human will have to learn how to communicate differently with their machine counterparts.  

 

Communication is a transfer of information between two entities and is complex in nature as information can be 

conveyed and interpreted in many ways. Human-human communication is conducted using a variety of methods, such 

as spoken words, inflection (pitch and tone), nonverbal body language, written text and visualization, such as symbols, 

maps and logos, in both formal and informal forms. In human-autonomous communication, the machine must present 

information that the human can understand. The communication of information affects situated problem solving KSAs 
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such as deliberate decision making and troubleshooting. Automation transparency is a form of communication to 

provide the human insight into the system’s behavior, intentions, and goals (Panganiban et al., 2020). The human must 

learn knowledge (e.g., system functionality, team coordination models) relating to communicating with autonomous 

systems effectively, such as data location, communication modes, rule applications, system functionality, and team 

coordination dynamics, while maintaining situational awareness of the current and expected modes to gain the 

information. This information will influence strategic and dynamic decision-making skills (e.g., deliberate decision 

making, troubleshooting) for evaluating the autonomous system’s performance. Effective communication and system 

transparency can support the attitudinal components such as the calibration of trust (Endsley, 2017) and increase 

confidence in the human-autonomy teaming concept. Dzindolet et al. (2003) also noted that training operators to 

appropriately use and trust these systems should include instruction on how the system works in addition to providing 

opportunities to use the system.  Continuing training may be needed as automated capabilities increase for more 

human-out-of-the-loop tasking; this continual capability evolution reinforces the importance of effective 

communication (Chen, Lakhmani, Stowers, Selkowitz, Wright, & Barnes, 2018).  

 

Effects on Training Technologies 

 

The nature of communication will change as we shift from human-only teams to MUM-T supported by technology 

and automated components. The most effective MUM-T strategies and, therefore, the training of those strategies is 

heavily dependent on system design decisions related to the level(s) of system autonomy (e.g., manned systems, 

remotely piloted aircraft, semi-automated components, and totally autonomous systems and aircraft). How to best 

facilitate understanding and cooperation required between operators and the technology is a key question when 

considering MUM-T communications training. This is addressed in part by current research regarding the benefits of 

synthetic agents as teammates (e.g., Demir & Cooke, 2014). However, though synthetic teammates can perform many 

of the necessary tasks in a team, team dynamics between humans and their synthetic teammates still need to be 

improved (Demir et al., 2016; McNeese et al., 2018). 

 

In addition, speech-based interfaces may provide a more intuitive communication method with systems. That is while 

systems traditionally interact via visual or auditory alerts, speech-based interaction provides a more familiar way of 

interaction with technology. However, speech technologies currently lack accuracy, and techniques and performance 

vary greatly, depending on the sophistication of the speech capabilities. Automatic Speech Recognition (ASR) 

capabilities are promising, although have not yet become a widespread feature in many training systems. This is likely 

due to the inherent complexity of modern ASR systems. For example, the system must first be able to generate an 

accurate text representation of the user’s speech. , Form an understanding of what that text means the system must 

generate an accurate acknowledgement of the request. Finally, the system must perform the appropriate behavior 

required of the request, while simultaneously tracking the previous and anticipated dialog of the conversation 

(Stensrud et al., 2015). 

 

A possible mitigation to this complex process is to provide training systems with a custom grammar and vocabulary 

focusing solely on the doctrinal words and phrases used during training and operations. While this will hypothetically 

increase recognition and accuracy, the ASR may not be as robust as more “generalist” ASR systems and will likely 

suffer failures when words are spoken outside the custom grammar or vocabulary. Although custom grammars are 

expensive to develop, there are strides being made to decrease the time and resources required to generate them, as 

well as to enable users to modify their own grammars, without the need of speech engineers (Atkinson et al., 2017). 

Additional research questions remain, such as whether the way users of MUM-T systems communicate with their 

teammate should be standardized for all users, or whether communication flow is smoother if users are able to 

customize their speech interaction with it. In theory, custom phrasing per user could increase the recognition success 

rate, leading to a user perception of more reliability, leading to more trust within the manned-unmanned team. 

However, implementation standards should be carefully evaluated to ensure that customization does not introduce 

increased ambiguity and misinterpretation of human speech resulting in increased response errors. 

 

TRUST 

 

Changing KSAs 

 

Trust is a complex construct, tied to many different KSAs, including knowledge about the other entity being trusted, 

skills related to interacting with that entity, and attitudes held that affect that trusting relationship. However, 
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understanding impacts of KSAs such as trust in automation and team concepts, as well as deliberate decision-making 

regarding trust will be most critical. As MUM-T shifts toward more automated components, including autonomous 

vehicles, the KSAs trained will need to reflect the shift to higher degrees of automation to include conditions in which 

automation is even considered a team member. Previous research has indicated that human-automation trust (HAT) 

has both significant similarities and differences to human-human trust (Jian, Bisantz, & Drury, 2000; Madhavan & 

Wiegmann, 2007). Automation offers information differently than humans do – in terms of appearance, interaction, 

capabilities, and familiarity. One of the largest influences on trust in automation is the automation’s reliability 

(Hancock et al., 2011). If automation is unreliable below a certain threshold (approximately 70%), it can degrade 

human operator performance rather than augment it (Wickens & Dixon, 2007). Therefore, it is important for operators 

to appropriately calibrate their trust for the automation in question, which will support proper use of the system. Failure 

to calibrate appropriately will result in not trusting or over-trusting the system, which may cause disuse or misuse, 

respectively (Parasuraman & Riley, 1997). As a result, operators must be able to properly monitor and assess the 

system’s responses in order to calibrate (and recalibrate) trust effectively.  

 

The proper calibration of trust requires taking in the information in a rational, problem-solving way and having the 

appropriate attitude of a propensity to trust the automation. Some research has found that implicit attitudes toward 

automation have an effect on trust in that automation (Merritt, Heimbaugh, LaChapell, & Lee, 2013). When shifting 

to teams that more heavily feature automation, these implicit attitudes will need to foster positive collaboration within 

teams. Though difficult to train an attitude, propensity to trust can be measured through self-report means (Jessup, 

Schneider, Alarcon, Ryan, & Capiola, 2019). Though operators continually work with technology, automation is 

changing the tasks operators execute and the way those tasks are completed. Operators must have a propensity to trust 

automation to take on these previously human-completed tasks. This is a significant part of individual adoption of 

new technologies, which can drive organization-related automation policies. 

 

Effects on Training Technologies 

 

Training technologies must serve two important functions to train trust-related KSAs: train operators to calibrate trust 

effectively and maintain a high enough fidelity within training simulations to the actual system. In order to mitigate 

some trust calibration concerns, research has investigated ways that design of systems and interactions can contribute 

to appropriate trust calibration. One of these ways includes automation transparency – the degree to which the 

automation communicates its goals, actions, and reasoning (Chen et al., 2014). A substantial amount of research has 

indicated that a higher level of automation transparency can benefit human-machine performance, support proper trust 

calibration, and increase operator trust (Wortham & Theodorou, 2017; Yang, Unhelkar, & Shah, 2017; Matthews, Lin, 

Panganiban, & Long, 2019). Depending on the complexity of the automated training system, or automation modeled 

in a training system, it may be appropriate for the system to communicate varying amounts of different types of 

information (e.g., goal, reasoning for actions, actions). While this continuum can range from “black box” automation, 

where the operator has no awareness of the system’s actions and reasoning behind those actions, to a maximum state 

of information communication such as code visibility, designers must carefully consider the appropriate level of 

transparency for the specific use case or environment. Other design measures can be taken to foster proper trusting of 

these systems, including the use of clear, consistent, concrete details (Lee & See, 2004).  

 

As previously recognized, trust in automation will influence the performance not only of students, but also of 

instructors (Anania, Killilea, & Atkinson, 2018). Automation’s integration in training systems (for MUM-T and 

beyond) can re-allocate tasks that instructors previously executed (e.g., roleplaying other entities in a task that would 

normally require additional human participants). This leads to a reduction in necessary manpower, time, and ultimately 

cost. When designing automated training systems, instructor interfaces can benefit from following some of the same 

guidelines to foster appropriate training calibration. It is important that operators be able to trust the technologies they 

interact with (when appropriate), as distrusting automation, especially when distrust is unfounded, can significantly 

increase operator workload, and overburden human members of the team. This is true for both instructors and students 

in the training domain, as well as anyone in the operational domain. Given the tight connection of trust to usage of the 

system, these constructs are inherently tied to workload-based KSAs and system design. 
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WORKLOAD BALANCE 

 

Changing KSAs 

 

Before the technological advancements of more autonomous systems, automated systems utilized less complex data 

sources, simple compartmentalized input-output algorithms with often predefined, rigid outputs. Identified human 

performance issues were limited to “errors in interpretation of the data, maintaining situation awareness (SA) or 

permitting flawed outputs” (Panganiban, Matthews & Long, 2020, p. 174). As the systems became more autonomous, 

their capability to interpret the environment and develop courses of action allowed a shift of specific task loading 

away from the operator. This leads to the system functioning more like a collaborative teammate than a tool. However, 

with increased complexity, the human has less direct insight into the system’s processes and control of its actions 

(Panganiban et al., 2020). In essence, the autonomy is a “black box.” This variation in task coordination and 

collaboration teaming interactions with the evolving autonomous system leads to additional performance issues and 

increases the difficulty to learn (French, Duenser, & Heathcote, 2018). This situation influences KSAs related to 

relational knowledge (e.g., system functionality, team coordination, situation assessment) and perceptual skills (e.g., 

cue pattern recognition). 

 

Human performance is highly dependent on workload,cognitive or otherwise (Parasuraman, Sheridan, & Wickens, 

2008). A workload that is too heavy or too light can degrade performance and contribute to a loss of situational 

awareness (Proctor and Zandt, 2008; Tsang & Vidulich, 2006). It has been demonstrated that automation and 

autonomous systems can be utilized with the goal to reduce human workload, increase situational awareness, and 

improve system performance. However, the human teammate gains an additional supervisory role for directing, 

overseeing performance, and taking over tasking when necessary as well as becoming a collaborative partner (Endsley, 

2017). Performance issues arise when the human lacks the skills or is too task-saturated to identify autonomy errors 

by monitoring the system and performing corrective actions when an unexpected or incorrect action is performed 

(Kaber & Endsley, 2004). Another performance issue arises when the human becomes complacent and over-reliant 

on the system to perform tasks and fails to correctly monitor the actions for errors (e.g., Bailey & Scerbo, 2007). 

 

Effects on Training Technologies 

 

The proliferation of autonomous systems presents new tasks, KSAs, and MUM-T roles for operators that will affect 

workload and necessitate the development of new training systems. However, on a more general level, training systems 

must teach operators how to deal with shifting workload demands such as by task shedding and gaining whenever 

possible to maximize tactical decision-making. In operational systems, this is largely supported by the concept of 

adaptive automation, which allows both the user and the system to allocate functions of a task to either the human or 

the automation (Inagaki, 2003). When developed prudently, adaptive automation has been shown to improve 

situational awareness, benefit operators during high workload times, and ultimately enhance performance (Kaber & 

Riley, 1999; Parasuraman, Cosenzo, & De Visser, 2009; de Visser & Parasuraman, 2011). However, there have been 

even more examples of poorly designed adaptive automation applications that have produced the opposite effects 

often at times when operator task load is at its highest (Weiner, 1989: Billings and Woods, 1994). Operational systems 

that currently use adaptive automation can, in part, help with the requisite task shedding and gaining. The training 

systems involved for these operational processes should mimic the functions of real-world adaptive automation 

applications, potentially through embedded training that is part of the tactical system capabilities. In addition, training 

system designers need to ensure they provide training on the KSAs needed for specific operator tasking. For example, 

training systems may require the capability to adjust function allocation in order to train students to perform under 

different constraints in a flexible way (such as may be experienced with optimal/optional crewing situations). 

 

Opportunities may also arise to train in variable workload systems, such as optionally piloted vehicles in which the 

pilot in the vehicle is able to choose when and how they interact with different systems (Miller, Goldman & Musliner, 

2002). This would mitigate the possibility of work overload and allows the pilot to focus on other tasks. As roles and 

responsibilities shift, the human must have the correct mental models and team coordination knowledge to be able to 

identify changes in their workload leading into, during, and after utilization of each mode configuration and maintain 

flight skills in order to transfer or take back control of selected tasks. This could mean that the pilot would operate the 

aircraft in full manual mode to a fully automated controlled mode depending on what he or she felt was appropriate 

(Miller, Goldman & Musliner, 2002). Training in systems that allow for crewing changes could be instrumental in 

providing opportunities to practice identifying and constructively managing workload. 
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CONCLUSIONS 

 

Previous research into automated and autonomous systems has yielded a wealth of lessons learned that can be 

expanded to the emerging needs of MUM-T operations, where operators are teaming with technology more than 

simply providing supervisory control. In anticipation of training being the opportunity to correct for any limitations 

in design or mismatches between expected and operational uses for automated and autonomous technologies, 

considering current best practices that can be scalable and flexible to emerging needs will be critical to MUM-T 

operational success. Three key broad constructs were discussed: communication, trust, and workload balance. Shifting 

KSAs and the resulting necessary changes in training systems are necessary to investigate early on in the process, to 

maintain optimal training and operational readiness. 

 

For communication, aspects of crew resource management (CRM) are likely to transfer to MUM-T training. However, 

expanding traditional CRM to investigate tools necessary to aid in building shared knowledge models such as 

automation transparency will be an important factor in ensuring effective communication among human and non-

human teammates. Tactical design decisions on how humans interact with various automated or autonomous systems 

will ultimately impact the training needs. While research in the last decade on use of synthetic teammates and speech 

systems shows promise for communication and coordination, research to evaluate multi-modal interfaces to avoid 

impacts to workload simply by adopting a standard human-to-human interaction method may be beneficial in addition 

to continuing to advance these agent- and speech-based systems.  

 

Research regarding trust and trust calibration provides insights into considerations for selection, interface design, and 

training. While some individuals may be better suited due to attitudes and previous experiences to more readily self-

calibrate trust with automation, there will be opportunities to increase trust and support trust calibration within 

operational systems and training. One important shift in system knowledge training may be to ensure that there are 

targeted modules and refresher training that provide operators information on the system reliability and limitations. 

Additionally, expanding on automation transparency research will be a critical component of the human-machine 

interface design for operational systems as well as training systems development. First, investigating implications of 

automation transparency levels on operator performance, situational awareness, and workload in specific use cases 

will inform user interface design. However, although there may be an optimal solution for expert users in an 

operational setting, a technology scaffolding approach (i.e., adjusting the transparency up or down based on trainee 

skill level) may afford students with opportunities to calibrate trust and identify specific strategies for technology 

implementation. Further, a lack of transparency on an instructor’s system not only influences their adoption of 

technology and workload, but it also affects their ability to debrief trainees effectively. If an instructor does not 

understand the actions taken by the automated or autonomous systems, it becomes impossible to provide diagnostic 

feedback that is critical to increasing learning and performance.  

 

The final construct of interest is workload balance. Automated and autonomous systems may enable workload 

reductions due to offloading previously manual tasks such as synthesizing multiple system inputs, or they may increase 

workload if operators must conduct significant monitoring to ensure accuracy or avoid losing (or having to regain) 

situational awareness. Continuing to explore the operational and training impacts of technologies such as adaptive 

automation to afford operators with opportunities to adjust based on operational tempo and competing priorities shows 

promise. Additionally, increasing focused training on optimizing such systems based on missions, tasks, or individual 

differences, as well as providing vigilance training to ensure operator awareness of the dynamic nature of operational 

missions, will likely be necessary focus areas.  

 

As technology rapidly advances and the doctrine for MUM-T evolves (Stitcha et al., 2012; p. 20), there remain 

opportunities to increase our understanding of environment specific constructs to address the challenges that exist for 

ensuring effective and efficient MUM-T operations. To ensure that operators are provided training tailored to the 

KSAs required for MUM-T operations and environments, there is a need to revisit both training needs and 

technologies. Continuing a close relationship between system designs and training considerations during the 

development of autonomous technologies will be critical to providing effective rapid responses to future needs, with 

focus on at least three critical constructs. 
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