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ABSTRACT 
 
Augmented Reality (AR) is rapidly maturing as a training solution and promises to provide the training community with 
unprecedented capabilities. However, there remain several key technical challenges that must be addressed to deliver credible 
and immersive experiences. At the Training & Simulation Industry Symposium (TSIS) 2019 and in subsequent public forums, 
the US Army’s Simulation & Training Technology Center (STTC) identified dynamic occlusion as a key technological 
challenge critical to the successful implementation of AR applications and specifically critical to AR training.  
 
Dynamic occlusion is the ability of an AR system to realistically integrate synthetic and real-world content. Successfully 
implemented dynamic occlusion allows moving real-world objects, such as people, to occlude virtual content in a credible and 
natural manner. For example, if a person walks in front of a digital/synthetic box, the person should occlude the box and the 
box should not be visible “through” the person. This concept is intuitive to observers, but there currently does not exist a 
commonly understood metric or industry standard for measuring dynamic occlusion performance.  
 
In this paper, we propose a metric for assessing dynamic occlusion. We break dynamic occlusion down into constituent factors 
of false positive and false negative occlusion. Through this, we create a conceptual framework that can facilitate the 
establishment of requirements as well as objective comparisons of performance across various AR systems. We test this 
approach using a survey instrument to assess viewer acceptability of the false negative and false positive occlusion. Finally, 
we present our recommendation for a revised occlusion metric, based on the survey results, that allows occlusion solutions to 
be objectively compared in a manner that may better reflect their utility in AR training systems. 
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INTRODUCTION 
 
For the past four years, ML Horizons has been working with the SFC Paul Ray Smith Simulation & Training 
Technology Center (STTC) on the Augmented Reality Dismounted Soldier Training (ARDST) Small Business 
Innovation Research (SBIR) topic area. The stated objective of the SBIR is to “Design and fabricate an integrated 
Augmented Reality system for use by Dismounted Soldiers that demonstrate high levels of immersion in live indoor 
and outdoor environments and demonstrate future interoperability in both single and multiplayer (collective) 
configurations with evolving Synthetic Training Environment (STE).” The SBIR is currently in Phase III, and 
continues to push the boundaries of the state-of-the-art. Because of this, there are many research topic areas in which 
there are no readily accepted industry-wide metrics available to objectively measure progress. 
 
One area in which we have found this to be true is dynamic occlusion. When this research began, the focus was on 
the implementation of dynamic occlusion in the dismounted Soldier training use case that is central to our SBIR work. 
Over the past two years, however, we have progressed well beyond initial implementation, and are now dealing with 
the challenges of improving the performance of available solutions. As with any research, a key part of improving a 
system is having an objective metric to benchmark progress. Our initial assessment depended on a rote interpretation 
of what we termed “overlap error”. However, through implementation and experience, we developed an intuition that 
this initial attempt to quantify dynamic occlusion may have not accurately reflected the physiological and 
psychological nuances of human perception. As a result, we undertook this study to better understand the levels and 
types of dynamic occlusion that are acceptable to AR users. We present the results of our initial findings in the hopes 
that this work might inform future research and future requirements on systems that make use of dynamic occlusion. 
 
 
BACKGROUND 
 
Occlusion 
 
Dr. Jennifer Esposito, Vice President of Health for Magic Leap, describes spatial computing as “…really the idea that 
the digital world and the physical world are fully interacting. They are aware of each other” (Parmar, 2019). This 
awareness, primarily of the digital world interacting realistically with the real world, begins with simple visual cues 
that help the user believe that the two are blended. Spatial computing is not just a display overlaid on the real world, 
but rather the creation of fully 3D digital content that exists within the user’s surroundings. When a digital object is 
“in front” of a real object, it should obscure or occlude the real object. And conversely, when a real object is in front 
of a digital object, the spatial computing system must be smart enough to render that digital object so that it appears 
as if the digital content is behind the real object. This is intuitive, and when done successfully, should not even be 
noticed by the user. However, creating this unnoticeable and intuitive result proves to be very technically challenging.  
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The nature of augmented reality is that the display surface is always physically closer to the viewer than the real-world 
content in their environment. This is illustrated in panel ‘a’ of Figure 1 below. The eye represents the viewer. When 
experiencing augmented reality (AR), the viewer will have some sort of display interposed between them and the real 
world. Synthetic objects, represented by the red and green shapes in the diagram, are then rendered to appear as if they 
are in the world. However, for these objects to appear correctly to the viewer, the synthetic objects must be properly 
obscured by real world objects. Note that it is trivial for the synthetic objects to occlude real world objects – that is, 
to have synthetic objects appear in front of real-world objects. After all, the display surface (e.g., a head mounted 
display) will always be closer to the viewer than the real objects, so simply by rendering the objects they should cover 
up the real world. The challenge of occlusion is having real world objects obscure the synthetic object rendered on the 
display surface. For this to happen, the synthetic objects must be clipped or modified so that the real-world objects 
show ‘through’ the synthetic objects. Obviously this will not change the location of the display surface with respect 
to the real world, but if done properly, it should provide the viewer with the illusion that the synthetic content is behind 
the real world content, rather than in front of it. 
 
Panel ‘b’ of Figure 1 illustrates what happens when there is no occlusion, or when occlusion is not performed correctly. 
Due to the mechanics described in Panel ‘a’, the synthetic content will simply appear to the viewer on top of the real 
world. This effect can be jarring and break the suspension of disbelief and sense of immersion that is critical to 
successfully applying AR. Panel ‘c’ illustrates successful occlusion – the synthetic content is displayed to the viewer 
in a natural manner. Content that should be in front of the person in view, in this case Synthetic Object 1, will appear 
in front of the person and obscure them. But Synthetic Object 2, which is behind the person, will appear to be obscured 
by the person. Such a natural blending of the real and synthetic world is a key aspect of successful spatial computing.  
 

 
Figure 1. Occlusion 

 
For an AR system to successfully implement occlusion, the system must track the given objects, understand how 
they relate spatially to the synthetic content, and properly obscure the rendering of their synthetic content to match 
the viewer’s perspective of that content. As the display surface remains closer to the viewer than the real world, 
effectively the system must ‘punch’ out an accurate ‘hole’ in the shape of the real world objects in order for the 
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synthetic content to appear as if it is behind the real world objects. Referring again to Panels ‘b’ and ‘c’ above, one 
can imagine that to render this image properly, the green diamond shape of Synthetic Object 2 would need to have a 
hole in the shape of the person’s head and upper shoulders occluded from it so that the person is visible in a natural 
fashion.  
 
Notes on Generalizability 
 
For our research, we differentiate static occlusion from dynamic occlusion. Static occlusion is the obscuration of 
synthetic content by real world static objects, such as walls, floors, and some types of furniture. These objects tend 
to be relatively permanent in an environment. Typically, AR systems will implement static occlusion by having an 
accurate mesh of the physical environment, and using that mesh to occlude digital objects, just as they would using 
standard computer graphics occlusion techniques. These meshes are typically created in near-real time, rather than 
real time, and may necessitate dedicated preparation to create. Static occlusion should be considered a baseline 
requirement for any AR system capable of spatial computing.  
 
In ARDST, we have primarily concerned ourselves instead with dynamic occlusion. Dynamic occlusion poses 
unique challenges specific to our use case and has a very detrimental effect if not implemented properly. Dynamic 
occlusion is the obscuration of synthetic content by mobile real-world objects, such as people. It is more technically 
demanding than static occlusion, due largely to the extremely low latency demands for both sensors and spatial 
processing. This real-time capability is required for successful implementation of dynamic occlusion. This paper 
will not focus on the techniques we have developed or implemented for dynamic occlusion, but will instead focus on 
our understanding of the metrics necessary to provide a meaningful assessment of how successful any given 
occlusion implementation is. The techniques and metrics we describe could be applied to both static and dynamic 
occlusion, but again, dynamic occlusion is our key focus area. The examples and survey described in this study may 
reflect that bias. 
 
Occlusion is not a universal concern for all AR applications, or even for all features within the same application. There 
are times when the use case requires occlusion and times when it would be better to omit it. For example, if you have 
a system in which you want to create an immersive tactical situation for Soldiers, like ARDST, then both static and 
dynamic occlusion will be needed. Trainees in this system must believe, for example, that a synthetic enemy is hiding 
behind a real-world tree. If the Soldier were to see the enemy through the tree, then the value of the training delivered 
would be diminished and may even create negative training transfer. Conversely, in the same training simulation, 
perhaps an exercise Observer Controller (O/C) has administrative digital content that helps them facilitate the 
execution of the exercise. In this case, the digital content may be better off not abiding by any occlusion, static or 
dynamic. This would allow the O/C access to key information regardless of who might walk in front of them or the 
size of the room they were in.  
 
Additionally, there exist two notably different approaches to AR that have a significant impact on the implementation 
of occlusion: optical-see-through and video-pass-through augmented reality. Optical-see-through is a paradigm in 
which the viewer sees the world through a semi-transparent lens, and digital content is displayed onto that lens. 
Optical-see-though is the type of augmented reality implemented by Magic Leap and Microsoft headsets, in their 
respective ML1 and HoloLens products. Conversely, in video-pass-through augmented reality, the viewer sees a 
display captured on video with digital content added to it. The user is not seeing the real-world directly in this case, 
but rather is seeing a modified real-time video. This may be seen on any smartphone AR application, or in headset 
implementations where video cameras are added to VR headsets like those offered from the HTC Vive and Oculus 
Rift product lines.  
 
Our research in ARDST is primarily concerned with optical-see-through implementations, and our use cases and study 
questions reflect that bias as well. We believe that the subject of this study and the conclusion we draw from it are 
applicable in either paradigm, but for transparency we note that our research is focused on the optical-see-through 
paradigm.  
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LITERATURE REVIEW 
 
There are a large number of survey works that generally discuss occlusion and its challenges, but few works that 
describe metrics for assessing occlusion. Popular tech outlets like the website Hacker Noon describe the gamut of 
technical challenges associated with occlusion in AR at large. (Mathew, 2018). And though the article describes the 
challenges of mesh generated occlusion versus other forms of occlusion, the author does not use the same 
categorizations that we do, in terms of static and dynamic occlusion. Shah (2018) covers much of the same ground as 
Mathew and describes a variety of different approaches to implementing occlusion. Sandström (2018) provides a more 
in-depth survey of varying techniques, focusing mainly on ARKIT, Unity, and OpenCV. The focus in these works 
tends towards implementation, and they do not dig into developing metrics to assess the relative merits of each 
approach. 
 
It is also worth noting that much of the previous work found in the area of occlusion is based in the video-see-through 
paradigm, and much of it is heavily based on handheld AR systems, like smartphones or tablets. In fact, while many 
of the approaches could be widely applicable, all of the references that described novel implementations of occlusion 
were based on using tablets or cameras connected to powerful computers. The results of these research papers were 
interesting to consider, but many depended on per-pixel analysis of imagery upon which the occlusion was performed. 
While these methods may be adapted for optical-see-through AR, the implementation is challenging, and any 
computational processing risks inducing noticeable lag that may be less detectable in video-pass-through. In video-
pass-through, the entirety of the images may lag, but in optical-see-through, any lag in processing, whether associated 
with occlusion or not, will be more easily detected by simple contrast with the real world.  
 
Fischet, et al. (2003) present an occlusion based on static backgrounds in the natural surroundings, which must be 
acquired beforehand. This would be unsuitable for moving AR systems. Maidi, et al. (2010) proposed a tracking 
algorithm based on the combination of tracking fiducials and optical flow to track visible points and maintain virtual 
graphics overlaying when targets are not identified. Dong, et al. (2013) make use of a time-of-flight (TOF) camera to 
create a depth map, and then uses OpenGL shading language (GLSL) and render to texture (RTT) techniques. While 
most modern AR systems have TOF capability, the reliance on per-pixel analysis via GLSL make adaptation to 
optical-see-through applications challenging. Pavan Kumar (2018) on Medium also presents an implementation to 
demonstrate capabilities of the Selerio SDK on smartphones, but he does not offer metrics or means of assessing 
performance. Jorge, et al. (2019) use raw depth information of the scene to create a rough foreground / background 
segmentation. They combine this data with color data to blend the virtual objects with real objects, but this approach 
is heavily dependent on RGB camera capture, and again very demanding and challenging to implement on an optical-
see-through headset. Unfortunately, these papers offer little in the way of generalizable metrics and focus more on 
documenting their implementation techniques.  
 
Walton, et al. (2017) implements their own approach to occlusion, though mostly focused on static objects. However, 
they do provide a metric for assessing performance. The authors do this by measuring the mean-square error between 
where pixels should be and where they were via a matte and green-screen process. This approach has its merits, but 
the focus on pixel-based mean-square error may hide the true impact of inaccurate clipping along object edges. This 
purely technical assessment may not accurately reflect how acceptable the final results are to viewers. Walton does 
bring up a valid point regarding temporal noise, and it is worth keeping in mind that occlusion takes place not only in 
2D images as observed in 3D environments, but across time as well.  
 
Yuan, et al. (2010) provide some of the most in depth analysis of metrics to assess performance. However, much of 
the metrics they offer seem uniquely suited to assessing the performance of their particular implementation. They 
provide three different measurements to assess performance: occlusion error, texture error, and temporal instability. 
Occlusion error penalizes depth edges for not being sharp. This error measures how crisp and well localized the edge 
in the depth map is for annotated occlusion pixels. It extracts a profile of ten depth samples perpendicular to the edge, 
five on either side, and measures the deviation from an ideal step edge, after removing the mean and standard deviation. 
This is the closest to “overlap error” but it does not try to quantify how much bleed-in or bleed-out occurs, and instead 
only provides an overall error score. Texture error penalizes depth at texture edges for not being smooth. Texture 
edges are color changes in regions that are not occlusion boundaries. The expectation is that the depth map would be 
smooth at these locations because false depth discontinuities would cause self-occlusion artifacts or cracks in objects. 
This appears to be something unique to their method and may not be generalizable to a wider variety of applications. 
However, it is something to consider when assessing the acceptability of differing occlusion techniques. Finally, 
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temporal instability penalizes temporal jitter of static points. Abrupt depth changes in the video in their solution can 
cause flickering when rendering effects. These measures seem directly related to video-pass-through implementation 
and should be noted for anyone looking to apply that form of AR in their solutions. They also bring up the same 
interesting theme as Walton did; that there is a temporal aspect to dynamic occlusion that needs to be considered. 
 
In our literature, we found descriptive coverage of the challenges of occlusion and especially the added challenges of 
dynamic occlusion, and several novel implementation approaches. Unfortunately, the majority of these studies focused 
on implementation approaches, and few discussed metrics needed to objectively assess performance. For those papers 
that did address metrics, we found their metrics to be too specific to their unique solutions, and unsuitable for our 
applications. Just as we acknowledge that our study may be biased because of our focus on optical-see-through AR 
solutions, we found that the majority of the research was biased the opposite way towards video-pass-through 
solutions. 
 
 
PROBLEM DESCRIPTION AND HYPOTHESIS 
 
During the course of our research, we tested various means of implementing dynamic occlusion and assessed the 
performance of each approach. Our objective was always to reduce the absolute error in occlusion. We calculated this 
as a strict percentage which we termed overlap error. Overlap error was objectively the size of the errant occlusion 
divided by the total size of the object being occluded (typically most easily measured in pixels).  
 
 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
                  (1) 

 
 

As we considered the occlusion problem further, we subdivided the total area of occlusion error into two distinct 
components, false positive and false negative error. False negative error would be parts of the target object that were 
not occluded – in other words, the synthetic content covers up the real-world content, even though it should be behind 
it. Conversely, false positive occlusion is where the synthetic content is clipped to make a hole for the real-world 
content, but the real-world content is not actually there.  
 
Figure 2 demonstrates the difference in false 
positive and false negative occlusion error. Panel 
‘a’ shows no error – the Soldier is standing in an 
auditorium, and a blue container is rendered as 
synthetic content behind the Soldier. The blue 
container appears as if it truly is behind the Soldier 
because the Soldier perfectly occludes the 
container. The red outline is added for reference to 
highlight the true occlusion perimeter of the 
Soldier. Panel ‘b’ in Figure 2 illustrates false 
positive occlusion error. In this case, the synthetic 
content is occluded outside of the Soldier’s true 
occlusion perimeter. The resulting effect is a halo 
around the Soldier through the container. The 
Soldier still appears in front of the container, but 
clearly the occlusion has error. Panel ‘c’ illustrates 
false negative occlusion error. In this case, the 
synthetic content, which should appear to the 
viewer to be behind the Soldier, incorrectly cuts off 
too much of the soldier, infringing upon his 
occlusion perimeter shown in red. As a result, the 
Soldier’s outline is distorted, and he appears unnaturally obscured at the edges. 
 

Figure 2. Examples of False Positive and False Negative 
Occlusion Error 
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As we saw more and more of these results from our dynamic occlusion tests, the ARDST research team developed an 
intuition about what was more pleasing or acceptable to see. Prior research has indicated that aesthetics can play a 
significant impact on learner outcomes (Martin, et al., 2014). The assumption is that the less acceptable an image is, 
the more it will break the suspension of disbelief and sense of immersion in training simulations, and thus negatively 
impact the training value. While we strive for perfect occlusion and the reduction of all error, we internally began to 
suspect that false positive occlusion was more acceptable to users than false negative occlusion. If this is the case, 
then a metric designed to reflect the effectiveness of the occlusion should also reflect that preference. In order to test 
this intuition, we developed our hypothesis, that a viewer will find false positive occlusion preferable to false negative 
occlusion.  
 
 
STUDY METHODOLOGY 
 
In order to study our hypothesized user preference 
for false positive versus false negative occlusion, we 
devised a simple survey. In each question, the 
respondents were presented with two images, one 
with false negative error, and one with false positive 
error. Sample images from the survey can be seen in 
Figure 3. We varied the amount of false positive and 
false negative error in each image by increments of 
5%, from 5% to 25%. Figure 3 shows 20% false 
positive error on the right and 20% false negative 
error on the left.  
 
Our initial instinct was to simply test one image at a 
time, rather than having the respondent compare the 
two images. However, upon preliminary assessment 
of the images and further consideration, we became 
concerned that this would simply result in ‘floor 
bounded’ responses where all images were given the 
lowest score. Without a benchmark for comparison, 
we feared that respondents would simply mark down 
any occlusion error to the lowest value and thus 
confound any analytic power of the study. A flat 
response surface where every response was marked 
at the lowest value would not provide us with 
insightful analysis, and we would have no ability to 
determine the relative effects of the false positive and 
false negative occlusion. We therefore elected to 
pursue the double-image/contrast approach. 
 
In our initial limited pilot study, we mirrored the error between false positive and false negative. For example, for 
each image, the survey participant would choose between 15% false positive and 15% false negative error, or 20% 
false positive and 20% false negative error. Though the sample size for this pilot was not statistically significant, our 
assessment was that this format failed to deliver sufficient assessment power for us to derive any valuable conclusions 
from. 
 
We determined that in order to get a true assessment of preference, we should test the spectrum of combinations of 
the varying occlusion errors. However, this would have resulted in a long and ungainly survey instrument, and we 
suspected that it would negatively affect our ability to collect data. Our assessment was that, in order to gather 
statistically significant sample sizes and not skew the results from induced survey fatigue, we wanted to keep the 
survey as short as possible. We turned to Non-Orthogonal Latin Hypercubes to assist us in developing our Design of 
Experiments. Information on Design of Experiment best practices can be found at the Air Force Institute of 
Technology STAT Center of Excellence web site on ‘Best Practices’ (n.d.). Additionally, the Naval Postgraduate 
School SEED Center offers tools to easily implement Latin Hypercube designs (Naval Postgraduate School Simulation 

Figure 3. Survey Image Samples 
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Experiments and Efficient Designs (SEED) Center. n.d.). The Latin Hypercube design provides us with added 
assessment power while reducing the number of combinations which need to be tested. This approach gives us 
confidence that even by testing a reduced number of the possible combinations factors in the survey, we will still have 
sufficient coverage to derive beneficial analytical results. The result was a 17-question survey which, on average, took 
less than three minutes to complete. For each question, the respondent indicated their preference on a 5-point Likert 
scale, with ‘1’ indicating a preference for false positive error (the halo effect), and a ‘5’ indicating a preference for 
false negative error (the cut off effect).  
 
Based on this instrument, we can restate our hypothesis as: 
 

H0: Survey Respondents will not prefer false positive over false negative occlusion error 
H1: Survey Respondents will prefer false positive over false negative occlusion error 

 
 
 
RESULTS 
 
We administered the survey via email requests and generated 62 responses. To understand the data better, we first 
examined the descriptive statistics of the response data. In this case, we are specifically examining the 62 averages of 
each respondents’ answers. As can be seen from Table 2, the average response is below ‘3’. In the survey, a response 
of ‘3’ indicates no preference and a response lower than ‘3’ indicates a preference for the false positive image rather 
than the false negative image.  
 

Table 1. Descriptive Statistics 
Mean Std Error Median Mode Std Dev Samp Var Kurtosis Skewness Range Min Max Count 

2.2989 0.0878 2.2353 2.2353 0.6913 0.4779 -0.3799 0.2803 2.8824 1.0000 3.8824 62 
  
 
We can further investigate the nature of the response 
data by plotting the average responses for each 
participant in a histogram. We are relying on the Latin 
Hypercube design to provide statistical coverage over 
the possible combinations, so it seems reasonable to 
compare each survey participant’s average answer. 
The result is shown in Figure 4. The x-axis indicates 
the average response on the 5-point Likert scale, in bins 
of 0.25. The y-axis indicates the number of survey 
respondents whose average score fit in that respective 
bin. 
 
With the histogram, we can see that indeed the 
preponderance of the responses are below 3, indicating 
that there is a greater preference for the false positive 
images. However, it is also notable that the histogram 
shows a potential bi-modal distribution, and that we 
will need more statistical evidence to refute or confirm 
our hypothesis. 
 
With the response data, we conducted a linear regression to assess the effect size and statistical significance. We 
selected a P-value of 0.01 for our hypothesis test. We then compared the respective effect size and statistical 
significance of each factor. The results are shown in Table 2 below. 
 
 
 

Figure 4. Histogram of Response Averages 
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Table 2. Linear Regression Results 
   Coefficients Std.  Error t Stat P-value Lower 95% Upper 95% 

Intercept 3.6720 0.4324 8.4919 6.79156E-07 2.7445 4.5994 

False Pos % 0.0081 0.0182 0.4430 0.6645 -0.0309 0.0470 

False Neg % -0.0961 0.0182 -5.2880 1.1464E-04 -0.1351 -0.0571 
 
As we can see, false positive occlusion has a P-value of 0.664. This indicates that there is no statistical significance in 
our responses to false positive occlusion error. In other words, we cannot discern with any statistical confidence that 
the amount of false positive error, or halo effect, had an impact on the survey participant’s responses.  
 
In contrast, false negative occlusion error has a P-value of 0.00011, which indicates that false negative occlusion error 
does have a statistically significant impact on user preference. We also see that the coefficient for the false negative 
occlusion error is negative, indicating that as the amount of false negative occlusion error increases, respondents are 
more likely to prefer the false positive images.  
 
For explorational purposes, we extended our statistical investigation to include a univariate regression upon the 
difference between the percentages of false negative and false positive occlusion error, with the hopes of understanding 
the relationship between these two factors a little better. The results of this analysis are shown in Table 3 below. 
 

Table 3. Univariate Linear Regression on the Difference Between False Negative and False Positive Error 
  Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 

Intercept 2.2989 0.1491 15.4204 1.3132E-10 1.9811 2.6166 

Diff (Neg-Pos) -0.0521 0.0159 -3.2826 0.0050 -0.0859 -0.0183 

 
The independent variable is the difference between the size of the negative error and the size of the positive error in 
each image pair presented. As this number increases, we would find that the cut off false negative image has more 
error than the corresponding halo false positive image. The p-value is 0.005, indicating that it is statistically significant. 
However, the coefficient is nearly half of what the coefficient of the false negative error percentage alone was (-0.096 
for false positive alone versus -0.052 for the difference between false negative and false positive error). This would 
seem to indicate that consideration of the relative difference between false positive and false negative error may 
actually confound the false negative error effect, and that false negative error alone is a better indicator of respondent 
preference. 
 
These results suggest that we can reject the null hypothesis and accept our alternative hypothesis. We cannot conclude 
with statistical confidence that false positive error had an effect on user preference, but we can conclude that false 
negative occlusion error made images less preferable. To be strict, however, we cannot say that there is a general 
preference for false positive error. Rather it would be more accurate to conclude that when given the choice between 
false positive and false negative error, the respondents’ dislike for false negative error was evident, while the false 
positive error did not seem to impact their response.  
 
 
DISCUSSION 
 
While we conclude that false negative occlusion error has a greater effect than false positive error, it is worth taking 
a look at how each functions and why these results may have come about. False positive error tends to create a halo 
effect, as described above and shown in Figures 2, 3, and 5. Clearly, this effect has a chance of breaking the sense of 
immersion for the user as they see ‘through’ the synthetic objects. However, for the object or person being occluded, 
the positive aspect of this error is that the outline of the person remains unperturbed.  
 
In contrast, when there is false negative error, the outline of the target person being occluded becomes rapidly 
disturbed, especially as the amount of error increases. The effect is that the person becomes distorted and may become 
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unrecognizable. Most significantly, the effect is 
pronounced when key features of a person are 
distorted. In the image in Figure 5, note how the 
false negative occlusion error significantly affects 
the arms and face of the target person subject to 
the occlusion error. The distortion makes the 
person look almost unrecognizable, as if they are 
someone else. While the false positive occlusion 
error creates a halo effect that detracts from the 
experience, at least the person remains 
recognizable. And perhaps more importantly for 
training use cases, the subject’s actions and key 
features such as what equipment they may be 
wearing or using will be fully visible to the 
observer.  
 
It is worth noting that certain features unique to 
each person may provide a buffer that mitigates the impact of the error. For example, a person with more hair may be 
less ‘distorted’ by negative dynamic occlusion error than someone with less hair. The error may cut into their hair, but 
as hair is less rigid, we accept more deformation in how we perceive hair than in how we perceive someone’s face. 
However, when examining the true occlusion shape of someone without hair, it is obvious that they lack the benefit 
of this visual buffer, and that false negative occlusion error may instead immediately begin affecting salient facial 
features. This is also true when examining the effect of the error in someone who is in profile versus someone who is 
seen head on. In future experiments, we will look to quantify the degree to which the image of a subject may provide 
buffer features that mitigate or confound the effect of the dynamic occlusion error. 
 
Implications for Practice 
 
The driving motivation for this research was to assess the validity of our initial simple formula for calculating Overlap 
Error: 
 
 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
                  (1) 

 
 
Accounting for the distinction between false positive and false negative error, this equation may be rewritten as: 
 
 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
                  (2) 

 
 
The results of this study indicate that these two types of error should not be equally weighted, and that false negative 
occlusion error has a much more significant impact on user acceptance. We can surmise that it would likely have a 
more detrimental effect on user immersion and suspension of disbelief and may significantly detract from training. 
Despite the results of our analysis, from a practical standpoint, we would not recommend completely dismissing the 
effect of false positive occlusion error. While the regression above indicated that false positive occlusion error is not 
statistically significant in the survey responses, this is only true in contrast to the false negative error, which seems to 
have an overwhelming effect upon the viewer’s preference. A metric that omits false positive error would not be able 
to effectively compare the true utility of dynamic occlusion techniques. This is a similar concern to the one we 
identified with prior metrics, such as that proposed by Walton, et al. (2017). The metric might be technically accurate 
but would not reflect practical merit. As a simple reductio ad absurdum, such a metric would give a perfect score of 
0% overlap error to a system that shows no virtual content at all, because there would never be any false negative 
occlusion error, only false positive occlusion error over all content. Clearly such a result is not helpful in being able 
to compare optimal solutions for use in future implementations.  

Figure 5. Example Images 
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We feel that more research is needed to better quantify the relative effect of each type of error on user acceptance, and 
we intend to pursue that research in future efforts. In the meantime, we know that false negative error has a greater 
effect than false positive, yet we should not discount the effect of false positive error. Our efforts are confounded by 
the lack of statistical significance in the false positive error. In the spirit of Ockham’s Razor, we propose an interim 
solution in which the false positive occlusion error very simply be weighted by a factor of 0.5, while false negative 
occlusion error maintain its full weight. We recognize that this proposed solution likely does not fully capture the 
nuanced dynamics at play, but we also cannot confidently assert that any more sophisticated equation would be more 
supported by the results of our experiment. We are continuing this line of research to better define the relationship 
between false positive and false negative error, but in the meantime, we believe it is worth making this simple 
adjustment to current efforts to assess the relative effectiveness of dynamic occlusion techniques. 
 
Accordingly, we propose the following simple revised formula for calculating Overlap Error as a metric to quantify 
the performance of dynamic occlusion in augmented reality systems: 
 
 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  
(0.5 × 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃.𝑂𝑂𝑂𝑂𝑂𝑂.𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸) + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁.𝑂𝑂𝑂𝑂𝑂𝑂.𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
                  (3) 

 
 
CONCLUSION 
 
This study was designed to assess preference for false positive versus false negative occlusion error. Our initial 
supposition was that given the choice between false positive and false negative error, viewers would prefer false 
positive. Through the survey instrument we created, we were able to determine that false positive error did not have a 
statistical impact on image acceptability, but that false negative error did have a statistically significant impact on 
viewer preference. As more false negative error was shown, survey respondents liked the results less. Accordingly, 
we recommend that a generalized overlap error metric for occlusion count only half the false positive error and all of 
the false negative error when determining total percentage of error. This formulation will incentivize the use of 
occlusion techniques which are more acceptable to the end user and thus more likely to aid in the creation of 
compelling and immersive simulation training experiences via augmented reality and spatial computing.  
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