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ABSTRACT 

 

In recent years, 3D sensors have become increasingly ubiquitous, along with algorithms for integrating the 

measurements of these sensors over time to produce detailed and high-fidelity 3D models of both indoor and outdoor 

scenes. As large-scale 3D models become easier and cheaper to produce they still remain prohibitively large and 

cumbersome to manipulate, thus the emphasis has been slowly shifting from model production to effective storage, 

transfer, visualization and processing of these models, as well as facilitating their usability and usefulness when a 

human agent is interacting with them. To this end, we propose a novel and fully-automated system for understanding 

the distinct components of a large-scale 3D scene and the contextual interactions between such components in order 

to get a better understanding of the scene contents and to segment the scene into various semantic categories of interest. 

Imbuing existing 3D models with such semantic attributes is a critical first step in the broader 3D scene understanding 

problem, allowing automatic identification of different objects, parts of objects or types of terrain, which in turn allows 

for these categories to be targeted separately by simulation frameworks, as well as various downstream processes. We 

show that through the use of these semantic attributes, it is possible to: i) generate significantly more compact models 

without drastic degradations in quality and fidelity, allowing the deployment on mobile platforms with limited 

computational capabilities, ii) improve localization accuracy when estimating the full six degrees of freedom (6-DOF) 

pose of a mobile agent situated in the scene, and iii) provide agents with richer and smoother interactions with such 

3D models during simulations and training scenarios. 
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INTRODUCTION 

 

In the last decade, simultaneous breakthrough advances in both 3D sensing hardware technology and large-scale 3D 

model inference and/or integration algorithms, supported by visual odometry, simultaneous localization and mapping 

(SLAM), 3D point cloud alignment and related capabilities, have made large-scale and detailed models of indoor and 

outdoor scenes increasingly ubiquitous. More recently, with the practical advances in deep neural networks, the 

research focus in 3D computer vision has shifted from accurate capture and production of high-fidelity 3D models to 

meaningful processing of such models by down-stream processes such as dense modeling/meshing (Vanegas et. al., 

2010), (Birdal and Ilic, 2017), (Wu et. al., 2015), (Ulusoy et. al., 2017); object/target detection (Zhou and Tuzel, 2018), 

semantic segmentation (Landrieu and Simonovsky, 2018), (Qi and Yi and Su and Guibas, 2017), model 

alignment/registration (Avidar et. al., 2017), (Lee et. al., 2017), model/mesh simplification (Zou et. al., 2017) among 

others. The broader goal of this collective research effort is to bring state-of-the-art capabilities for algorithmic 

reasoning and scene understanding closer to actual human cognition of 3D scenes, with practical approaches for 

imbuing these large-scale models with useful attributions that assist the aforementioned downstream processes. The 

first step towards this goal is solving the problem of 3D semantic segmentation, namely the problem of delineating 

different categories of areas, objects and parts in a given scene to infer a basic attribute layer is semantically 

meaningful to a human agent. See Figure 1 for a result of the proposed approach. The 3D semantic models can be 

used for a broad set of applications ranging from mission planning and rehearsal using geo-specific simulation models, 

training using augmented or virtual reality systems, and GPS-denied navigation for tactical situations. 

 

 
Figure 1. A scene from the public DublinCity benchmark, colorized by different semantic categories as 

inferred by the approach presented in this paper. Teal: facade, Orange: roof, Dark Green: grass, Light 

Green: tree, Yellow: bush, Gray: street, Pink: sidewalk, Red: clutter. 

 

In this paper, we present a robust, state-of-the-art and end-to-end automated 3D segmentation system that targets 

large-scale outdoor scenes and effectively combines a number of previously unrelated approaches and techniques. 
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Specifically, the pipeline integrates: i) rule-based sequential algorithms for 3D point cloud data, ii) image-based deep 

neural networks, iii) 3D deep neural networks, both convolutional and graph-based, and iv) efficient raycasting to 

merge inferences in 2D and 3D. Once integrated, these components address the shortcomings of each other to produce 

state-of-the-art semantic segmentation results on the most recent and most comprehensive outdoor 3D semantics 

benchmark, DublinCity Dataset (Zolanvari et. al., 2019), (Laefer et. al., 2017). 

 

The problem of 3D semantic segmentation on large-scale scenes contains a few fundamental challenges:  

i) Scene complexity: Modeling entire scenes instead of individual, cleanly-separated objects is significantly more 

challenging due to high variability in scene content and composition, complex surface geometries, self-occlusions 

and the need for higher spatial resolution due to size disparities between different types of objects. 

ii) Training data acquisition and labeling: Annotating 3D data is non-trivial and costly, and very few high-quality, 

large-scale benchmarks exist for outdoor scenes that contain labeled ground truth 3D models for training and 

evaluation. 

iii) Computational bottlenecks: Increased dimensionality of 3D data puts additional strain on computational demands 

of deep neural networks and obtaining sufficiently high-resolution 3D results requires innovative designs.  

 

Fully automated semantic segmentation approaches, both in 2D and 3D, have been studied extensively in computer 

vision and can be considered in two broad categories. The first, is a rule-based algorithm that encapsulates a set of 

declarative statements about the nature of scenes and semantic categories that are being targeted. These statements 

can range from being very simple and straightforward, e.g., streets should be at a locally minimum altitude, to being 

more complex and relational, e.g., building roofs should mostly be flat, horizontal and supported by vertical walls. 

Sequential algorithms that encapsulate a number  of  such constraints  are  very  predictable in behavior  and  have  

high  expressive power, however they are often brittle in the face of small, unexpected differences and typically do 

not generalize well to novel inputs. Furthermore, it becomes exceedingly difficult to  integrate a  high number of  such 

constraints  effectively, since each algorithmic piece  interacts with all the rest, creating numerous edge cases and 

hard-to-predict errors that explicitly need to be considered and addressed. 

 

The second category is a machine learning approach, consisting of either hand-crafted models, or more recently, deep 

neural network architectures that are very effective at parsing the implicit knowledge contained within annotated data, 

and is akin to human cognition observing many known exemplars to develop the means to recognize, understand and 

navigate previously-unknown scenes.  Deep neural networks are excellent at capturing such information in a way that 

generalizes well to different types of scenes and scene compositions, but they require large amounts of training data 

to be effective, and do hardly any explicit reasoning, rendering the underlying mechanism for inferred results 

somewhat indecipherable. Due to lack of any explicit reasoning capability, these networks often make trivial errors 

that would be easy to fix in a sequential algorithm setting, but such fine-grained, local interventions are difficult to 

design and implement in the context of deep learning. 

 

The main contribution of this paper is to present a novel, hybrid pipeline that combines the strengths of both types of 

approaches – the machine learning components extract knowledge that is implicit in annotations, while the rule-based 

components provide added reliability, generalizability and predictability in behavior. With this system, we are 

targeting various simulation and training applications where users inspect or align 3D models or even interact with 

them with game engines and/or VR-based simulations. Being able to automatically infer the semantic content of 3D 

scenes provide significant capabilities to such simulation and training systems. We demonstrate this capability with 

two sets of experiments: i) We show that the availability of semantic attributes allows for a variable-resolution mesh 

reconstruction and compression algorithm that can target different types of areas or objects operating at different 

resolutions for mission rehearsal and planning on devices with different processing capabilities, and ii) we show that 

geo-registration of images to a 3D reference model for augmented reality, GPS denied navigation and other 

applications can be done with improved accuracy if semantics are present. We evaluate the accuracy of the semantic 

inference results against a hand-annotated ground truth by using a portion of the DublinCity dataset as test samples. 

 

RELATED WORK 

 

Practical neural network architectures for 3D semantic segmentation can be considered in three broad categories. 

Voxel-Based Approaches are techniques that are the most intuitive extension to the 3D domain from the 2D image 

domain-based approaches and were the earliest to be developed. The idea is to quantize the 3D space into voxels, 

octrees or other regular or irregular grid-based structures, and then replicate the functionality of 2D pixel-based 
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architectures in three dimensions. UNet-based architectures (Çiçek et. al., 2016) use a U-shaped encoder-decoder pair 

where the encoder maps the input voxel structure to a lower-dimensional vector, then the decoder maps the vector 

back to the same grid structure, with a semantic label attached at each grid location. The encoder and decoder portions 

jointly learn how to effectively represent an entire quantized scene or object with a latent vector that contains useful 

semantic information. VoxelNet (Zhou and Tuzel, 2018) also utilizes a regular grid and computes unified features for 

each voxel location using the point configurations inside each voxel. Octree Generating Networks (Tatarchenko et. 

al., 2017) learn to infer efficient octree structures from dense, regular voxel grids to selectively increase the level-of-

detail and model quality in places where fine-grained details matter more. These methods have proved effective in 

segmenting individual objects or relatively small scenes, e.g. a single room, but sometimes suffer from quantization-

related errors and are generally unable to effectively deal with larger scenes or very detailed objects before running 

into computational limits or having to divide the input into smaller chunks first. Regular grid structures are also not 

equipped to deal effectively with sparse data.  

 

Point Cloud-Based Approaches directly ingest the unorganized 3D point cloud structure and fundamentally obey 

the permutation invariance of input points, while inferring a semantic label for each of them. PointNet (Qi and Su and 

Mo and Guibas, 2017) is a seminal early paper which presents a fully-convolutional neural network which computes 

local features around each point using multi-layer perceptrons, and a global feature for the whole input, which is then 

appended to each local feature. In this way, PointNet combines a global cue with local ones, resembling the idea of 

shape context, or other constellation-type models that have been in widespread use for years to characterize shape. 

PointNet architecture is not fully invariant to spatial transformations, but it uses a simpler version of itself as a Spatial 

Transformer Network to transform both input points and the computed features closer to a canonical “pose” to provide 

some robustness under small-scale transformations. Finally, the use of a global feature as well as a fully convolutional 

neural network requires PointNet to represent each input with a fixed number of points, limiting input size and level-

of-detail significantly.  PointNet++ (Qi and Yi and Su and Guibas, 2017) is an iteration on this idea that hierarchically 

encodes a point cloud by using the embedding vectors from one level as points themselves to encode the next level of 

embeddings. Thus, PointNet++ uses semantic embeddings to implicitly break the scene into smaller chunks, allowing 

it to handle much larger scenes or objects. SplatNet (Su et. al., 2018) is a more recent approach that interpolates data 

onto a permutohedral lattice, filters the data on this sparse lattice, then interpolate the filtered signal back to original 

points.  The lattice interpolation provides a convenient way to jointly consider 3D point clouds with registered imagery 

when available. We use the intuitions provided in these approaches on how best to ingest point cloud data structure, 

as well as architectural details from PointNet to represent patches of points with appropriate embedding vectors, but 

we explicitly break the Euclidean scene into smaller fragments rather than implicitly do it at the embedding spaces 

like PointNet++.  

 

Graph-Based Approaches use  a  graph-based  representation  of  the  scene  with  graph  convolutions  to  infer  

labels, where nodes typically correspond to either individual points, local neighborhoods of points or patches of points 

and edges indicate either proximity or adjacency in some pre-defined neighborhood structure. Super-point Graph 

(Landrieu and Simonovsky, 2018) is a popular 3D segmentation approach that uses bottom-up  geometric  features  

computed  from  the  covariance  matrix of a local neighborhood  of  points  to  solve a traditional optimization problem 

and compute superpoints –  patches of points that are maximally homogeneous in terms of these bottom-up features. 

A Voronoi partitioning and an accompanying connectivity analysis is used to transform the scene into a graph, and 

semantic labels are inferred for each node using both its own vector embedding as well those belonging to the 

neighbors of that node, in order to utilize surrounding context.  We make extensive use of these ideas to formulate 3D 

segmentation problem as a mixture of graph-based inference and constraints based on first-order logic. 

 

SYSTEM PIPELINE 

 

The design of the system pipeline is predicated on the idea  that  reliably  segmenting  the  scene  into  coarse  categories 

enables further fine-grained segmentation of smaller entities and object parts. See Figure 2 for a complete diagram of 

the system pipeline, each module of which is described in greater detail in this section, in the order of data flow. 

 

Pre-Processing: The goal of the pre-processing step is to increase the system’s robustness capability to operate in the 

presence of outlier points that are either low-confidence LIDAR measurements or artefacts from the photogrammetry 

algorithm. The presence of significant outlier points adversely affects the accuracy of ground level estimation, as well 

as distorting the geometry and context surrounding objects or areas of interest, making it harder for the system to infer 

the correct semantic labels. The difficulty in coming up with a fully-automated approach to remove such outliers is 
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twofold: i) These outliers are not individual, isolated points, but rather are densely-populated patches of points that 

locally resemble a legitimate surface, and ii) it is commonplace for certain objects above ground level to be 

disconnected from the rest of the scene in a similar way, therefore only the outliers below ground level should be 

targeted and removed. 

 

 
Figure 2.  An overview of the processing pipeline main blocks. Circles/ellipses indicate data and rectangles 

indicate processing modules. 

 

The pre-processing module works as follows: The input point cloud is down-sampled to a spatially uniform resolution 

by computing a voxel grid, which is then used to do 26-connected component analysis on the raw point cloud. 

Resulting connected components are ordered from largest to smallest according the number of points contained, and 

largest n connected components are fused into “scene points” where n is selected such that scene points cover a 

sufficiently large portion of the raw input. The goal here is not to capture the entirety of non-outlier points, but rather 

to obtain a sufficiently large yet incomplete subset of the input scene that is devoid of any outlier points. The ground 

estimation algorithm can then be run on these scene points without being derailed by the outliers. Once a reliable 

estimate for the ground level is obtained, all the disconnected components above ground are added back, while the 

below-ground patches are discarded. 

 

Ground Extraction: The ground extraction approach is, at its core, a rule-based binary ground vs. non ground 

classifier algorithm with robust interpolation capabilities that produces binary labels as well as a DEM representation 

of the terrain and follows an earlier work (Matei et al., 2008). It grows patches of 3D points from a number of seed 

points that have locally minimum altitudes; the region-growing itself takes into account smoothness of local point 

neighborhoods. The disjoint patches are eventually merged and filled to create the ground layer. Aside from allowing 

the below-ground outliers to be targeted and discarded, the extracted ground serves as a valuable frame of reference 

for all other objects present in the scene, establishing a useful coordinate system and allowing us to utilize height-

above-ground elevation values and provide excellent performance in rapidly-changing terrain conditions such as hills, 

mountains and vineyards.  

 

Superpoints: Scene Partitioning Using 3D Voronoi Diagrams: The idea of superpoints (Landrieu and Simonovsky, 

2018) is analogous to superpixels (Achanta et. al., 2012): they are  local  groupings  of  3D  points  that  are  

homogenous  in terms of a set of desired properties. In the use case of this pipeline, the desired properties are a set of 

local geometric features expressed in terms of eigenvalues of point distributions, as well as appearance features like 

color and texture. By formulating the point classification problem at the level of superpoints rather than individual 

points, the computational complexity and the size of the required training data is reduced drastically without impacting 

the performance, assuming that the superpoint partitioning is such that all the points in a given superpoint belong to 

one semantic category only. Once the features of interest are computed for each point, the superpoint partitioning is 



 
 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 

IITSEC (2020) Paper No. 20400 Page 5 of 12 

done using cut-pursuit optimizer (Landrieu and Obozinski, 2018), (Raguet and Landrieu, 2018). A regularization 

strength parameter determines how aggressive the grouping will be, and it is empirically selected for each sensor type. 

Using these superpoint partitions, a Delaunay triangulation of the complete 3D input point cloud is computed, resulting 

in a Voronoi diagram that dictates a graph topology on the superpoints where graph edges indicate a shared boundary 

between at least a single pair of points across two different superpoints. These edges are further weighted by “edge 

features” which are computed from the complete set of 3-dimensional offsets between neighboring points across two 

different superpoints. This graph becomes the intermediate representation for the input scene, where each node is a 

superpoint, see Figure 3 for an illustration. Defining neighborhoods this way instead of by proximity allows for very 

long-range interactions between different regions if the space between them is empty. This is a very compact and very 

powerful representation for effectively taking into account context during segmentation. 

 

 
Figure 3. Input point cloud with RGB (left), color-coded local geometric features (center) and resulting 

superpoints and the neighborhood graph (right). 

 

PointNet and Graph Convolutions: Graphs are among the most general data types to effectively represent entities 

and their relationships, therefore they lend themselves naturally to the problem of modeling context. In addition, they 

allow a functional combination relational structures known or computed a priori, with the end-to-end learning power 

of neural networks. In the context of deep learning, graph representations fully generalize the specific connectivity 

structures of other standard networks such as convolutional networks (CNNs) which are fully-connected special-case 

graphs, and recurrent neural networks (RNNs) which have a chain graph structure.  

 

In the graph neural network paradigm, the standard neural network operations such as convolutions and pooling are 

replaced by a 4-step operation over the internal states of each graph node, as well as the graph itself: 

i) Message passing: Each edge in the graph carries a message from a sender node to a receiving node. If the graph 

is not directional, such as the graph-based representations of outdoor scenes that are used in the pipeline for this 

paper, the messages are passed over each edge bidirectionally.  

ii) Edge update: Edge features are updated with respect to each receiver node, according to the message carried. 

iii) Node update: Updated edge features for each receiver node are aggregated, updating the internal state of the node 

iv) Global update: Global attributes of the graph are updated, if any. 

 

For graph edge weights and node update equations, we closely follow the formulation outlined in (Landrieu and 

Simonovsky, 2018). The edge weights are features that characterize the geometric properties of each node, i.e. 

superpoints, relative to its Voronoi neighbors. Refer to (Landrieu and Simonovsky, 2018) for more details. The latent 

vector that stores the internal state of each node prior to any message passing is generated by ingesting each superpoint 

patch into a PointNet architecture without the Spatial Transformer Network component. In a way, we use PointNet 

architecture in lieu of local geometric features, and the graph convolutions with the edge weights in Table 1 bring in 

global context. 

 

Image-Based Segmentation and Efficient Raycasting: While 3D data is typically richer in information content, 

image data that is aligned to a 3D reference is not redundant – certain features are simply easier to detect on images, 

such as building facades and windows, which are mostly planar structures that lack geometric detail and therefore 

must be detected using color, texture or other forms of appearance. While 3D point clouds can also contain these 

attributes, the density and connectivity structures of image pixels make them better suited to find these types of objects. 

The problem is that these image-based segmentations will then need to be mapped onto the 3D model efficiently. 
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To this end, we use state-of-the-art deep neural networks for image-based detection and segmentation, together with 

an efficient raycasting approach to transfer the results back into 3D. We experiment with two different structures – 

building facades and windows. For building facades, we use a modified version of RetinaNet (Lin et. al., 2017), which 

is a network that is very similar to Region-based Convolutional Neural Networks (R-CNNs) (Girshick et. al., 2014) 

in that it utilizes a two-stage detection process, first stage computing the anchor locations and aspect ratios while the 

second stage regresses to find offsets from these anchors to final detections. Instead of using a bounding box 

representation, we alter this network design so that the second stage regresses boxes into general quadrilaterals instead. 

The general quad representation allows us to get very tight bounds on building facades, and can be trained on as little 

as a few hundred annotated images before it can learn to reliably find rectangular building facades. 

 

Building windows are much smaller features, so trying to fit quads accurately around each window does not work as 

reliably as doing pixel-based segmentation to find them. To this end, we use a state-of-the-art variant of UNet 

architecture, namely Unified Perceptual Parsing Network (Xiao et. al., 2018). This hierarchical network design uses 

features at various semantic levels and identifies compositional structures, i.e. objects and their parts, among detected 

concepts. We trained this network on ADE20K 

(Zhou et. al., 2017), (Zhou et. al., 2019), which is 

the largest image segmentation dataset and 

benchmark to the best of our knowledge. Then we 

tested the network on aerial images of SRI 

Princeton campus – even though the training data 

hardly contains any aerial data, the results are very 

accurate, as shown in Figure 4. 

 

We transfer these image-based detection and 

segmentation results back into the 3D model 

through an efficient ray-casting algorithm that 

casts a ray from each pixel into the point cloud to 

attempt to find the 3D points corresponding to the 

detections or segmentations on the image. Since 

the points are infinitesimally small, the ray is 

likely to pass through the point cloud without 

hitting any actual points. Therefore, we represent 

the points with spheres of varying radius that these 

rays could potentially intersect with. It is also true 

that a given ray can pass through multiple such spheres, so we pick the intersecting point that is closest to the camera, 

which is a form of straightforward occlusion reasoning. Raycasting is a relatively expensive procedure, therefore we 

compute an octree structure on the point cloud, and use this octree structure to first find which cells intersect with a 

set of rays, and then inside each cell, we process a finer-detail intersection to find which exact points are hit inside a 

given cell. The radius of the sphere that is going to be represent each point need to be chosen in a way that takes into 

account: i) density of the point cloud, so that neighboring spheres don’t actually intersect with each other, but also 

don’t have large gaps between them, ii) perspective foreshortening, because the points closer to the camera should be 

represented with smaller spheres than those that are far, and iii) resolution of the camera image, since that determines 

how large a frustum each ray represents. See Figure 5 for an example segmentation results where window detections 

are merged from image-based segmentations using this raycasting approach, with other categories inferred from 3D. 

 

Basic Neural Network Reasoning with First-Order Logic: One of the most fundamental shortcomings with deep 

neural networks is their lack of basic reasoning capabilities, which sometimes cause them to make trivial mistakes 

that either violate some common-sense facts or yield results that are hard to explain or inconsistent with respect to 

some external constraints that are not captured by the supervision. When annotations are abundantly available, this 

kind of logical reasoning is not as necessary, but for relatively rare and/or small object categories, it is more crucial.  

 

Most existing approaches integrate such logical constraints into their pipeline either by post-processing inference 

results, or by adding additional feature channels to bring out desired properties manually. A much better way would 

be to embed such domain knowledge directly inside the training process of all related deep networks, so that they 

softly constrain the knowledge implicit in the supervision, rather than directly modifying inference results, or trying 

to capture some of the domain knowledge in the feature layers. This idea necessitates the logical constraints, which 

 

Figure 4. Image-based window segmentations using the 

presented pipeline. Window pixels are marked in red. 

Almost all instances of windows are detected accurately, 

even though the images are taken from an oblique, aerial 

view. 
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are normally thought of as operations on binary values, to be expressed in a continuous domain so as to allow for 

gradient backpropagation through the logical operators during training. This is the key idea that allows us to tightly 

integrate any rule or constraint into deep neural networks, as long as they can be expressed using standard first-order 

logic. Such continuous-domain versions of logical operators are referred to as “groundings” for first-order logic, and 

the choice of a good set of groundings is crucial in avoiding numerical instabilities as well as other common problems 

like vanishing gradients that become more pronounced as the gradients have to flow through more and more layers. 

For this system, we use the groundings described in (Sikka et. al., 2020), which maps logical binaries to (−∞,∞) range.  

 

 
Figure 5. Image-based window segmentation results (left) are cast into the 3D point cloud model (center) to 

merge window segmentations with the other categories (right).  

 

The first step when integrating a rule set or a specific piece of domain knowledge is to write the rules or constraints 

as declarative, first-order logic statements, making use of the 7 standard operators: and, or, not, equals, implies, for 

all, there exists. Figure 6 shows an example where 3 simple rules about the outdoor scenes are written down, and 

computational equivalents to certain semantic phrases such as “touching” and “too small” are defined. These modules 

can either be straightforward functions or other neural networks in their own right; regardless, gradients will flow 

through them so that the logical constraints can be made a part of the training process. When the rules are expressed 

in terms of these functions and 

first-order logic operators, the 

expressions imply a certain set of 

logical connections between the 

segmentation network and the rule 

grammar. This entire structure is 

connected to the latent vector that 

is used to infer semantic labels, 

constraining the form it can take, 

thereby constraining the latent 

space during training according the 

rule constraints. This entire 

construct allows the system to 

correct for basic common-sense 

mistakes, while also making the 

results of the system more 

explainable to a human agent. 

 

EXPERIMENTS AND RESULTS 

 

We formally evaluate the system in two distinct ways. First, we quantitatively evaluate the accuracy of inferred 

semantic labels using annotated benchmarks – we simply train the system on a portion of the benchmark and test on 

the remaining portion. We present color-coded visualizations of the segmentation results for qualitative inspection, as 

well as two metrics for quantitative evaluation: 

i) Point classification accuracy: Simply the percentage of 3D points that are accurately classified. Measures the 

accuracy of segmentation across all test data and all semantic classes. 

ii) Intersection over union: This is a method for measuring how well the regions of each semantic category overlap, 

and is basically a ratio of the size of the intersection region over the union region. Here, size refers to number of 

 
Figure 6. A schematic showing some example rules and how they interact 

with a deep neural network. Orange boxes are function implementations 

corresponding to the phrases they represent, and blue nodes are 

continuous-domain logical operators. Together they form the grammar 

for a given problem. Gradients flow through the red connections. 



 
 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 

IITSEC (2020) Paper No. 20400 Page 8 of 12 

points in the region, and intersection/union operations are done between inferred results and ground truth 

annotations. 

Second, we prove the usefulness of these inferred labels in two different downstream processes: mesh 

reconstruction/compression and pose estimation. Specifically, we show that making these processes “semantics-

aware”, i.e., able to utilize the semantic attribute layer productively, there is demonstrable improvement in 

performance. 

 

Qualitative and Quantitative Evaluation on Annotated Benchmarks 

 

We use the largest publicly available outdoor 3D semantic segmentation benchmark, namely DublinCity (Zolanvari 

et. al., 2019), (Laefer et. al., 2017) for a formal evaluation of the system. This is a dataset captured by Urban Modelling 

Group at University College Dublin via the use of an ALS device on a helicopter, and covers one of the major areas 

in Dublin city center, about 2 km2. To the best of our knowledge, it is the largest, densest and most accurate semantic 

segmentation benchmark that is publicly available. It also contains many labels organized in a hierarchy across 3 

levels – level 1 contains the coarsest categories (building, vegetation, ground and clutter) while level 2 and level 3 

contain parts of some of these objects (façade, roof, window, door) or finer-grained subcategories of others (tree, bush, 

sidewalk, street, grass). For the purposes of this evaluation, the results are reported on the first two levels. 

 

Since there are no other reported results on this relatively recent and challenging benchmark, we compare the results 

of the presented system to a baseline method that is in widespread use in the 3D vision community: PointNet++ (Qi 

and Yi and Su and Guibas, 2017), which, as we mentioned earlier, is an extension of the original PointNet architecture 

that turns it into a hierarchical process so that larger scenes can be processed. See Tables 1 and 2 for a comparison of 

the system’s metrics against this benchmark, and Figure 7 for some visualizations of segmentation results using level 

1 and level 2 categories. In most categories and resolutions of data, the presented system is on par or better than the 

baseline, with the difference becoming more pronounced when data resolution is increased, and smaller-scale 

categories are targeted. 

 

Table 1. Quantitative evaluation results on level 1 of DublinCity benchmark. 

Resolution Approach Point 
Classification 

Accuracy 

IoU 
Ground 

IoU 
Building 

IoU 
Vegetation 

IoU 
Clutter 

100cm 
Proposed Pipeline 83.68% 0.346 0.854 0.661 0.317 

PointNet++ 76% 0.35 0.77 0.38 0.00 

30cm 
Proposed Pipeline 89% 0.427 0.91 0.6410 0.378 

PointNet++ 83% 0.38 0.82 0.00 0.00 

 

Table 2. Quantitative evaluation results on level 2 of DublinCity benchmark. 

Resolution Approach Point 
Classification 

Accuracy 

IoU 
Roof 

IoU 
façade 

IoU 
Tree 

IoU 
Bush 

IoU 
Clutter 

IoU 
Grass 

IoU 
Street 

IoU 
Sidewalk 

100cm 

Proposed 
Pipeline 

70.71% 0.612 0.562 0.603 0.000 0.243 0.196 0.199 0.074 

PointNet++ 64.52% 0.412 0.554 0.58 0.000 0.35 0.185 0.141 0.105 

30cm 

Proposed 
Pipeline 

69.02% 0.672 0.630 0.813 0.000 0.559 0.161 0.325 0.215 

PointNet++ 61.06% 0.455 0.563 0.653 0.000 0.42 0.201 0.203 0.17 

 

Semantics-Aware Mesh Reconstruction and Compression: One of the common processes downstream from point 

cloud acquisition is meshification/dense surface reconstruction, and effective compression of such dense models. The 

semantic attributes inferred by the system allow different classes of objects to be targeted by modeling approaches in 
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a way that is uniquely tailored to that object class. For instance, using the knowledge that buildings are mostly 

rectilinear with sharp boundaries, edges and corners, areas segmented with the “building” label can be processed with 

an algorithm that can safely make those assumptions. On the other hand, ground layer can be effectively represented 

in 2.5D, using a coarser resolution. This means that different parts of the same scene can be represented at different 

resolutions and level-of-detail, making optimal use of computational resources as well as transfer bandwidths and 

storage space. By making the meshing/surface reconstruction process aware of semantics in such a simple way gives 

the user an ability to produce more compact and lightweight models that can easily be loaded onto mobile platforms, 

while preserving distinct and salient features for each category when simplified. In contrast, generic mesh 

simplification algorithms lose these important features, or smooth over important details when attempting effective 

compression. 

 

 
Figure 7. Example segmentation results of the system on 3 test tiles from DublinCity dataset. Orange: roof, 

Teal: façade, Red: clutter, Grey: street, Pink: sidewalk, Light green: tree, Dark green: grass, Yellow: bush. 

 

 
Figure 8. The original complete mesh (left) and the result of a semantics-aware mesh compression algorithm 

that compactly models ground and building and can throw out the remaining categories if they are not of 

interest (right). The original mesh contains 8,260,198 vertices and 16,321,204 faces in 1.25 GB file size, while 

the compressed result contains 83,338 vertices and 161,305 faces in 16.2 MB. The remaining classes can also 

be added to the simplified mesh at their original resolutions, or their simplified versions generated by 

standard, general-purpose mesh simplification algorithms. 

 

To demonstrate this idea, we use the building and ground labels inferred by the system to decouple the meshing 

process for ground from those of the buildings. A low-resolution 2.5D representation for ground is used together with 

the rectilinear polygonization approach outlined in earlier work (Matei et. al., 2008) to model buildings at a higher 

resolution, and remove all other object categories from the meshification process, see Figure 8 for a comparison, and 

Figure 9 for an illustration of selectively varying the resolution of “ground” category. 

 

Semantics-Aware Geo-registration of Ground to 3D Reference 

 

Geo-registration refers to the problem of locating an agent in a larger-scale map of its surroundings, using the local 

data that is captured by its sensors. A variety of data modalities can be used as the reference map, including satellite 

or aerial imagery, but 3D models provide much richer information and therefore are better suited for the task when 

they are available. Often, the exact geographic location of such reference maps are known in advance, which in turn 

allows for the accurate localization of the said agent on a world map. Such an automatic localization capability is a 

powerful tool in the context of autonomous self-navigating robotic agents as well as AR/VR training and simulation 

scenarios where a human agent needs to be accurately placed inside particular scene over long periods of time. 
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Figure 9. The presence of semantics allows for varying levels of detail for each category independent of other 

categories. Here, the resolution of 2.5D ground is progressively changed from 2m to 10m resolution while 

keeping the building resolution constant. 

 

We show that, by providing a semantic understanding layer to both the reference 3D model and the local 2D images 

captured by an agent moving through a scene, it is possible to considerably improve the full 6-DOF pose estimation 

accuracy for the said agent, resulting in a more accurate motion trajectory that is computed automatically. In this 

experiment, the 3D reference is an aerial LIDAR capture and the agent is recording a video feed as it is traversing the 

scene. We use the full system to compute the semantics in the 3D model, and a standard image-based segmentation 

algorithm to compute the same semantic categories on each frame provided by the agent’s video feed. Then we 

compute the 6-DOF pose of the agent’s camera with and without the use of these semantic categories, and compare 

the results by using the estimated pose to render the 3D model from the viewpoint of the agent’s camera. It can be 

seen that a significant improvement in the localization accuracy is obtained, even when relatively few semantic 

categories are used, as seen from Figure 10.  

 

 
Figure 10. An input video frame (top-left) is overlayed on top of the 3D semantic reference layer (top-right) 

using the pose estimate obtained from image alone. When the semantic layer for the input image (bottom-left) 

is also used in the alignment process, the frame is better aligned with the 3D reference (bottom-right). 
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