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ABSTRACT

In recent years, 3D sensors have become increasingly ubiquitous, along with algorithms for integrating the
measurements of these sensors over time to produce detailed and high-fidelity 3D models of both indoor and outdoor
scenes. As large-scale 3D models become easier and cheaper to produce they still remain prohibitively large and
cumbersome to manipulate, thus the emphasis has been slowly shifting from model production to effective storage,
transfer, visualization and processing of these models, as well as facilitating their usability and usefulness when a
human agent is interacting with them. To this end, we propose a novel and fully-automated system for understanding
the distinct components of a large-scale 3D scene and the contextual interactions between such components in order
to get a better understanding of the scene contents and to segment the scene into various semantic categories of interest.
Imbuing existing 3D models with such semantic attributes is a critical first step in the broader 3D scene understanding
problem, allowing automatic identification of different objects, parts of objects or types of terrain, which in turn allows
for these categories to be targeted separately by simulation frameworks, as well as various downstream processes. We
show that through the use of these semantic attributes, it is possible to: i) generate significantly more compact models
without drastic degradations in quality and fidelity, allowing the deployment on mobile platforms with limited
computational capabilities, ii) improve localization accuracy when estimating the full six degrees of freedom (6-DOF)
pose of a mobile agent situated in the scene, and iii) provide agents with richer and smoother interactions with such
3D models during simulations and training scenarios.
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INTRODUCTION

In the last decade, simultaneous breakthrough advances in both 3D sensing hardware technology and large-scale 3D
model inference and/or integration algorithms, supported by visual odometry, simultaneous localization and mapping
(SLAM), 3D point cloud alignment and related capabilities, have made large-scale and detailed models of indoor and
outdoor scenes increasingly ubiquitous. More recently, with the practical advances in deep neural networks, the
research focus in 3D computer vision has shifted from accurate capture and production of high-fidelity 3D models to
meaningful processing of such models by down-stream processes such as dense modeling/meshing (Vanegas et. al.,
2010), (Birdal and llic, 2017), (Wu et. al., 2015), (Ulusoy et. al., 2017); object/target detection (Zhou and Tuzel, 2018),
semantic segmentation (Landrieu and Simonovsky, 2018), (Qi and Yi and Su and Guibas, 2017), model
alignment/registration (Avidar et. al., 2017), (Lee et. al., 2017), model/mesh simplification (Zou et. al., 2017) among
others. The broader goal of this collective research effort is to bring state-of-the-art capabilities for algorithmic
reasoning and scene understanding closer to actual human cognition of 3D scenes, with practical approaches for
imbuing these large-scale models with useful attributions that assist the aforementioned downstream processes. The
first step towards this goal is solving the problem of 3D semantic segmentation, namely the problem of delineating
different categories of areas, objects and parts in a given scene to infer a basic attribute layer is semantically
meaningful to a human agent. See Figure 1 for a result of the proposed approach. The 3D semantic models can be
used for a broad set of applications ranging from mission planning and rehearsal using geo-specific simulation models,
training using augmented or virtual reality systems, and GPS-denied navigation for tactical situations.

Figure 1. A scene from the public DublinCity benchmark, colorized by different semantic caegories as
inferred by the approach presented in this paper. Teal: facade, Orange: roof, Dark Green: grass, Light
Green: tree, Yellow: bush, Gray: street, Pink: sidewalk, Red: clutter.

In this paper, we present a robust, state-of-the-art and end-to-end automated 3D segmentation system that targets
large-scale outdoor scenes and effectively combines a number of previously unrelated approaches and techniques.
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Specifically, the pipeline integrates: i) rule-based sequential algorithms for 3D point cloud data, ii) image-based deep
neural networks, iii) 3D deep neural networks, both convolutional and graph-based, and iv) efficient raycasting to
merge inferences in 2D and 3D. Once integrated, these components address the shortcomings of each other to produce
state-of-the-art semantic segmentation results on the most recent and most comprehensive outdoor 3D semantics
benchmark, DublinCity Dataset (Zolanvari et. al., 2019), (Laefer et. al., 2017).

The problem of 3D semantic segmentation on large-scale scenes contains a few fundamental challenges:

i)  Scene complexity: Modeling entire scenes instead of individual, cleanly-separated objects is significantly more
challenging due to high variability in scene content and composition, complex surface geometries, self-occlusions
and the need for higher spatial resolution due to size disparities between different types of objects.

ii) Training data acquisition and labeling: Annotating 3D data is non-trivial and costly, and very few high-quality,
large-scale benchmarks exist for outdoor scenes that contain labeled ground truth 3D models for training and
evaluation.

iii) Computational bottlenecks: Increased dimensionality of 3D data puts additional strain on computational demands
of deep neural networks and obtaining sufficiently high-resolution 3D results requires innovative designs.

Fully automated semantic segmentation approaches, both in 2D and 3D, have been studied extensively in computer
vision and can be considered in two broad categories. The first, is a rule-based algorithm that encapsulates a set of
declarative statements about the nature of scenes and semantic categories that are being targeted. These statements
can range from being very simple and straightforward, e.g., streets should be at a locally minimum altitude, to being
more complex and relational, e.g., building roofs should mostly be flat, horizontal and supported by vertical walls.
Sequential algorithms that encapsulate a number of such constraints are very predictable in behavior and have
high expressive power, however they are often brittle in the face of small, unexpected differences and typically do
not generalize well to novel inputs. Furthermore, it becomes exceedingly difficult to integrate a high number of such
constraints effectively, since each algorithmic piece interacts with all the rest, creating numerous edge cases and
hard-to-predict errors that explicitly need to be considered and addressed.

The second category is a machine learning approach, consisting of either hand-crafted models, or more recently, deep
neural network architectures that are very effective at parsing the implicit knowledge contained within annotated data,
and is akin to human cognition observing many known exemplars to develop the means to recognize, understand and
navigate previously-unknown scenes. Deep neural networks are excellent at capturing such information in a way that
generalizes well to different types of scenes and scene compositions, but they require large amounts of training data
to be effective, and do hardly any explicit reasoning, rendering the underlying mechanism for inferred results
somewhat indecipherable. Due to lack of any explicit reasoning capability, these networks often make trivial errors
that would be easy to fix in a sequential algorithm setting, but such fine-grained, local interventions are difficult to
design and implement in the context of deep learning.

The main contribution of this paper is to present a novel, hybrid pipeline that combines the strengths of both types of
approaches — the machine learning components extract knowledge that is implicit in annotations, while the rule-based
components provide added reliability, generalizability and predictability in behavior. With this system, we are
targeting various simulation and training applications where users inspect or align 3D models or even interact with
them with game engines and/or VR-based simulations. Being able to automatically infer the semantic content of 3D
scenes provide significant capabilities to such simulation and training systems. We demonstrate this capability with
two sets of experiments: i) We show that the availability of semantic attributes allows for a variable-resolution mesh
reconstruction and compression algorithm that can target different types of areas or objects operating at different
resolutions for mission rehearsal and planning on devices with different processing capabilities, and ii) we show that
geo-registration of images to a 3D reference model for augmented reality, GPS denied navigation and other
applications can be done with improved accuracy if semantics are present. We evaluate the accuracy of the semantic
inference results against a hand-annotated ground truth by using a portion of the DublinCity dataset as test samples.

RELATED WORK
Practical neural network architectures for 3D semantic segmentation can be considered in three broad categories.
Voxel-Based Approaches are techniques that are the most intuitive extension to the 3D domain from the 2D image

domain-based approaches and were the earliest to be developed. The idea is to quantize the 3D space into voxels,
octrees or other regular or irregular grid-based structures, and then replicate the functionality of 2D pixel-based
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architectures in three dimensions. UNet-based architectures (Cicek et. al., 2016) use a U-shaped encoder-decoder pair
where the encoder maps the input voxel structure to a lower-dimensional vector, then the decoder maps the vector
back to the same grid structure, with a semantic label attached at each grid location. The encoder and decoder portions
jointly learn how to effectively represent an entire quantized scene or object with a latent vector that contains useful
semantic information. VoxelNet (Zhou and Tuzel, 2018) also utilizes a regular grid and computes unified features for
each voxel location using the point configurations inside each voxel. Octree Generating Networks (Tatarchenko et.
al., 2017) learn to infer efficient octree structures from dense, regular voxel grids to selectively increase the level-of-
detail and model quality in places where fine-grained details matter more. These methods have proved effective in
segmenting individual objects or relatively small scenes, e.g. a single room, but sometimes suffer from quantization-
related errors and are generally unable to effectively deal with larger scenes or very detailed objects before running
into computational limits or having to divide the input into smaller chunks first. Regular grid structures are also not
equipped to deal effectively with sparse data.

Point Cloud-Based Approaches directly ingest the unorganized 3D point cloud structure and fundamentally obey
the permutation invariance of input points, while inferring a semantic label for each of them. PointNet (Qi and Su and
Mo and Guibas, 2017) is a seminal early paper which presents a fully-convolutional neural network which computes
local features around each point using multi-layer perceptrons, and a global feature for the whole input, which is then
appended to each local feature. In this way, PointNet combines a global cue with local ones, resembling the idea of
shape context, or other constellation-type models that have been in widespread use for years to characterize shape.
PointNet architecture is not fully invariant to spatial transformations, but it uses a simpler version of itself as a Spatial
Transformer Network to transform both input points and the computed features closer to a canonical “pose” to provide
some robustness under small-scale transformations. Finally, the use of a global feature as well as a fully convolutional
neural network requires PointNet to represent each input with a fixed number of points, limiting input size and level-
of-detail significantly. PointNet++ (Qi and Yiand Su and Guibas, 2017) is an iteration on this idea that hierarchically
encodes a point cloud by using the embedding vectors from one level as points themselves to encode the next level of
embeddings. Thus, PointNet++ uses semantic embeddings to implicitly break the scene into smaller chunks, allowing
it to handle much larger scenes or objects. SplatNet (Su et. al., 2018) is a more recent approach that interpolates data
onto a permutohedral lattice, filters the data on this sparse lattice, then interpolate the filtered signal back to original
points. The lattice interpolation provides a convenient way to jointly consider 3D point clouds with registered imagery
when available. We use the intuitions provided in these approaches on how best to ingest point cloud data structure,
as well as architectural details from PointNet to represent patches of points with appropriate embedding vectors, but
we explicitly break the Euclidean scene into smaller fragments rather than implicitly do it at the embedding spaces
like PointNet++.

Graph-Based Approaches use a graph-based representation of the scene with graph convolutions to infer
labels, where nodes typically correspond to either individual points, local neighborhoods of points or patches of points
and edges indicate either proximity or adjacency in some pre-defined neighborhood structure. Super-point Graph
(Landrieu and Simonovsky, 2018) is a popular 3D segmentation approach that uses bottom-up geometric features
computed from the covariance matrix of a local neighborhood of points to solve a traditional optimization problem
and compute superpoints — patches of points that are maximally homogeneous in terms of these bottom-up features.
A Voronoi partitioning and an accompanying connectivity analysis is used to transform the scene into a graph, and
semantic labels are inferred for each node using both its own vector embedding as well those belonging to the
neighbors of that node, in order to utilize surrounding context. We make extensive use of these ideas to formulate 3D
segmentation problem as a mixture of graph-based inference and constraints based on first-order logic.

SYSTEM PIPELINE

The design of the system pipeline is predicated on the idea that reliably segmenting the scene into coarse categories
enables further fine-grained segmentation of smaller entities and object parts. See Figure 2 for a complete diagram of
the system pipeline, each module of which is described in greater detail in this section, in the order of data flow.

Pre-Processing: The goal of the pre-processing step is to increase the system’s robustness capability to operate in the
presence of outlier points that are either low-confidence LIDAR measurements or artefacts from the photogrammetry
algorithm. The presence of significant outlier points adversely affects the accuracy of ground level estimation, as well
as distorting the geometry and context surrounding objects or areas of interest, making it harder for the system to infer
the correct semantic labels. The difficulty in coming up with a fully-automated approach to remove such outliers is
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twofold: i) These outliers are not individual, isolated points, but rather are densely-populated patches of points that
locally resemble a legitimate surface, and ii) it is commonplace for certain objects above ground level to be
disconnected from the rest of the scene in a similar way, therefore only the outliers below ground level should be
targeted and removed.
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Figure 2. An overview of the processing pipeline main blocks. Circles/ellipses indicate data and rectangles
indicate processing modules.

Imagery
with Poses
(If Available)

Bare Earth
(Ground
Extraction)

The pre-processing module works as follows: The input point cloud is down-sampled to a spatially uniform resolution
by computing a voxel grid, which is then used to do 26-connected component analysis on the raw point cloud.
Resulting connected components are ordered from largest to smallest according the number of points contained, and
largest n connected components are fused into “scene points” where n is selected such that scene points cover a
sufficiently large portion of the raw input. The goal here is not to capture the entirety of non-outlier points, but rather
to obtain a sufficiently large yet incomplete subset of the input scene that is devoid of any outlier points. The ground
estimation algorithm can then be run on these scene points without being derailed by the outliers. Once a reliable
estimate for the ground level is obtained, all the disconnected components above ground are added back, while the
below-ground patches are discarded.

Ground Extraction: The ground extraction approach is, at its core, a rule-based binary ground vs. non ground
classifier algorithm with robust interpolation capabilities that produces binary labels as well as a DEM representation
of the terrain and follows an earlier work (Matei et al., 2008). It grows patches of 3D points from a number of seed
points that have locally minimum altitudes; the region-growing itself takes into account smoothness of local point
neighborhoods. The disjoint patches are eventually merged and filled to create the ground layer. Aside from allowing
the below-ground outliers to be targeted and discarded, the extracted ground serves as a valuable frame of reference
for all other objects present in the scene, establishing a useful coordinate system and allowing us to utilize height-
above-ground elevation values and provide excellent performance in rapidly-changing terrain conditions such as hills,
mountains and vineyards.

Superpoints: Scene Partitioning Using 3D VVoronoi Diagrams: The idea of superpoints (Landrieu and Simonovsky,
2018) is analogous to superpixels (Achanta et. al., 2012): they are local groupings of 3D points that are
homogenous in terms of a set of desired properties. In the use case of this pipeline, the desired properties are a set of
local geometric features expressed in terms of eigenvalues of point distributions, as well as appearance features like
color and texture. By formulating the point classification problem at the level of superpoints rather than individual
points, the computational complexity and the size of the required training data is reduced drastically without impacting
the performance, assuming that the superpoint partitioning is such that all the points in a given superpoint belong to
one semantic category only. Once the features of interest are computed for each point, the superpoint partitioning is
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done using cut-pursuit optimizer (Landrieu and Obozinski, 2018), (Raguet and Landrieu, 2018). A regularization
strength parameter determines how aggressive the grouping will be, and it is empirically selected for each sensor type.
Using these superpoint partitions, a Delaunay triangulation of the complete 3D input point cloud is computed, resulting
in a Voronoi diagram that dictates a graph topology on the superpoints where graph edges indicate a shared boundary
between at least a single pair of points across two different superpoints. These edges are further weighted by “edge
features” which are computed from the complete set of 3-dimensional offsets between neighboring points across two
different superpoints. This graph becomes the intermediate representation for the input scene, where each node is a
superpoint, see Figure 3 for an illustration. Defining neighborhoods this way instead of by proximity allows for very
long-range interactions between different regions if the space between them is empty. This is a very compact and very
powerful representation for effectively taking into account context during segmentation.

Colorized 3D Point Cloud Input Handcrafted Features Superpoint Graph

Figure 3. Input point cloud with RGB (left), color-coded local geometric features (center) and resulting
superpoints and the neighborhood graph (right).

PointNet and Graph Convolutions: Graphs are among the most general data types to effectively represent entities
and their relationships, therefore they lend themselves naturally to the problem of modeling context. In addition, they
allow a functional combination relational structures known or computed a priori, with the end-to-end learning power
of neural networks. In the context of deep learning, graph representations fully generalize the specific connectivity
structures of other standard networks such as convolutional networks (CNNs) which are fully-connected special-case
graphs, and recurrent neural networks (RNNs) which have a chain graph structure.

In the graph neural network paradigm, the standard neural network operations such as convolutions and pooling are

replaced by a 4-step operation over the internal states of each graph node, as well as the graph itself:

i) Message passing: Each edge in the graph carries a message from a sender node to a receiving node. If the graph
is not directional, such as the graph-based representations of outdoor scenes that are used in the pipeline for this
paper, the messages are passed over each edge bidirectionally.

ii) Edge update: Edge features are updated with respect to each receiver node, according to the message carried.

iii) Node update: Updated edge features for each receiver node are aggregated, updating the internal state of the node

iv) Global update: Global attributes of the graph are updated, if any.

For graph edge weights and node update equations, we closely follow the formulation outlined in (Landrieu and
Simonovsky, 2018). The edge weights are features that characterize the geometric properties of each node, i.e.
superpoints, relative to its Voronoi neighbors. Refer to (Landrieu and Simonovsky, 2018) for more details. The latent
vector that stores the internal state of each node prior to any message passing is generated by ingesting each superpoint
patch into a PointNet architecture without the Spatial Transformer Network component. In a way, we use PointNet
architecture in lieu of local geometric features, and the graph convolutions with the edge weights in Table 1 bring in
global context.

Image-Based Segmentation and Efficient Raycasting: While 3D data is typically richer in information content,
image data that is aligned to a 3D reference is not redundant — certain features are simply easier to detect on images,
such as building facades and windows, which are mostly planar structures that lack geometric detail and therefore
must be detected using color, texture or other forms of appearance. While 3D point clouds can also contain these
attributes, the density and connectivity structures of image pixels make them better suited to find these types of objects.
The problem is that these image-based segmentations will then need to be mapped onto the 3D model efficiently.
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To this end, we use state-of-the-art deep neural networks for image-based detection and segmentation, together with
an efficient raycasting approach to transfer the results back into 3D. We experiment with two different structures —
building facades and windows. For building facades, we use a modified version of RetinaNet (Lin et. al., 2017), which
is a network that is very similar to Region-based Convolutional Neural Networks (R-CNNs) (Girshick et. al., 2014)
in that it utilizes a two-stage detection process, first stage computing the anchor locations and aspect ratios while the
second stage regresses to find offsets from these anchors to final detections. Instead of using a bounding box
representation, we alter this network design so that the second stage regresses boxes into general quadrilaterals instead.
The general quad representation allows us to get very tight bounds on building facades, and can be trained on as little
as a few hundred annotated images before it can learn to reliably find rectangular building facades.

Building windows are much smaller features, so trying to fit quads accurately around each window does not work as
reliably as doing pixel-based segmentation to find them. To this end, we use a state-of-the-art variant of UNet
architecture, namely Unified Perceptual Parsing Network (Xiao et. al., 2018). This hierarchical network design uses
features at various semantic levels and identifies compositional structures, i.e. objects and their parts, among detected
«
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concepts. We trained this network on ADE20K .
(Zhou et. al., 2017), (Zhou et. al., 2019), which is
the largest image segmentation dataset and
benchmark to the best of our knowledge. Then we
tested the network on aerial images of SRI
Princeton campus — even though the training data
hardly contains any aerial data, the results are very
accurate, as shown in Figure 4.

We transfer these image-based detection and
segmentation results back into the 3D model
through an efficient ray-casting algorithm that
casts a ray from each pixel into the point cloud to
attempt to find the 3D points corresponding to the : -
detections or segmentations on the image. Since Figure 4. Image-based window segmentations using the
the points are infinitesimally small, the ray is presented pipeline. Window pixels are marked in red.
likely to pass through the point cloud without  Almost all instances of windows are detected accurately,
hitting any actual points. Therefore, we represent  even though the images are taken from an oblique, aerial
the points with spheres of varying radius that these view.

rays could potentially intersect with. It is also true

that a given ray can pass through multiple such spheres, so we pick the intersecting point that is closest to the camera,
which is a form of straightforward occlusion reasoning. Raycasting is a relatively expensive procedure, therefore we
compute an octree structure on the point cloud, and use this octree structure to first find which cells intersect with a
set of rays, and then inside each cell, we process a finer-detail intersection to find which exact points are hit inside a
given cell. The radius of the sphere that is going to be represent each point need to be chosen in a way that takes into
account: 1) density of the point cloud, so that neighboring spheres don’t actually intersect with each other, but also
don’t have large gaps between them, ii) perspective foreshortening, because the points closer to the camera should be
represented with smaller spheres than those that are far, and iii) resolution of the camera image, since that determines
how large a frustum each ray represents. See Figure 5 for an example segmentation results where window detections
are merged from image-based segmentations using this raycasting approach, with other categories inferred from 3D.
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Basic Neural Network Reasoning with First-Order Logic: One of the most fundamental shortcomings with deep
neural networks is their lack of basic reasoning capabilities, which sometimes cause them to make trivial mistakes
that either violate some common-sense facts or yield results that are hard to explain or inconsistent with respect to
some external constraints that are not captured by the supervision. When annotations are abundantly available, this
kind of logical reasoning is not as necessary, but for relatively rare and/or small object categories, it is more crucial.

Most existing approaches integrate such logical constraints into their pipeline either by post-processing inference
results, or by adding additional feature channels to bring out desired properties manually. A much better way would
be to embed such domain knowledge directly inside the training process of all related deep networks, so that they
softly constrain the knowledge implicit in the supervision, rather than directly modifying inference results, or trying
to capture some of the domain knowledge in the feature layers. This idea necessitates the logical constraints, which

IITSEC (2020) Paper No. 20400 Page 6 of 12



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

are normally thought of as operations on binary values, to be expressed in a continuous domain so as to allow for
gradient backpropagation through the logical operators during training. This is the key idea that allows us to tightly
integrate any rule or constraint into deep neural networks, as long as they can be expressed using standard first-order
logic. Such continuous-domain versions of logical operators are referred to as “groundings” for first-order logic, and
the choice of a good set of groundings is crucial in avoiding numerical instabilities as well as other common problems
like vanishing gradients that become more pronounced as the gradients have to flow through more and more layers.
For this system, we use the groundings described in (Sikka et. al., 2020), which maps logical binaries to (—,) range.

Updated 3D Segmentation
Segentatl

NS

merge window segmentations with the other categories (right).

The first step when integrating a rule set or a specific piece of domain knowledge is to write the rules or constraints
as declarative, first-order logic statements, making use of the 7 standard operators: and, or, not, equals, implies, for
all, there exists. Figure 6 shows an example where 3 simple rules about the outdoor scenes are written down, and
computational equivalents to certain semantic phrases such as “touching” and “too small” are defined. These modules
can either be straightforward functions or other neural networks in their own right; regardless, gradients will flow
through them so that the logical constraints can be made a part of the training process. When the rules are expressed

in terms of these functions and —— Gradient Flow
first-order logic operators, the —p Input Comec
expressions in?ply arz:ertain set of / RULES \ ‘4 ot Data e
logical connections between the  uteran and s

segmentation network and the rule et 5 o el e Semantic
grammar. This entire structure is e i ot be S‘-‘gNme"taE““
connected to the latent vector that oomall oo Small” etwor

is used to infer semantic labels, TR

constraining the form it can take, the ground aConssizlofy

thereby constraining the latent

v

. . . Fuzzy Logic
space during training according the

rule constraints. This entire ﬁ
construct allows the system to  Figure 6. A schematic showing some example rules and how they interact
correct for basic common-sense  with a deep neural network. Orange boxes are function implementations
mistakes, while also making the corresponding to the phrases they represent, and blue nodes are
results of the system more continuous-domain logical operators. Together they form the grammar
explainable to a human agent. for a given problem. Gradients flow through the red connections.

EXPERIMENTS AND RESULTS

We formally evaluate the system in two distinct ways. First, we quantitatively evaluate the accuracy of inferred

semantic labels using annotated benchmarks — we simply train the system on a portion of the benchmark and test on

the remaining portion. We present color-coded visualizations of the segmentation results for qualitative inspection, as

well as two metrics for quantitative evaluation:

i) Point classification accuracy: Simply the percentage of 3D points that are accurately classified. Measures the
accuracy of segmentation across all test data and all semantic classes.

ii) Intersection over union: This is a method for measuring how well the regions of each semantic category overlap,
and is basically a ratio of the size of the intersection region over the union region. Here, size refers to number of
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points in the region, and intersection/union operations are done between inferred results and ground truth
annotations.
Second, we prove the usefulness of these inferred labels in two different downstream processes: mesh
reconstruction/compression and pose estimation. Specifically, we show that making these processes “semantics-
aware”, i.e., able to utilize the semantic attribute layer productively, there is demonstrable improvement in
performance.

Qualitative and Quantitative Evaluation on Annotated Benchmarks

We use the largest publicly available outdoor 3D semantic segmentation benchmark, namely DublinCity (Zolanvari
et. al., 2019), (Laefer et. al., 2017) for a formal evaluation of the system. This is a dataset captured by Urban Modelling
Group at University College Dublin via the use of an ALS device on a helicopter, and covers one of the major areas
in Dublin city center, about 2 km?. To the best of our knowledge, it is the largest, densest and most accurate semantic
segmentation benchmark that is publicly available. It also contains many labels organized in a hierarchy across 3
levels — level 1 contains the coarsest categories (building, vegetation, ground and clutter) while level 2 and level 3
contain parts of some of these objects (facade, roof, window, door) or finer-grained subcategories of others (tree, bush,
sidewalk, street, grass). For the purposes of this evaluation, the results are reported on the first two levels.

Since there are no other reported results on this relatively recent and challenging benchmark, we compare the results
of the presented system to a baseline method that is in widespread use in the 3D vision community: PointNet++ (Qi
and Yi and Su and Guibas, 2017), which, as we mentioned earlier, is an extension of the original PointNet architecture
that turns it into a hierarchical process so that larger scenes can be processed. See Tables 1 and 2 for a comparison of
the system’s metrics against this benchmark, and Figure 7 for some visualizations of segmentation results using level
1 and level 2 categories. In most categories and resolutions of data, the presented system is on par or better than the
baseline, with the difference becoming more pronounced when data resolution is increased, and smaller-scale
categories are targeted.

Table 1. Quantitative evaluation results on level 1 of DublinCity benchmark.
Resolution Approach Point loU loU loU

Classification Building Vegetation Clutter
Accuracy
Proposed Pipeline 83.68% 0.346 0.854 0.661 0.317
1o0em PointNet++ 76% 0.35 0.77 0.38 0.00
Proposed Pipeline 89% 0.427 0.91 0.6410 0.378
Soem PointNet++ 83% 0.38 0.82 0.00 0.00

Table 2. Quantitative evaluation results on level 2 of DublinCity benchmark.

Resolution| Approach Point [o]V] [o]V] loU loU
Classification | Roof | facade Clutter | Grass | Street
Accuracy

loU
Sidewalk

Proposed
100cm Pipeline

PointNet++ 64.52% 0412 0554 058 0.000 035 0.185 0.141 0.105

70.71% 0.612 0562 0.603 0.000 0.243 0.196 0.199 0.074

Proposed
30cm Pipeline

PointNet++ 61.06% 0.455 0.563 0.653 0.000 042 0.201 0.203 0.17

69.02% 0.672 0.630 0.813 0.000 0,559 0.161 0.325 0.215

Semantics-Aware Mesh Reconstruction and Compression: One of the common processes downstream from point
cloud acquisition is meshification/dense surface reconstruction, and effective compression of such dense models. The
semantic attributes inferred by the system allow different classes of objects to be targeted by modeling approaches in
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a way that is uniquely tailored to that object class. For instance, using the knowledge that buildings are mostly
rectilinear with sharp boundaries, edges and corners, areas segmented with the “building” label can be processed with
an algorithm that can safely make those assumptions. On the other hand, ground layer can be effectively represented
in 2.5D, using a coarser resolution. This means that different parts of the same scene can be represented at different
resolutions and level-of-detail, making optimal use of computational resources as well as transfer bandwidths and
storage space. By making the meshing/surface reconstruction process aware of semantics in such a simple way gives
the user an ability to produce more compact and lightweight models that can easily be loaded onto mobile platforms,
while preserving distinct and salient features for each category when simplified. In contrast, generic mesh
simplification algorithms lose these important features, or smooth over important details when attempting effective
compression.

Figure 7. Example segmentation results of the system on 3 test tiles from DublinCity dataset. Orange: roof,
Teal: facade, Red: clutter, Grey: street, Pink: sidewalk, Light green: tree, Dark green: grass, Yellow: bush.

Figure 8. The original complete mesh (left) and the result of a semantics-aware mesh compression algorithm
that compactly models ground and building and can throw out the remaining categories if they are not of
interest (right). The original mesh contains 8,260,198 vertices and 16,321,204 faces in 1.25 GB file size, while
the compressed result contains 83,338 vertices and 161,305 faces in 16.2 MB. The remaining classes can also
be added to the simplified mesh at their original resolutions, or their simplified versions generated by
standard, general-purpose mesh simplification algorithms.

To demonstrate this idea, we use the building and ground labels inferred by the system to decouple the meshing
process for ground from those of the buildings. A low-resolution 2.5D representation for ground is used together with
the rectilinear polygonization approach outlined in earlier work (Matei et. al., 2008) to model buildings at a higher
resolution, and remove all other object categories from the meshification process, see Figure 8 for a comparison, and
Figure 9 for an illustration of selectively varying the resolution of “ground” category.

Semantics-Aware Geo-registration of Ground to 3D Reference

Geo-registration refers to the problem of locating an agent in a larger-scale map of its surroundings, using the local
data that is captured by its sensors. A variety of data modalities can be used as the reference map, including satellite
or aerial imagery, but 3D models provide much richer information and therefore are better suited for the task when
they are available. Often, the exact geographic location of such reference maps are known in advance, which in turn
allows for the accurate localization of the said agent on a world map. Such an automatic localization capability is a
powerful tool in the context of autonomous self-navigating robotic agents as well as AR/VR training and simulation
scenarios where a human agent needs to be accurately placed inside particular scene over long periods of time.
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Flgure 9. The presence of semantics allows for varying levels of detail for each category independent of other
categories. Here, the resolution of 2.5D ground is progressively changed from 2m to 10m resolution while
keeping the building resolution constant.

We show that, by providing a semantic understanding layer to both the reference 3D model and the local 2D images
captured by an agent moving through a scene, it is possible to considerably improve the full 6-DOF pose estimation
accuracy for the said agent, resulting in a more accurate motion trajectory that is computed automatically. In this
experiment, the 3D reference is an aerial LIDAR capture and the agent is recording a video feed as it is traversing the
scene. We use the full system to compute the semantics in the 3D model, and a standard image-based segmentation
algorithm to compute the same semantic categories on each frame provided by the agent’s video feed. Then we
compute the 6-DOF pose of the agent’s camera with and without the use of these semantic categories, and compare
the results by using the estimated pose to render the 3D model from the viewpoint of the agent’s camera. It can be
seen that a significant improvement in the localization accuracy is obtained, even when relatively few semantic
categories are used, as seen from Figure 10.
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Figure 10. An input video frame (top-left) is overlayed on top of the 3D semantic reference layer (top-right)
using the pose estimate obtained from image alone. When the semantic layer for the input image (bottom-left)
is also used in the alignment process, the frame is better aligned with the 3D reference (bottom-right).
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