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ABSTRACT 

 

There is a need to develop a physics-based 3D modeling and simulation (M&S) software to generate multi-modal 

datasets for machine learning of human activity detection and recognition, due to the high cost and difficulty in 

collecting synchronized, multi-view human sensing data. This paper presents the effort in developing a novel, 

integrated, high-fidelity M&S tool: HumanView (HumV) of human signatures. Its key elements include: (a) HumV 

editor module, which allows users to view and manage available models and associated configurations using an 

intuitive graphical user interface; (b) HumV models module, which is a data store containing human models, scene 

models of the environment, and relevant electro-optical/infrared (EO/IR) sensor models; and (c) HumV simulator 

module, which allows users to simulate multiple scenarios for generation of synthetic sensor data and ground truth 

labels for analytics. HumV has established a pipeline that seamlessly integrates off-the-shelf free and open-source 

multi-physics M&S tools and material properties databases with newly developed models and algorithms to address 

the multi-disciplinary M&S requirements. Specifically, we have developed the Human Activity Replication Tool 

(HART) - a Blender 3D add-on to provide bio-fidelic M&S of clothed avatars that realistically represent the diversity 

of human shape, motion, and clothing characteristics. This is followed up by an innovative human thermal model that 

takes the scene and HART activity models to produce an output of temperature estimates for all the mesh facets of 

skin and clothing of the human avatars. The thermal dynamics considers the activity/heart rate, environmental 

radiance, and body/clothing interaction. Finally, various models of human activity, thermal dynamics, scene, 

materials, environment, sensor, and atmosphere are assembled into the Digital Imaging and Remote Sensing Image 

Generation (DIRSIG) tool to generate synthetic images or videos. Model validation has been conducted against the 

experimental data collected using commercial cameras in an outdoor setting.  
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1. INTRODUCTION  

 

The advancement of deep learning depends on the availability of a large quantity of training data with ground truth 

labels. Acquiring such datasets is always a challenge due to the high cost of testing and labeling. Moreover, typical 

data collection efforts are often single modal, single viewing angle, and limited to the environment condition and 

configuration at the time of data collection. These limitations not only affect the robustness of algorithms on image 

recognition but also hinders the fusion of multiple modalities for better recognition performance. Therefore, 

researchers have been looking into creating synthetic imaging data to supplement the need (Schraml, 2019), using 3D 

graphics simulation technology for the rapid creation of background scenes, buildings, vegetation, machines, and 

human avatars.  However, the majority of current synthetic image generation efforts are neither human-focused nor 

biofidelic. Studies that do explore synthetic human images (Varol, et al., 2017; Chen, et al., 2016) for machine learning 

purposes are mostly concentrated in shape-based pose estimation, which does not require high fidelity at the pixel 

level. They can rely on avatars of graphical rendering without the need to consider human physiology and thermal 

exchange between the human body, clothes, and environment. On the other hand, the majority of full-motion videos 

(FMVs) seen in aerial surveillance are from infrared sensors which are more difficult to synthesize due to the complex 

thermal effects involving a human body, surrounding environment, and weather, etc. This presents an open research 

and development opportunity to fill in the technical gap. 

 

This paper discusses our effort in developing a novel, integrated, high-fidelity modeling, and simulation (M&S) tool: 

HumanView (HumV). The architecture of HumV, as shown in Figure 1, is designed for generating multi-modal 

synthetic human imaging data with real-world environmental effects and sensor optical physics. Its key elements 

include:  

 HumV editor module, which allows the user to select an available model, manage the configuration associated 

with the model, create specific activities for the model. The module includes:  

a) Scenario Model editor, which allows the user to define specific scenarios: for example, a human walking 

in a desert environment on a windy day.  

b) Sensor Model editor, which allows the user to define salient sensor properties, such as passive/active 

nature, modality, bandwidth, and its pose relative to the platform.  

c) Environment editor, which allows the user to annotate the 3D scene model with atmospheric effects and 

image conditions such as date and time of the day.   

d) Material Properties editor, which allows the user to assign the human model and the 3D scene model with 

material properties that are salient to the sensor response.  

 HumV models module, which is a data store that contains 3D human models, 3D geometric models of the 

environment, and relevant sensor models (EO and IR). The module provides various 3D human models 

capturing body motion and deformation associated with various human activities. HumV, by using Blender, 

accepts a wide variety of 3D computer-aided design (CAD) models for simulating the different environments. 

 HumV simulator module, which allows the user to simulate multiple scenarios to generate the synthetic sensor 

data for analytics. 
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Figure 1. HumV Architecture 

Currently, we have developed the core functionality of HumV for evaluating the overall approach and demonstrating 

basic imaging generation capability. Our main contributions are: 

 Bio-fidelic human and activity models: HumV can generate bio-fidelic models that realistically represent the 

diversity of human shape and motion.  

 Physics-based, first principle-based multi-modality simulation: HumV is designed to perform simulation 

using physics-based and first principle-based models for radiometry, material reflectance, thermal, sensing and 

processing. This is to ensure high-fidelity simulation for a diverse set of conditions. 

 Seamless integration of multi-disciplinary M&S tools: HumV incorporates existing state-of-the-art 

radiometry M&S tools of Digital Imaging and Remote Sensing Image Generation (DIRSIG) (Goodenough & 

Brown, 2017) with general M&S tool of Blender 3D (B3D) (“Blender”, n.d.) and our new human models. 

Model validation has been conducted against the experimental data collected using commercial cameras in an outdoor 

setting. Once fully developed, HumV will be the first-of-its-kind, physics-based, multi-disciplinary solution for M&S 

of human activities for multi-model sensors. It could support rapid machine learning data generation and algorithm 

experimentation for FMV analysis, simulating human performance under physical stress and various activities, and 

mission training and planning. 

 

The rest of this paper is organized as follows. The next section focuses on biomechanical and thermal models of 

humans, followed by the section discussing the HumV software pipeline and the section presenting validation and 

simulation results.  Conclusions and future directions are given in the last section. 

 

2. MULTI-PHYSICS DIGITAL HUMAN MODELING  

 

2.1 Human Activity Modeling and Simulation  

In HumV, human activity modeling and simulation are required to replicate human activities under real-world 

conditions with high bio-fidelity and to provide human models that meet the requirements of human thermal modeling 

and multi-modal sensor data generation.  To streamline the process of human activity modeling and simulation, we 

have developed a software – Human Activity Replication Tool (HART) for HumV. As shown in Figure 2 (a), HART 

is a python-based B3D add-on, which leverages various functions provided by Blender for modeling and animation 

and utilizes MakeHuman (“MakeHuman”, n.d.) to generate human shape models with anthropometric variations of 

gender, weight, height, etc. The graphical user interface (GUI) of HART shown in Figure 2 (b) has a hierarchical 

menu-driven structure to help users navigate the human modeling and animation process and  utilize various functions 

to create human activity models. The main functions of HART have also been implemented via python scripts so that 

the tasks related to human activity modeling can be executed in the backend and seamlessly integrated into the HumV 
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workflow. During HART development, several technical challenges were encountered and overcome, which are 

discussed as follows.  

 

 

  

(a) HART as an add-on to Blender (b) Menus of HART 

Figure 2. Human Activity Replication Tool (HART) Overview. 

 

1. Rigging of a clothed avatar. For the avatars used in ordinary computer games, cloth and human body surfaces are 

usually baked together and represented by one layer of mesh. However, for the clothed avatars created by HART, 

body surface and clothes are represented by two separate layers of mesh, so that the heat emission and 

transmission from the body surface to clothes can be well accounted for in human thermal modeling. The two 

layers of mesh need to be rigged well so that a clothed avatar can be readily used for animation. In HART, a 

rigged and clothed avatar can be generated in three ways:  

 Importing from MakeHuman: If an avatar created by MakeHuman contains clothes, the clothes are 

automatically rigged.  

 Rigging in Blender: Select the clothes and the avatar to be selected, make sure the skeleton (armature) of the 

avatar is active, and then using Armature Deform with Automatic Weights to rig the clothes to the skeleton.  

 Using MakeClothes: Create a cloth that fits the template human model provided by MakeClothes, which is 

an add-on to the Blender. The template human models include baby, teenage, adult male, and female, etc. 

The cloth created includes three vertex groups: left, mid, and right. After clicking Make Clothes, a user can 

find the created clothes in the asset of MakeHuman. When an avatar with new clothes is exported from Make 

Human to Blender, the clothed avatar in Blender has been rigged already. The clothes created using 

MakeClothes automatically fit different avatars which are generated from the same template human model.   

 

2. Animating an avatar interacting with the scene. Two problems are involved. One is the clearance between the 

feet and the ground. To ensure appropriate contact (no gap and no penetration) between the feet and ground 

surface, the center of gravity (CG) of an avatar needs to be adjusted according to the change of the altitude of 

slope or uneven ground. The other problem is the feet sliding on the ground surface. Feet-sliding occurs when an 

avatar walks on a path with the length of each step not equal to what should have been according to motion capture 

data. The problem is further complicated when clothing simulation is involved because synchronization is needed 

between sliding correction and clothing simulation. In HART, both problems are solved by using Animation 
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Nodes (a Blender add-on) to determine the length of each step and the CG position for each step.  An example is 

shown in Figure 3 (a).  

 

3. Intersections between the body mesh and cloth mesh. In HumV, human thermal modeling requires no intersections 

between the human body surface and clothing. Therefore, HART has built-in per-frame based automatic 

intersection detection. For minor intersections, they are automatically eliminated in HART based on the 

ShrinkWrap modifier in Blender which shrinks one surface to another. For Major ones, a user can use Mesh 

Deform modifier with shape keys in Blender to manually eliminate them or convert them into minor intersections 

which are then automatically eliminated.  

 

4. Dismount modeling. HART has modeled a few dismounts with apparel (magazine vest) and clothes (loss robe or 

Airman Battle Uniform (ABU). To model a clothed avatar with a magazine vest hidden under the clothes, the 

vest is wrapped around the human body with B3D’s ShrinkWrap modifier to ensure no intersection during the 

animation, as shown in Figure 3 (b). It is treated as part of the human body with collision physics with respect to 

the body during clothing simulation, instead of as another layer of clothing under the clothes. Fine mesh is used 

for regions where clothes are overlaid (e.g., neck and groin) to reduce self-collision. A more challenging case 

modeled is a person entering and exiting an SUV, as shown in Figure 3 (c), where the hands griping steering 

wheel and the feet stepping in/out cabin create inconsistencies that are resolved manually.  

 

   
(a) Walking on a slope (b) A hidden vest (c) Entering into a vehicle 

Figure 3. A Few Modeling Cases in HART 

We note that HART replicates human motion rather than synthesizing human motion. The change of human body 

shape and clothing during motion is obtained through rigging, without accounting for non-rigid deformation, thus the 

fidelity is limited. The evaluation of model rigging error associated with MakeHuman/Blender/MakeClothes was not 

done in this study, since the data that can be used for the validation were not available. The framework is flexible in 

ingesting motion data in standard formats (e.g. bvh) to render diverse range of activities and interactions. 

 

2.2 Human Thermal Modeling 

 

The goal of the integrated human thermal simulation component is to take into account the user input of various 

models including scene, clothing, and activity, and produce an output consisting of temperature estimates of all the 

facets of skin and cloth of the human in the scene. This integrated thermal model has an operation structure depicted 

in Figure 4, which involves two main thermal subcomponents: the Skin Temperature model and the Body/Clothing 

Interaction model. The following subsections summarize various calculations related to them.  
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Figure 4. Integrated Human Thermal Modeling 

2.2.1 Initial Capability Decision Aid (ICDA) Model for Skin Temperature 

ICDA (Yokota & Berglund, 2006) developed by the US Army Research Institute of Environmental Medicine 

(USARIEM), is the central component for modeling heat production dynamics in the human body. At a high level, 

ICDA is a heat transfer model that takes environment inputs, human physical properties, and human activity properties 

and outputs a core body temperature and a skin surface temperature (Figure 5). For the HumV human thermal model, 

we are primarily interested in the skin surface temperature, 𝑇𝑠𝑘𝑖𝑛. 

 

Figure 5. Illustration of ICDA Model  

First, the human activity model is used to produce a heart rate required by ICDA. This is accomplished through the 

use of a lookup table that maps activity to a power output during aerobic exercise and an equation that relates power 

output to heart rate for a given individual at a certain level of fitness (Arts & Kuipers, 1994). The other important 

environmental inputs to the ICDA model are the ambient temperature 𝑇𝑎, the mean radiant temperature 𝑀𝑅𝑇, the 

relative humidity 𝑅𝐻, and the wind speed 𝑊𝑆. All of these environmental conditions are defined or derived from user 

options with the exception of 𝑀𝑅𝑇. 𝑀𝑅𝑇 is found using the Stefan-Boltzmann law,  

 

                                                                           𝐸 = 𝜎(𝑀𝑅𝑇)4                                                                         (1) 

 

where the energy 𝐸 is the total amount of incoming radiation acting on the human model and 𝜎 is the Stefan-Boltzmann 

constant. 

 

2.2.2 Incoming Radiation 

Incident radiation is a major contributor to the thermal environment of our human model. The key components of the 

radiation tracing portion of the thermal model are the output from a spherical collection module that collects incident 

radiation surrounding an object. It is implemented in DIRSIG 5 as the spherical collector through which one defines 

a point in 3D DIRSIG scene and DIRSIG then calculates all of the incoming radiation that reaches that point in 3D 
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space. The radiation is calculated over a set of user-defined wavelengths. For each wavelength, the spherical collector 

returns an orthogonal image (spherical collector image), hence the output of the spherical collector is a group of 

spherical images. Each pixel of a spherical collector image maps to the direction of the incoming radiation where the 

horizontal of the image spans the Azimuth, 𝜙, and the vertical of the image spans the Zenith, 𝜃, of the incoming 

radiation. Each pixel subtends a solid angle defined by the integral solid angle definition:  

 

                                 Ω = ∫ ∫ sin(𝜃) 𝑑𝜃𝑑𝜙 = (𝜙𝑛 − 𝜙0)(cos(𝜃0) − cos(𝜃𝑛))
𝜙𝑛

𝜙0

𝜃𝑛

𝜃0

                                 (2) 

 

For HumV, we configure the spherical collector to compute multiple bands of radiation in the visible and IR bands 

with a pixel resolution of 360x360. We developed the radiation ray tracing with respect to the facets (polygons) of the 

human model using a far-field approximation. It assumes all incoming radiation as defined by our spherical collector 

is originating from a point in space that is effectively infinitely far from our human model.  

 

We are interested in calculating the total amount of radiation, 𝑞𝑟𝑎𝑑𝑖
, acting on the i-th facet of the human model as 

defined in Equation 3:      

   

                                                        𝑞𝑟𝑎𝑑𝑖
= ∑ 𝜂𝑠 cos(𝐴𝑗) 𝐼𝑗Ω𝑗1𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑗

𝐽

𝑗=1

                                                      (3) 

 

The total amount of incident radiation is the summation over the effect of all incoming rays of radiation where 𝐽 is the 

total number of incoming rays. The effect of an incoming ray of radiation with an intensity 𝐼𝑗 is determined by the 

value of the intensity, the coefficient of absorption of the material 𝜂𝑠, the cosine of the angle of incidence 𝐴𝑗, the solid 

angle of the incoming ray Ω𝑗, and whether the incoming ray reaches the facet 1𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑗
. The intensity, 𝐼𝑗, of the 

incoming ray of radiation is defined as the sum over the pixel values, 𝑝𝑏 , of all of the spherical collector images, 𝐵, 

multiplied by the width of each bandwidth, 𝑤𝑏 .  

 

                                                                              𝐼𝑗 = ∑ 𝑤𝑏𝑝𝑏                                                                             (4)

𝐵

𝑏

 

 

The angle of incidence, 𝐴𝑗, of an incoming ray is the angle between the normal vector of the facet and the vector 

defining the incoming ray. The check function, 1𝑗,𝑖, for a face 𝑖 takes value 1 if the ray 𝑗 is incident on face 𝑖. This 

value is determined by the output of the radiation ray-tracing procedure.  

 

2.2.3 Clothing Heat Transfer 

The clothing surface temperature 𝑇𝑠 is solved through an equation of energy balance shown in Equation 5.  

 

                                                              𝑞𝑖𝑛 + 𝑞𝑟𝑎𝑑𝑖
= 𝑞𝑐𝑜𝑛𝑣 + 𝑞𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛                                                              (5) 

 

Besides the aforementioned 𝑞𝑟𝑎𝑑𝑖
, 𝑞𝑖𝑛 models the conductive heat transfer from the skin surface to the clothing surface 

in which the air gap between the skin and clothes is outputted from the HART avatar. 𝑞𝑐𝑜𝑛𝑣  is the heat transfer from 

the clothing surface to the environment due to the movement of the surrounding air. 𝑞𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 is the radiative release 

of energy from the clothing surface to the environment.  

 

The conduction term, 𝑞𝑖𝑛, is calculated as follows by modeling the airgap and clothes as thermal resistors with the 

resistance of 𝑅1 and 𝑅2, respectively,  

                                                                 𝑞𝑖𝑛 =
1

(𝑅1 + 𝑅2)
(𝑇𝑠𝑘𝑖𝑛 − 𝑇𝑠)                                                             (6) 

  

If we define 𝑘𝑎 and 𝑘𝑏 as the resistivity and 𝑙𝑎 and 𝑙𝑏 as the thickness of the air gap and clothes, respectively.  We 

have,   
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                                     𝑅1 = (
𝑘𝑎

𝑙𝑎

+ 4𝜎 (
𝑇𝑎 + 𝑇𝑠𝑘𝑖𝑛

2
)

3

)

−1

     and        𝑅2 =
𝑙𝑏

𝑘𝑏

                                           (7) 

        

where 𝜎 is the Boltzmann constant and 𝑇𝑎 is the ambient temperature. Using Stefan-Boltzmann law, clothing surface 

emission can be calculated as,  

 

                                                                       𝑞𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = 𝜀𝜎𝑇𝑠
4                                                                            (8) 

 

where 𝜀 is a material property coefficient for radiative heat transfer. Finally, the convection term can be calculated as,   

 

                                                                        𝑞𝑐𝑜𝑛𝑣 = ℎ(𝑇𝑠 − 𝑇𝑎)                                                                         (9) 
  

where the convective heat transfer coefficient ℎ is quantified using a standard engineering approximation of ℎ =

10.45 − 𝑉𝑎 + 10𝑉𝑎

1

2 in which 𝑉𝑎 is the wind speed the surrounding environment.  

 

2.3 Environmental and Sensor Models 

 

HumV’s environmental and sensor models come directly from DIRSIG, which have been matured and validated 

through many years of development. HumV utilizes DIRSIG’s scene construction, sensor, and material modules 

extensively. DIRSIG associated material and environmental property databases are incorporated into HumV. 

  

DIRSIG is designed to generate passive broadband, multi-spectral, hyperspectral low light, polarized, active laser 

radar, and synthetic aperture radar datasets through the integration of a suite of first-principles based radiation 

propagation modules. These object-oriented modules address tasks ranging from bi-directional reflectance distribution 

function (BRDF) (Kerekes & Baum, 2003) predictions of a surface to time and material-dependent surface temperature 

predictions and the dynamic viewing geometry of scanning imaging instruments on the agile ground, airborne, and 

space-based platforms. DIRSIG also integrates MODTRAN (“MODTRAN”, n.d.), the widely used atmospheric 

radiation propagation model. MODTRAN models the atmosphere as stratified (horizontally homogeneous) and solves 

the radiative transfer equation including the effects of molecular and particulate absorption/emission and scattering, 

surface reflections and emission, solar/lunar illumination, and spherical refraction. Additionally, the MODTRAN 

model allows a sensor to be placed on the ground looking up to space in any direction. Integrating the observed 

radiance from several angles effectively computes the down-welled radiance under the given weather conditions, 

which is needed by the aforementioned spherical collector.      

 

3. INTEGRATED HUMV SOFTWARE DESIGN AND USER INTERFACE 

 

Our goal is to release an end-to-end prototype solution demonstrating the whole simulation pipeline from user input 

to simulated image output. Due to the multidisciplinary need in generating synthetic images and video, we have a 

unique challenge of seamless integration of algorithms developed in this effort such as HART, human thermal model, 

and DIRSIG’s newly-developed spherical collector of environmental radiation with third-party M&S tools such as 

B3D. Therefore, we adapted a modular approach (Figure 1) under the Docker framework (“Docker”, n.d.) in which 

users configure human and human thermal models via the HumV editor. The outcomes from these two models are 

ingested by HumV automatically into the DIRSIG scene to conduct a physics-based simulation of specific sensors 

defined by the DIRSIG sensor model. The corresponding synthetic images and pixel-based ground-truth outputs from 

DIRSIG are the final products. This modular software architecture further facilitates future functionality upgrades and 

software updates by individual modules in a spiral manner.     

 

Each module within the HumV software is encapsulated by a Docker container and completely transparent to the user, 

except for the HumV-GUI. The HumV-GUI is the only module in the system where it is necessary for the user to 

provide input to the system. Using multiple Docker containers, we parallelize HumV by running a Docker container 

for each frame of the simulation independently. However, because the thermal dynamics module in the DIRSIG hasn’t 

been parallelized, the Docker containers used in the simulation pipeline are managed by a master python script to 

create and assign tasks to the Docker containers with the limitation of one Docker container per Central Processing 
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Unit (CPU) core. Therefore, the current HumV could only be speeded up with multi CPUs instead of GPUs. We expect 

the process will be fully GPU parallelized later when the thermal dynamics of DIRSIG is upgraded.  

 

In HumV, the entire M&S workflow is defined through the graphical user interface (GUI) – HumV Editor shown in 

Figure 6. It translates the users’ parameter inputs into simulation settings via six tabbed pages so as not to overwhelm 

the user with a single large setup page. The tabs are: (i) General; (ii) Human/Clothing/Motion; (iii) Human Placement; 

(iv) DIRSIG Scene; (v) Sensor; and (vi) Thermal. Each of the inputs to the HumV Editor corresponds either directly 

or in some cases indirectly to a field in the configuration file that is used by the modules in the HumV pipeline backend. 

 

 
 

Figure 6. HumV Editor GUI for M&S User Inputs 

4. SIMULATION RESULTS AND TEST VALIDATION 

 

4.1 Human view validation experiment (HUMVVEX) 

A key aspect of the Human View project was the planning, execution, and data analysis of a validation experiment. 

The experiment was conducted on October 23-24, 2018, on the property of the National Center for Medical Readiness 

(NCMR) located at 506 E. Xenia Dr., Fairborn, Ohio. Figure 7 shows a bird’s eye view of the site. Excellent on-site 

support was provided by the TechWarrior Enterprise and Wright State Research Institute. Cameras were placed on 

the concrete pad with a view toward the warehouse shown in the upper right of the image. The humans and other 

objects were placed just to the right of the warehouse door.  

 

Figure 8 provides a picture of the particular area used for the experiment along with an example color image acquired 

by one of the sensors. The left is a context picture showing one of the imaging sensors with the operator, the tables 

supporting calibration blackbodies, and the area of the warehouse used as background. The right is an example color 

image acquired by one of the imaging sensors used in the experiment showing a typical field of view. Validation 

imagery and data were acquired for many combinations of scenario parameters. Table 1 lists the parameters and their 

options. 
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Figure 7. NCMR Site Used 

for the HUMVVEX Data 

Collection 

Figure 8. Left: A Picture of the Area Used for the Experiment             

Right: An Example Photo 

 

Table 1. Scenario Parameter Options 

Parameter Options 
Illumination Full sun or in shadow 
Clothing Bare upper body with shorts, white or black shirt with 

shorts or leggings, military uniform, or robe 
Activity Standing/turning, walking, or post-exercise 
Weapon Present or not present 
Gender Male or female 

 

A total of 80 scenarios were collected. Both imagery and ancillary data were acquired during the experiment. Imaging 

systems used during HUMVVEX included electro-optical (EO) visible color, mid-wave infrared (MWIR), and two 

longwave infrared (LWIR) systems. Other non-imagery data were also acquired during HUMVVEX. These included 

field spectral reflectance and emissivity, downwelling irradiance, and temperatures of the calibration blackbodies and 

other objects in the scene. 

 

4.2 Validation of Image Intensity on Person 

 

To validate the HumV software, we developed a nominal 

DIRSIG background scene containing geometry and 

material properties for the ground surface and warehouse 

background. The support tables and calibration 

blackbodies were also included in the scene. Figure 9 

shows a longwave infrared rendering of the scene. This 

image is a rendering of the Atom 1024 LWIR camera for 

14:05 on 24 October 2018.  

 

Geometry for the scene was constructed using available 

aerial photos and measurements acquired during 

HUMVVEX. The warehouse walls and the ground surface 

were attributed using spectral reflectance and emissivity 

data collected during HUMVVEX. Other materials were 

attributed to data from the DIRSIG library based on best 

estimates. Thermal properties for the objects were 

estimated from values obtained in the literature and 

adjusted to provide a reasonable match to the observed characteristics in the data. 

 

 
Figure 9. Simulated LWIR Image of the Scene for 

the HUMVVEX Validation Experiment 
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We examine the image intensity of the person in the simulated image in detail and compare it with the real image. The 

example is shown in Figure 10. It shows that the intensity values are generally correct. Effects such as shadows and 

loose clothing around the torso region are visible on the simulated data.  

 

Figure 10. Simulated and Real Image Used in the Validation 

To obtain a quantitative analysis result, we segment the human image area into different body regions, as shown in 

Figure 11. This allows us to perform analysis of individual regions.  

 
Figure 11. Masks Region for Different Body Areas 

  
ATOM (whole frame) Simulated image (whole frame) 

  
ATOM (zoom-in) Simulated image (zoom-in) 
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Using the segmentation masks for the different body regions, we sample the image and compute the average 

intensity values on the HumV simulation image and the real Atom image. The result is shown in Table 2.  

 

Table 2. Comparison of Average Image Intensity Per Body Region 

 

# 
 

HumV 

Simulation 

Atom Difference 

1 Full body 132.0 160.3 -12.1 

2 Hat 187.3 204.3 -10.8 

3 Chest 148.9 163.5 -5.7 

4 Torso 111.3 138.7 -4.9 

5 Left upper arm 78.2 101.2 -17.3 

6 Left lower arm 154.0 116.7 -28.5 

7 Right upper arm 173.0 180.9 23.1 

8 Right lower arm 177.0 164.0 -11.9 

9 Left upper leg 87.8 138.1 -45.2 

10 Left lower leg 83.7 120.3 -34.2 

11 Left foot 182.0 178.0 -13.1 

12 Right upper leg 151.5 189.7 6.7 

13 Right lower leg 145.0 183.5 10.5 

14 Right foot 179.2 181.1 30.5 

15 Face 128.0 147.4 54.8 

 

The result shows that the intensity values of the different body regions and their ordering are comparable. Some 

differences are due to slight differences in the body pose. For example, the lower arms on the simulation are slightly 

raised, causing a slight difference in shadow and sun loading on the arms and torso.  

 

                    
Figure 12. Additional Examples for Comparing the Simulated Images with Real Thermal Images.  

5. CONCLUSIONS 

 

The ability to automatically generate synchronized, co-registered multi-modal sensor data is a critical need for many 

DoD applications such as sensor fusion, sensor exploitation, signature analysis, and counter-surveillance. Driven by 

the requirement of our customer, the AFRL, we designed and developed the HumV software system, providing an 

end-to-end software processing pipeline to perform human activity simulation. Besides the software development, we 

also prepared various data sources needed for human activity simulation, completed a validation data collection for 

Human View Validation Experiment at the National Center for Medical Readiness (NCMR), and developed a DIRSIG 
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scene of the HUMVVEX data collection scenarios. This scene is then used in a full HumV simulation for verification 

of the simulation results against the collected real data. 

 

In summary, our HumV software successfully demonstrated a new capability of simulating thermal infrared imagery 

of close-up scenes with humans performing activities. While additional work remains to fully validate and further 

develop this capability, initial results show the method and integrated M&S framework are promising in generating 

multi-modal synthetic human imaging data with real-world environmental effects and sensor optical physics.  

 

HumV has broad potential applications. The tool is being studied for use in sensor feasibility analysis for ISR mission 

planning at the Air Operation Center (AOC). The technology would also be useful in other areas such as analytical 

technology development for homeland security applications. HumV would be beneficial to developers of first 

responder support equipment for operations such as search and rescue. Commercial applications include the fast-

growing field of robotics. HumV may be used by developers of self-driving cars and any other Artificial Intelligence 

or robotic systems that interact with humans. 
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