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ABSTRACT

There is a need to develop a physics-based 3D modeling and simulation (M&S) software to generate multi-modal
datasets for machine learning of human activity detection and recognition, due to the high cost and difficulty in
collecting synchronized, multi-view human sensing data. This paper presents the effort in developing a novel,
integrated, high-fidelity M&S tool: HumanView (HumV) of human signatures. Its key elements include: (a) HumV
editor module, which allows users to view and manage available models and associated configurations using an
intuitive graphical user interface; (b) HumV models module, which is a data store containing human models, scene
models of the environment, and relevant electro-optical/infrared (EO/IR) sensor models; and (c) HumV simulator
module, which allows users to simulate multiple scenarios for generation of synthetic sensor data and ground truth
labels for analytics. HumV has established a pipeline that seamlessly integrates off-the-shelf free and open-source
multi-physics M&S tools and material properties databases with newly developed models and algorithms to address
the multi-disciplinary M&S requirements. Specifically, we have developed the Human Activity Replication Tool
(HART) - a Blender 3D add-on to provide bio-fidelic M&S of clothed avatars that realistically represent the diversity
of human shape, motion, and clothing characteristics. This is followed up by an innovative human thermal model that
takes the scene and HART activity models to produce an output of temperature estimates for all the mesh facets of
skin and clothing of the human avatars. The thermal dynamics considers the activity/heart rate, environmental
radiance, and body/clothing interaction. Finally, various models of human activity, thermal dynamics, scene,
materials, environment, sensor, and atmosphere are assembled into the Digital Imaging and Remote Sensing Image
Generation (DIRSIG) tool to generate synthetic images or videos. Model validation has been conducted against the
experimental data collected using commercial cameras in an outdoor setting.
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1. INTRODUCTION

The advancement of deep learning depends on the availability of a large quantity of training data with ground truth
labels. Acquiring such datasets is always a challenge due to the high cost of testing and labeling. Moreover, typical
data collection efforts are often single modal, single viewing angle, and limited to the environment condition and
configuration at the time of data collection. These limitations not only affect the robustness of algorithms on image
recognition but also hinders the fusion of multiple modalities for better recognition performance. Therefore,
researchers have been looking into creating synthetic imaging data to supplement the need (Schraml, 2019), using 3D
graphics simulation technology for the rapid creation of background scenes, buildings, vegetation, machines, and
human avatars. However, the majority of current synthetic image generation efforts are neither human-focused nor
biofidelic. Studies that do explore synthetic human images (Varol, et al., 2017; Chen, et al., 2016) for machine learning
purposes are mostly concentrated in shape-based pose estimation, which does not require high fidelity at the pixel
level. They can rely on avatars of graphical rendering without the need to consider human physiology and thermal
exchange between the human body, clothes, and environment. On the other hand, the majority of full-motion videos
(FMVs) seen in aerial surveillance are from infrared sensors which are more difficult to synthesize due to the complex
thermal effects involving a human body, surrounding environment, and weather, etc. This presents an open research
and development opportunity to fill in the technical gap.

This paper discusses our effort in developing a novel, integrated, high-fidelity modeling, and simulation (M&S) tool:
HumanView (HumV). The architecture of HumV, as shown in Figure 1, is designed for generating multi-modal
synthetic human imaging data with real-world environmental effects and sensor optical physics. Its key elements
include:

e HumV editor module, which allows the user to select an available model, manage the configuration associated
with the model, create specific activities for the model. The module includes:

a) Scenario Model editor, which allows the user to define specific scenarios: for example, a human walking
in a desert environment on a windy day.

b) Sensor Model editor, which allows the user to define salient sensor properties, such as passive/active
nature, modality, bandwidth, and its pose relative to the platform.

¢) Environment editor, which allows the user to annotate the 3D scene model with atmospheric effects and
image conditions such as date and time of the day.

d) Material Properties editor, which allows the user to assign the human model and the 3D scene model with
material properties that are salient to the sensor response.

e HumV models module, which is a data store that contains 3D human models, 3D geometric models of the
environment, and relevant sensor models (EO and IR). The module provides various 3D human models
capturing body motion and deformation associated with various human activities. HumV, by using Blender,
accepts a wide variety of 3D computer-aided design (CAD) models for simulating the different environments.

e HumV simulator module, which allows the user to simulate multiple scenarios to generate the synthetic sensor
data for analytics.
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Figure 1. HumV Architecture

Currently, we have developed the core functionality of HumV for evaluating the overall approach and demonstrating
basic imaging generation capability. Our main contributions are:

e Bio-fidelic human and activity models: HumV can generate bio-fidelic models that realistically represent the
diversity of human shape and motion.

e Physics-based, first principle-based multi-modality simulation: HumV is designed to perform simulation
using physics-based and first principle-based models for radiometry, material reflectance, thermal, sensing and
processing. This is to ensure high-fidelity simulation for a diverse set of conditions.

e Seamless integration of multi-disciplinary M&S tools: HumV incorporates existing state-of-the-art
radiometry M&S tools of Digital Imaging and Remote Sensing Image Generation (DIRSIG) (Goodenough &
Brown, 2017) with general M&S tool of Blender 3D (B3D) (“Blender”, n.d.) and our new human models.

Model validation has been conducted against the experimental data collected using commercial cameras in an outdoor
setting. Once fully developed, HumV will be the first-of-its-kind, physics-based, multi-disciplinary solution for M&S
of human activities for multi-model sensors. It could support rapid machine learning data generation and algorithm
experimentation for FMV analysis, simulating human performance under physical stress and various activities, and
mission training and planning.

The rest of this paper is organized as follows. The next section focuses on biomechanical and thermal models of
humans, followed by the section discussing the HumV software pipeline and the section presenting validation and
simulation results. Conclusions and future directions are given in the last section.

2. MULTI-PHYSICS DIGITAL HUMAN MODELING

2.1 Human Activity Modeling and Simulation

In HumV, human activity modeling and simulation are required to replicate human activities under real-world
conditions with high bio-fidelity and to provide human models that meet the requirements of human thermal modeling
and multi-modal sensor data generation. To streamline the process of human activity modeling and simulation, we
have developed a software — Human Activity Replication Tool (HART) for HumV. As shown in Figure 2 (a), HART
is a python-based B3D add-on, which leverages various functions provided by Blender for modeling and animation
and utilizes MakeHuman (“MakeHuman”, n.d.) to generate human shape models with anthropometric variations of
gender, weight, height, etc. The graphical user interface (GUI) of HART shown in Figure 2 (b) has a hierarchical
menu-driven structure to help users navigate the human modeling and animation process and utilize various functions
to create human activity models. The main functions of HART have also been implemented via python scripts so that
the tasks related to human activity modeling can be executed in the backend and seamlessly integrated into the HumV
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workflow. During HART development, several technical challenges were encountered and overcome, which are
discussed as follows.

=
J=

(@) HART as an add-on to Blender (b) Menus of HART
Figure 2. Human Activity Replication Tool (HART) Overview.

1. Rigging of a clothed avatar. For the avatars used in ordinary computer games, cloth and human body surfaces are
usually baked together and represented by one layer of mesh. However, for the clothed avatars created by HART,
body surface and clothes are represented by two separate layers of mesh, so that the heat emission and
transmission from the body surface to clothes can be well accounted for in human thermal modeling. The two
layers of mesh need to be rigged well so that a clothed avatar can be readily used for animation. In HART, a
rigged and clothed avatar can be generated in three ways:

e Importing from MakeHuman: If an avatar created by MakeHuman contains clothes, the clothes are
automatically rigged.

¢ Rigging in Blender: Select the clothes and the avatar to be selected, make sure the skeleton (armature) of the
avatar is active, and then using Armature Deform with Automatic Weights to rig the clothes to the skeleton.

e Using MakeClothes: Create a cloth that fits the template human model provided by MakeClothes, which is
an add-on to the Blender. The template human models include baby, teenage, adult male, and female, etc.
The cloth created includes three vertex groups: left, mid, and right. After clicking Make Clothes, a user can
find the created clothes in the asset of MakeHuman. When an avatar with new clothes is exported from Make
Human to Blender, the clothed avatar in Blender has been rigged already. The clothes created using
MakeClothes automatically fit different avatars which are generated from the same template human model.

2. Animating an avatar interacting with the scene. Two problems are involved. One is the clearance between the
feet and the ground. To ensure appropriate contact (no gap and no penetration) between the feet and ground
surface, the center of gravity (CG) of an avatar needs to be adjusted according to the change of the altitude of
slope or uneven ground. The other problem is the feet sliding on the ground surface. Feet-sliding occurs when an
avatar walks on a path with the length of each step not equal to what should have been according to motion capture
data. The problem is further complicated when clothing simulation is involved because synchronization is needed
between sliding correction and clothing simulation. In HART, both problems are solved by using Animation
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Nodes (a Blender add-on) to determine the length of each step and the CG position for each step. An example is
shown in Figure 3 (a).

3. Intersections between the body mesh and cloth mesh. In HumV, human thermal modeling requires no intersections
between the human body surface and clothing. Therefore, HART has built-in per-frame based automatic
intersection detection. For minor intersections, they are automatically eliminated in HART based on the
ShrinkWrap modifier in Blender which shrinks one surface to another. For Major ones, a user can use Mesh
Deform modifier with shape keys in Blender to manually eliminate them or convert them into minor intersections
which are then automatically eliminated.

4. Dismount modeling. HART has modeled a few dismounts with apparel (magazine vest) and clothes (loss robe or
Airman Battle Uniform (ABU). To model a clothed avatar with a magazine vest hidden under the clothes, the
vest is wrapped around the human body with B3D’s ShrinkWrap modifier to ensure no intersection during the
animation, as shown in Figure 3 (b). It is treated as part of the human body with collision physics with respect to
the body during clothing simulation, instead of as another layer of clothing under the clothes. Fine mesh is used
for regions where clothes are overlaid (e.g., neck and groin) to reduce self-collision. A more challenging case
modeled is a person entering and exiting an SUV, as shown in Figure 3 (c), where the hands griping steering
wheel and the feet stepping in/out cabin create inconsistencies that are resolved manually.

(b) A hidden vest (c) Entering into a vehicle
Figure 3. A Few Modeling Cases in HART

(a) Walking on a slope

We note that HART replicates human motion rather than synthesizing human motion. The change of human body
shape and clothing during motion is obtained through rigging, without accounting for non-rigid deformation, thus the
fidelity is limited. The evaluation of model rigging error associated with MakeHuman/Blender/MakeClothes was not
done in this study, since the data that can be used for the validation were not available. The framework is flexible in
ingesting motion data in standard formats (e.g. bvh) to render diverse range of activities and interactions.

2.2 Human Thermal Modeling

The goal of the integrated human thermal simulation component is to take into account the user input of various
models including scene, clothing, and activity, and produce an output consisting of temperature estimates of all the
facets of skin and cloth of the human in the scene. This integrated thermal model has an operation structure depicted
in Figure 4, which involves two main thermal subcomponents: the Skin Temperature model and the Body/Clothing
Interaction model. The following subsections summarize various calculations related to them.
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Figure 4. Integrated Human Thermal Modeling

2.2.1 Initial Capability Decision Aid (ICDA) Model for Skin Temperature

ICDA (Yokota & Berglund, 2006) developed by the US Army Research Institute of Environmental Medicine
(USARIEM), is the central component for modeling heat production dynamics in the human body. At a high level,
ICDA is a heat transfer model that takes environment inputs, human physical properties, and human activity properties
and outputs a core body temperature and a skin surface temperature (Figure 5). For the HumV human thermal model,
we are primarily interested in the skin surface temperature, Tgy;,,.

Clothing
Anthropometry | -
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Wonther Physiological
(Ta, MRT, RH, WS) ’ Prediction
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‘ HR L3l Metabolic input i
; function

Output
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Figure 5. lllustration of ICDA Model

First, the human activity model is used to produce a heart rate required by ICDA. This is accomplished through the
use of a lookup table that maps activity to a power output during aerobic exercise and an equation that relates power
output to heart rate for a given individual at a certain level of fitness (Arts & Kuipers, 1994). The other important
environmental inputs to the ICDA model are the ambient temperature T,, the mean radiant temperature MRT, the
relative humidity RH, and the wind speed WS. All of these environmental conditions are defined or derived from user
options with the exception of MRT. MRT is found using the Stefan-Boltzmann law,

E = o(MRT)* (€Y}

where the energy E is the total amount of incoming radiation acting on the human model and ¢ is the Stefan-Boltzmann
constant.

2.2.2 Incoming Radiation

Incident radiation is a major contributor to the thermal environment of our human model. The key components of the
radiation tracing portion of the thermal model are the output from a spherical collection module that collects incident
radiation surrounding an object. It is implemented in DIRSIG 5 as the spherical collector through which one defines
a point in 3D DIRSIG scene and DIRSIG then calculates all of the incoming radiation that reaches that point in 3D
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space. The radiation is calculated over a set of user-defined wavelengths. For each wavelength, the spherical collector
returns an orthogonal image (spherical collector image), hence the output of the spherical collector is a group of
spherical images. Each pixel of a spherical collector image maps to the direction of the incoming radiation where the
horizontal of the image spans the Azimuth, ¢, and the vertical of the image spans the Zenith, 8, of the incoming
radiation. Each pixel subtends a solid angle defined by the integral solid angle definition:

On rPn
0= f f $in(0) dOde = (b — o) (cos(Bo) — cos(6,)) @
6o Yoo

For HumV, we configure the spherical collector to compute multiple bands of radiation in the visible and IR bands
with a pixel resolution of 360x360. We developed the radiation ray tracing with respect to the facets (polygons) of the
human model using a far-field approximation. It assumes all incoming radiation as defined by our spherical collector
is originating from a point in space that is effectively infinitely far from our human model.

We are interested in calculating the total amount of radiation, q,4q,, acting on the i-th facet of the human model as
defined in Equation 3:

J
Qraa; = Z Ns COS(Aj) Ijﬂjlincidentj 3)

j=1

The total amount of incident radiation is the summation over the effect of all incoming rays of radiation where J is the
total number of incoming rays. The effect of an incoming ray of radiation with an intensity /; is determined by the
value of the intensity, the coefficient of absorption of the material 7, the cosine of the angle of incidence 4;, the solid
angle of the incoming ray €;, and whether the incoming ray reaches the facet 1incidentj. The intensity, I;, of the
incoming ray of radiation is defined as the sum over the pixel values, p,,, of all of the spherical collector images, B,
multiplied by the width of each bandwidth, w,.

B
[ = Z WpDp 4)
b

The angle of incidence, A;, of an incoming ray is the angle between the normal vector of the facet and the vector
defining the incoming ray. The check function, 1;;, for a face i takes value 1 if the ray j is incident on face i. This
value is determined by the output of the radiation ray-tracing procedure.

2.2.3 Clothing Heat Transfer
The clothing surface temperature T is solved through an equation of energy balance shown in Equation 5.

Qin + qradi = Gconv T Gemission (5)

Besides the aforementioned q;.q4,, 9i» Models the conductive heat transfer from the skin surface to the clothing surface
in which the air gap between the skin and clothes is outputted from the HART avatar. q.,,, is the heat transfer from
the clothing surface to the environment due to the movement of the surrounding air. qemission IS the radiative release
of energy from the clothing surface to the environment.

The conduction term, q;,, is calculated as follows by modeling the airgap and clothes as thermal resistors with the
resistance of R, and R,, respectively,
1

= _(R1 T Rz) (Tskin - Ts) (6)

qin

If we define k, and k,, as the resistivity and [, and [, as the thickness of the air gap and clothes, respectively. We
have,
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where ¢ is the Boltzmann constant and T, is the ambient temperature. Using Stefan-Boltzmann law, clothing surface
emission can be calculated as,

Gemission = SO-TS4 (8)

where ¢ is a material property coefficient for radiative heat transfer. Finally, the convection term can be calculated as,

Geonv = M(Ts — T,) C)]
where the convective heat transfer coefficient h is quantified using a standard engineering approximation of h =

1
10.45 —V, + 10V in which V is the wind speed the surrounding environment.
2.3 Environmental and Sensor Models

HumV’s environmental and sensor models come directly from DIRSIG, which have been matured and validated
through many years of development. HumV utilizes DIRSIG’s scene construction, sensor, and material modules
extensively. DIRSIG associated material and environmental property databases are incorporated into HumV.

DIRSIG is designed to generate passive broadband, multi-spectral, hyperspectral low light, polarized, active laser
radar, and synthetic aperture radar datasets through the integration of a suite of first-principles based radiation
propagation modules. These object-oriented modules address tasks ranging from bi-directional reflectance distribution
function (BRDF) (Kerekes & Baum, 2003) predictions of a surface to time and material-dependent surface temperature
predictions and the dynamic viewing geometry of scanning imaging instruments on the agile ground, airborne, and
space-based platforms. DIRSIG also integrates MODTRAN (“MODTRAN”, n.d.), the widely used atmospheric
radiation propagation model. MODTRAN models the atmosphere as stratified (horizontally homogeneous) and solves
the radiative transfer equation including the effects of molecular and particulate absorption/emission and scattering,
surface reflections and emission, solar/lunar illumination, and spherical refraction. Additionally, the MODTRAN
model allows a sensor to be placed on the ground looking up to space in any direction. Integrating the observed
radiance from several angles effectively computes the down-welled radiance under the given weather conditions,
which is needed by the aforementioned spherical collector.

3. INTEGRATED HUMYV SOFTWARE DESIGN AND USER INTERFACE

Our goal is to release an end-to-end prototype solution demonstrating the whole simulation pipeline from user input
to simulated image output. Due to the multidisciplinary need in generating synthetic images and video, we have a
unique challenge of seamless integration of algorithms developed in this effort such as HART, human thermal model,
and DIRSIG’s newly-developed spherical collector of environmental radiation with third-party M&S tools such as
B3D. Therefore, we adapted a modular approach (Figure 1) under the Docker framework (“Docker”, n.d.) in which
users configure human and human thermal models via the HumV editor. The outcomes from these two models are
ingested by HumV automatically into the DIRSIG scene to conduct a physics-based simulation of specific sensors
defined by the DIRSIG sensor model. The corresponding synthetic images and pixel-based ground-truth outputs from
DIRSIG are the final products. This modular software architecture further facilitates future functionality upgrades and
software updates by individual modules in a spiral manner.

Each module within the HumV software is encapsulated by a Docker container and completely transparent to the user,
except for the HumV-GUI. The HumV-GUI is the only module in the system where it is necessary for the user to
provide input to the system. Using multiple Docker containers, we parallelize HumV by running a Docker container
for each frame of the simulation independently. However, because the thermal dynamics module in the DIRSIG hasn’t
been parallelized, the Docker containers used in the simulation pipeline are managed by a master python script to
create and assign tasks to the Docker containers with the limitation of one Docker container per Central Processing
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Unit (CPU) core. Therefore, the current HumV could only be speeded up with multi CPUs instead of GPUs. We expect
the process will be fully GPU parallelized later when the thermal dynamics of DIRSIG is upgraded.

In HumV, the entire M&S workflow is defined through the graphical user interface (GUI) — HumV Editor shown in
Figure 6. It translates the users’ parameter inputs into simulation settings via six tabbed pages so as not to overwhelm
the user with a single large setup page. The tabs are: (i) General; (ii) Human/Clothing/Motion; (iii) Human Placement;
(iv) DIRSIG Scene; (v) Sensor; and (vi) Thermal. Each of the inputs to the HumV Editor corresponds either directly
or in some cases indirectly to a field in the configuration file that is used by the modules in the HumV pipeline backend.
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Figure 6. HumV Editor GUI for M&S User Inputs

4. SIMULATION RESULTS AND TEST VALIDATION

4.1 Human view validation experiment (HUMVVEX)

A key aspect of the Human View project was the planning, execution, and data analysis of a validation experiment.
The experiment was conducted on October 23-24, 2018, on the property of the National Center for Medical Readiness
(NCMR) located at 506 E. Xenia Dr., Fairborn, Ohio. Figure 7 shows a bird’s eye view of the site. Excellent on-site
support was provided by the TechWarrior Enterprise and Wright State Research Institute. Cameras were placed on
the concrete pad with a view toward the warehouse shown in the upper right of the image. The humans and other
objects were placed just to the right of the warehouse door.

Figure 8 provides a picture of the particular area used for the experiment along with an example color image acquired
by one of the sensors. The left is a context picture showing one of the imaging sensors with the operator, the tables
supporting calibration blackbodies, and the area of the warehouse used as background. The right is an example color
image acquired by one of the imaging sensors used in the experiment showing a typical field of view. Validation
imagery and data were acquired for many combinations of scenario parameters. Table 1 lists the parameters and their
options.

2020 Paper No. 20389 Page 10 of 14



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

Figure 7. NCMR Site Used Figure 8. Left: A Picture of the Area Used for the Experiment

for the HUMVVEX Data Right: An Example Photo
Collection
Table 1. Scenario Parameter Options

Parameter Options

[llumination Full sun or in shadow

Clothing Bare upper body with shorts, white or black shirt with

shorts or leggings, military uniform, or robe

Activity Standing/turning, walking, or post-exercise

Weapon Present or not present

Gender Male or female

A total of 80 scenarios were collected. Both imagery and ancillary data were acquired during the experiment. Imaging
systems used during HUMVVEX included electro-optical (EO) visible color, mid-wave infrared (MWIR), and two
longwave infrared (LWIR) systems. Other non-imagery data were also acquired during HUMVVEX. These included
field spectral reflectance and emissivity, downwelling irradiance, and temperatures of the calibration blackbodies and

other objects in the scene.
4.2 Validation of Image Intensity on Person

To validate the HumV software, we developed a nominal
DIRSIG background scene containing geometry and
material properties for the ground surface and warehouse
background. The support tables and calibration
blackbodies were also included in the scene. Figure 9
shows a longwave infrared rendering of the scene. This
image is a rendering of the Atom 1024 LWIR camera for
14:05 on 24 October 2018.

Geometry for the scene was constructed using available
aerial photos and measurements acquired during
HUMVVEX. The warehouse walls and the ground surface
were attributed using spectral reflectance and emissivity
data collected during HUMVVEX. Other materials were
attributed to data from the DIRSIG library based on best
estimates. Thermal properties for the objects were
estimated from values obtained in the literature and

Figure 9. Simulated LWIR Image of the Scene for
the HUMVVEX Validation Experiment

adjusted to provide a reasonable match to the observed characteristics in the data.
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We examine the image intensity of the person in the simulated image in detail and compare it with the real image. The
example is shown in Figure 10. It shows that the intensity values are generally correct. Effects such as shadows and
loose clothing around the torso region are visible on the simulated data.

~SUN=UMi=§
amhbient

": 14.910000 "

témp_co‘d_bb_c: 15.000000

temp_hot_bb_c ; 43.200000
temp_foil_c
temp_mti_c

ATOM (zoom-in)
Figure 10. Simulated and Real Image Used in the Validation

To obtain a quantitative analysis result, we segment the human image area into different body regions, as shown in
Figure 11. This allows us to perform analysis of individual regions.

Figure 11. Masks Region for Different Body Areas

2020 Paper No. 20389 Page 12 of 14



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

Using the segmentation masks for the different body regions, we sample the image and compute the average
intensity values on the HumV simulation image and the real Atom image. The result is shown in Table 2.

Table 2. Comparison of Average Image Intensity Per Body Region

# HumV Atom Difference
Simulation
1  Full body 132.0 160.3 121
2 | Hat 187.3 204.3 -10.8
3 Chest 148.9 163.5 5.7
4 | Torso 111.3 138.7 49
5  Leftupper arm 78.2 101.2 -17.3
6 | Leftlower arm 154.0 116.7 -28.5
7 | Rightupperarm  173.0 180.9 231
8 | Rightlowerarm | 177.0 164.0 -11.9
9  Left upper leg 87.8 138.1 -45.2
10 | Left lower leg 83.7 120.3 -34.2
11 | Left foot 182.0 178.0 131
12 | Right upperleg | 151.5 189.7 6.7
13 | Right lower leg | 145.0 183.5 105
14 | Right foot 179.2 181.1 305
15 | Face 128.0 147.4 54.8

The result shows that the intensity values of the different body regions and their ordering are comparable. Some
differences are due to slight differences in the body pose. For example, the lower arms on the simulation are slightly
raised, causing a slight difference in shadow and sun loading on the arms and torso.

Figure 12. Additional Examples for Comparing the Simulated Images with Real Thermal Images.

5. CONCLUSIONS

The ability to automatically generate synchronized, co-registered multi-modal sensor data is a critical need for many
DoD applications such as sensor fusion, sensor exploitation, signature analysis, and counter-surveillance. Driven by
the requirement of our customer, the AFRL, we designed and developed the HumV software system, providing an
end-to-end software processing pipeline to perform human activity simulation. Besides the software development, we
also prepared various data sources needed for human activity simulation, completed a validation data collection for
Human View Validation Experiment at the National Center for Medical Readiness (NCMR), and developed a DIRSIG
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scene of the HUMVVEX data collection scenarios. This scene is then used in a full HumV simulation for verification
of the simulation results against the collected real data.

In summary, our HumV software successfully demonstrated a new capability of simulating thermal infrared imagery
of close-up scenes with humans performing activities. While additional work remains to fully validate and further
develop this capability, initial results show the method and integrated M&S framework are promising in generating
multi-modal synthetic human imaging data with real-world environmental effects and sensor optical physics.

HumV has broad potential applications. The tool is being studied for use in sensor feasibility analysis for ISR mission
planning at the Air Operation Center (AOC). The technology would also be useful in other areas such as analytical
technology development for homeland security applications. HumV would be beneficial to developers of first
responder support equipment for operations such as search and rescue. Commercial applications include the fast-
growing field of robotics. HumV may be used by developers of self-driving cars and any other Artificial Intelligence
or robotic systems that interact with humans.
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