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ABSTRACT

Runtime environments commonly use “sleight-0f-hand” techniques to approximate destruction and convince a user
that their actions have deformed or destroyed an object. These “sleight-of-hand” processes rely on hand-creating
general-use “pre-shattered” objects that may not accurately reflect the effects of every explosion, given the possible
variations in radius and force. In a simulation, munitions must deform and fragment the environment believably in
order to provide analysis and visual feedback to the users. At I/ITSEC 2019, the authors explored methodologies for
increasing the number of autonomous entities within a simulation using existing game industry solutions (McCullough
et al., 2019). For this work, the authors have utilized a similar approach to mesh deformation by exploring the
commercial game industry and attempting to capitalize on existing methods, while taking into account the necessity
for removing the human-in-the-loop required by those techniques. With the global coverage of environment meshes
expected to be used in the Synthetic Training Environment (STE), it would be too time consuming to create each
mesh's destroyed variants by hand. In order to overcome this challenge, we have explored a method of using
precomputed Voronoi diagrams to deform and fragment 3D meshes in real-time while maintaining performant
simulation speed and fidelity. This method allows destruction to be customized to specific scales and positions on a
given mesh based on the type and location of an ordnance. Utilizing additional research presented at I/ITSEC 2019
for creating simulation terrain (Chen et al., 2019) the workflow takes into account semantic classification enabling the
system to deform ground meshes into craters and support attributed material types (e.g. concrete, wood) for object
mesh fragmentation. With this research, we can bypass a lengthy process of manually preparing destruction meshes
while also having a destruction system decoupled from mesh generation; both systems can be independently updated
without requiring modification of the other.
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INTRODUCTION
Overview

There is a need for removing human-in-the-loop processes for large scale simulations, and whenever data may need
to be rapidly generated at the Point of Need (PoN) with limited resources and man-hours. The focus of this work
considers these factors in relation to environmental destructibility for uses such as training, battle damage assessment
and prediction, and mission planning. Destructibility in this context is defined by the ability to deform or break apart
3D models that represent terrain features such as buildings, trees, and the ground. The Army’s efforts on the Synthetic
Training Environment (STE) and particularly the One World Terrain (OWT) Program, provide an exceptional use
case for this need. STE will feature global-scale terrain, with high resolution small unmanned aircraft system (SUAS)
photogrammetric reconstructions often happening at the PoN, where the operators will be without the access or time
required to utilize existing destructive mesh methodologies, such as pre-shattered or hand-crafted damage states. As
we began to explore this capability, there was relatively little related literature to this work directly, especially in
regards to game-engines, though there is a long history of commercial solutions to these problems, which we’d imagine
are often proprietary and not well documented publically. Two related works of note that we found were unpublished
theses covering procedural destruction (Van Gestel, 2011) and efficient methods for destructibility (Dobransky, 2017).
Dobransky’s work goes into detail on how they found uses for Voronoi methodology to be useful. However, our work
is different in many ways, most notably that we are using photogrammetrically derived flat mesh data, implementing
the Voronoi methods on segmented models based on material classification, and automating the processes using the
OWT geo-specific datasets and pipeline.

Justification

This project seeks to provide a capability for large-scale and PoN destructibility and deformation of 3D meshes in a
runtime agnostic and highly performant manner. This capability will fill in gaps and seek to meet the requirements of
demanding users and programs of record, providing a capable and reproducible methodology that achieves a sufficient
level of fidelity while requiring no customized setup or specific mesh models. Typically, the level of fidelity this
work seeks to achieve is only realizable via artist-created damage states or pre-shattered 3D models. We recognize
that artist-created destructible objects are not feasible when there is a need for them to be generated at a large scale or
when the data has been captured at a location that doesn’t allow for the time or presence of an artist, such as would be
the case for a forward deployed unit. Destructibility must be programmatically achieved with minimal, if any, human
intervention to support these datasets.

Scope, Planned Method

In order to best understand the metrics and systems involved in creating fully automated procedural destructibility we
have chosen a discrete research line for our initial work, focusing on the Unity Game Engine and the readily available
mesh rendering and filtering components it provides. We have also leveraged previous work for generating
photogrammetric mesh data (Spicer et al., 2016) as well as the Semantic Terrain Points Labeling System Plus
(STPLS+) (Chen et al., 2019) which is a fully automated pipeline for taking raw photogrammetric terrain data and
outputting semantically classified and segmented datasets. For this work our main focus from the semantic hierarchy
are the Building, Ground, and Tree classifications. Our goal is to design a system that will take the terrain information
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into account to create realistic destructive effects based on the properties for each of the semantic layers. Buildings
made of concrete would crumble, the ground would crater, and trees would splinter.

DESTRUCTIBILITY IN THE COMMERCIAL VIDEO GAME INDUSTRY
History

Destructibility has long-been a hallmark of immersion and interactivity within the commercial video games industry.
From early arcade classics to today’s first-person shooters, the use of destructible and deformable objects and
structures has been paramount to a game’s challenge, mechanics, and even perceived value. Beyond entertainment
however, destructibility brings a realism to a gaming and simulation environment that when implemented with real-
world material and physical attributes can actually provide a level of analysis and review for the simulated systems.

A number of industry techniques currently exist for implementing destructive and deformable environments and
objects, but after investigating them it was determined they wouldn’t be practical for our intention and purposes. One
technique that we explored was the idea of scripted art swaps, which generally require a designer creating pre-
fragmented objects or damage states that are substituted during a destruction event. We also looked at the use of
generic fragmentation, where scripted events inject pre-fabricated mesh models with generic, though usually
artistically relevant elements via an action trigger. Lastly, and most similar to our method were destruction systems
that had been implemented to be procedurally generated, though even these proved to be insufficient for our purposes,
as they still required a great deal of human design and interaction to achieve the overall destructibility goals, which
served a narrow scope for single games.

A great example of a game that offers procedural destruction is Red Faction: Guerilla (2009). According to the
creators, the game itself is from the ground up “built around destruction” (Orry, 2009), focusing a majority of
gameplay around destructibility and a player’s ability to interact with environments. The developers and designers
created the Geo-Mod 2.0 (THQInsider, 2009) engine incorporating data from structural elements and systems that
would allow players to strike at load-bearing walls and columns in order to cause large buildings to completely
crumble, and when targeting the ground, to create cratering and deformation. While this is a wonderful and
entertaining aspect of such games, the singular factor that connects the underlying mechanics is that these buildings
were designed with that precise feature and outcome in mind requiring a specific physics engine, Havok. A technical
artist built the 3D meshes and data specifically to allow for the destruction. A game programmer designed the systems
and code that caused the buildings to crumble based on intricate systems for this one game engine and this one purpose.
A level designer helped to ensure that destroying this building would be part of the fun, or part of the challenge, on
the way to completion. All of this is manual effort in order to achieve a goal of fully destructible environments for
entertainment value. However, attempting to bring this capability into another game, even by the same developer,
proved “literally impossible” as senior producer Jim Boone referenced in an interview by saying “vou’ll notice we
don’t have a tremendous density of structures — talking about very large structures — and that’s because we push these
platform to the nth degree just to be able to do those buildings in the way that we’re doing them, in order for them to
break apart in the way that we do." (Cook, 2013)

However, what do you do if you’re attempting to create this type of interaction at a global scale for high-fidelity
realistic simulation?

Impact

The more qualities within a simulation that can be an analogue to the real-world - the higher the fidelity of that
simulation. Physical properties are critically important in order to provide the necessary data to simulation systems
in order to convey high levels of realism. Take destructibility for instance. Using classic methods of destructibility
from the video game industry, an artist would generally create the pre-shattered analogue to a physical object or
structure. The technical artist that is designing these destructible elements already knows the properties of the material
and uses their own creativity to design the shattered forms accordingly. For instance, if a wooden fence is meant to
be affected by in-game explosives, the technical artist would create the shattered pieces in the style of broken wood,
a game programmer would create the system to instantiate the shattered pieces in an act of sleight of hand, applying
the necessary physics and motion to give the illusion that the fence has been destroyed. While these same techniques
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could be applicable to a simulation capability, managing this at scale becomes terrifically unwieldy. The hours
required for an artist to interpret shattered forms, and a programmer to create realistic systems for each of the objects
and structures, is just not feasible. The method this work is exploring remove the need for meticulous hand-crafted
artistry and utilizes prior work in semantic classification (Chen et al., 2019) to derive the physical properties using a
fully autonomous methodology, computing the destructed elements on-the-fly based on the existing mesh geometry
and semantic identification. In a high-fidelity simulation, it’s expected that destructible environments provide tangible
feedback to its users. In a video game, destructibility makes a user’s actions more satisfying. In our case, destructibility
and the resulting debris allow for a wide range of applications directly related to realistic training, planning, and
intelligence operations. For instance, realistic destructibility allows a trainee to see the cause and effect between their
munitions and the environment, preparing their expectations during combat. It also provides a realistic effect on
potential changes in terrain traversal, navigation, and trafficability. Terrain modification through destructibility and
deformation directly informs enhanced Battle Damage Analysis (BDA), breaching operations, and mission planning
capabilities. By being able to effectively link a weapon, munition and target with all of their actual physical properties,
we’re able to generate a sufficient picture for the full effect of ordnance and projectiles on targets.

Critical Factors

One of the goals of STE is to allow users to run realistic simulations on 3D datasets of real world locations derived
from algorithmically processing geographic information system (GIS) data capture. As such, a majority of the 3D
objects and terrain data within STE are not created by artists; they are derived directly from the GIS data without a
human-in-the-loop. In the case of destructibility, while it would be possible for an artist to pre-fracture the generated
objects in a modelling software, the sheer volume of objects generated for STE makes this unviable, as the program
seeks to create a global database and provide a capability for rapidly updatable datasets through organic acquisition.
To help to achieve these requirements, destructibility systems, in the same way as the terrain data, must be computed
by an algorithm. Precomputing all of the fragmented objects isn’t feasible due to the myriad of ways an object can be
deformed. Therefore to account for different munitions and positions of destruction, fractured objects must be
calculated in real-time based on parameter inputs that can be derived from real-world terrain information, material
classification, and munitions.

Variable vertex count is a critical factor in destructibility calculations. Mesh deformation directly affects mesh vertex
position, therefore running increased calculations across a high-number of vertices and the simulation frame-rate will
slow or even stall completely. Too few vertices and the effect of deformation will look unconvincing. Some objects
use multiple LOD (Level Of Detail) models in which objects far from the camera display a lower quality mesh to save
resources. A solution for automated and procedural destructibility must be able to handle the varying vertex counts
that a terrain dataset and its child objects can have.

A solution must also be modular, as it will be used as a ‘plug-and-play’ library for in-house development, it cannot be
reliant on outside information and should be as agnostic as possible towards the runtime environment. Of note are
Unity’s tags and layers, commonly used to differentiate between physics objects. Because it cannot be guaranteed that
a given Unity project uses the tags and layers that destructibility systems would prefer it to have, the solution cannot
use tags and layers at all without risking breaking simulation physics.

METHOD

In creating a real-time destruction and deformation system, Voronoi diagrams were utilized to describe fracture
patterns and mesh vertex transformation was used to deform plane meshes into craters. Destructibility and deformation
were tested against 3D meshes derived from GIS through the Institute for Creative Technologies (ICT)’s OWT
Pipeline. Terrain tiles were pre-classified to separate ground, building, and tree, with each becoming their own game
objects. While ground and building objects were directly created from captured data, trees were inserted by placing
geotypical SpeedTrees at the locations trees were classified in the dataset.

Differentiating Objects

Before an object can be destroyed or deformed, the object needs to be known. Unfortunately for this destructibility
system, Unity’s tags and layers cannot be used for object identification. The destructibility system is intended to be
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imported into any Unity project so the tags and layers in a given project cannot be guaranteed. So instead a
TerrainInformation class was created to attach to destructible objects. TerrainInformation contains two enums, one
to define the object’s terrain type: Ground, Building, LODTree, TreeWood, and TreeLeaf, and one to define the
object’s destruction type. Destruction type defines a fragmented object’s appearance. Currently two types are defined.
Concrete breaks into rock-like polyhedrons, and wood breaks into splinters. We differentiate between three different
tree objects (LODTree, TreeWood, TreeLeaf) for optimization. SpeedTrees use different LOD’s (Level Of Detail)
objects as the camera moves closer or further away from them. As the camera gets farther, the tree switches to a lower
quality model to conserve resources. This means the object can contain multiple models at once, which is unwanted
for destruction. Destroying multiple tree models would be detrimental towards performance, so one LOD is chosen
and the others are discarded when a tree is destroyed. The tree that was marked “LODTree” splits into several
GameObjects, the woody objects becoming “TreeWood”, and the leaf ends becoming “TreeLeaf”. There are many
leaf objects on trees, and it would be too time consuming to fracture them. In addition, leaves are often a single texture
stretched on two triangles, it would not look realistic for a bundle of leaves to be cleanly sliced in half. So “TreeLeaf”
objects simply fall to the ground on destruction, but “TreeWood” objects do break apart.

Craters

If an explosion occurs on the ground, the ground is deformed into a crater. The crater’s size is determined by the radius
of the explosion. Vertices near the center of the explosion are pushed downwards on the y axis. The amount of
depression into the ground decreases as the distance from the center increases, resulting in a crater shape. The
maximum depression is equal to the radius of the explosion.

We start by using Unity’s built-in physics library to run
OverlapSphere(), which returns the physics colliders of
objects within a given sphere. If an object contains a
TerrainInformation component and that
Terrainlnformation’s terrain type is “Ground”, it will be
deformed by a crater.

Given a mesh to deform, its vertices must first be
checked. The mesh to be deformed needs to have at least
a certain amount of wvertices within the radius of
deformation or the deformation will not be noticeable.
This is because crater deformation does not inherently
add new vertices to a mesh, it simply alters the Y value
of existing vertices. If there are not enough vertices, more
vertices must be added. To increase the amount of
vertices, the existing mesh triangles will be divided into
multiple smaller triangles by calculating for each
triangle’s medial triangle. A medial triangle is a triangle

whose vertices are the midpoints of the edges of a o

containing triangle (Figure 1). Adding medial triangles is ] ] ] ] ]

as follows: Figure 1: A triangle and its medial triangle.
Adapted from “GeoGebra” by GeoGebra. 2020.

Given the mesh, the deformation center, and Copyright 2020 The GeoGebra Group.

deformation radius, A HashSet<int> verticesInRadius

is created to record vertices within the radius of deformation. A Dictionary<(int,int), int> vertexMidpointMap is also
created to map tuples of two vertex indices to the vertex index of their midpoint. This dictionary is necessary to
differentiate between midpoint vertices that exist in the same physical position but are mapped to different UV
coordinates. An integer vertexCountRequired is calculated by multiplying radius with a predetermined multiplier.
vertexCountRequired is used to check if the function can be exited: the radius must contain at least this many
vertices. Finally a HashSet<int> verticesInRadius is created to record the indices of vertices within the radius. The
mesh’s list of vertices is iterated through and vertices whose distance from center is less than or equal to radius are
added to verticesInRadius. If verticesInRadius is greater or equal to vertexCountRequired, the function exits here;
there are already enough vertices for deformation. Otherwise, until the vertex count requirement is met, three new
vertices will be created for every triangle in the mesh, so long as that triangle is not smaller than a certain size. Because
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Unity has a limit on vertices per mesh (65,534), and because terrain tiles can be large enough in world space that
adding enough medial triangles to satisfy vertexCountRequired would easily hit this limit, it is important to ensure
large triangles receive medial triangles and that sufficiently small triangles are not wastefully subdivided any further.
The new vertices exist at the midpoints of each triangle’s edges. These vertices are added to the mesh, and their
corresponding UV coordinates are also added to the mesh with each new UV being the midpoint of the UVs
corresponding to the triangle’s vertices. Four new triangles will be created from the new vertices and the triangle’s
vertices, forming three triangles connected at their vertices with an inverted triangle in the center (Figure 1). The
original triangle is discarded from the mesh, and the new triangles replace it. New medial triangles are added to the
mesh until verticesInRadius is greater than or equal to vertexCountRequired, or until adding any more vertices
would surpass Unity’s vertex limit per mesh.

With the mesh prepared, its vertices can now be deformed into a crater. A crater comprises two features, a depression
and a lip that borders the depression. The depression’s radius is the same as the previously initiated radius, centered
on center. Its maximum depth maximumbDepth is equal to radius. For every vertex within the depression’s radius,
its Y value is linearly interpolated along a sine wave, starting at the center at sin(n/2) and ending at the lip at sin(0),
forming an upwards opening parabola. The Y value is then multiplied by maximumDepth. The lip’s radius is 1.2x
that of the depression, but only the vertices beyond the depression will be affected by lip calculations. For every vertex
within the lip radius that is also outside the depression
radius, its Y value is linearly interpolated along a sine
wave, starting at the edge of the depression at sin(0) and
ending at the radius of the lip at sin(zn), forming a
downwards opening parabola. The lip has a
maximumHeight of 0.15x the maximumDepth. The lip
is further clamped from being taller than 0.5x the
maximumHeight. This clamp is to prevent intersecting
lips of multiple craters additively forming unnatural
appearing spikes. Craters of varying radii can be seen in
Figure 2. The intersecting craters on the left of the figure
show an example of the lip clamp preventing the
intersecting lips from being too tall. Figure 2: Craters of varying radii.

Buildings and Trees

To simulate the destruction of buildings and trees, VVoronoi diagrams were used to break meshes apart into realistic
appearing fragments. A Voronoi diagram divides a space containing n points into n cells, in which a cell encompasses
the area that its point would be closer to any position in that cell than the point of any other cell in the diagram would.
The resulting diagram results in an image of uniquely shaped polygons that do not overlap, and combine to fill the
area of the original space (Figure 3). These polygons are
made of bounded and unbounded edges. An unbounded
polygon extends out into infinity in the direction of its
unbounded edges, as there are no other polygons in those
directions. The Voronoi diagram can also be calculated in
3D so 3D diagrams were used to calculate uniquely
shaped polyhedrons that would give the approximation of
a chunk of concrete. The following method of calculating
a 3D Voronoi diagram follows the steps outlined in
Ledoux’s (2007) paper.

A property of Voronoi diagrams is that they are dual to
Delaunay triangulations, that is, one can be converted to

the other and back again. This is useful to us because it is Figure 3: A Voronoi diagram.

simpler to calculate Delaunay triangulations than it is to Adapted from “Euclidean Voronoi diagram.sve” by
calculate Voronoi diagrams (Ledoux, 2007). Delaunay Balu Ertl. 2015. Creative Commons Attribution-
triangulations work with triangles (which always have Share Alike 4.0 International license.

three points). The polygons within a Voronoi diagram
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have an arbitrary amount of points. After calculating a Delaunay triangulation, its dual can be calculated to get a
Voronoi diagram.

For 3D diagrams, polyhedrons are desired, not polygons, so first calculated will be a Delaunay tetrahedralization
instead of a Delanuay triangulation. The difference between calculating for triangles and tetrahedrons is simply raising
the dimension of the data structures within the algorithm. Since the Unity engine is being used, that would mean that
the Vector2’s used to describe 2D points would now become Vector3’s. Instead of iterating on triangle edges, iteration
is on tetrahedron faces.

To calculate the Delaunay tetrahedralization, the Bowyer-Watson algorithm was used, modified for 3D use as
described above. The Bowyer-Watson algorithm starts with a set of random points R in 3D space, and a “super-
tetrahedron” that contains all points in R. The points in R
will become the vertices of the resulting Delaunay
tetrahedralization. R must contain at least one point. More
points will increase the amount of resulting tetrahedrons.
We insert one point in R into the super-tetrahedron and
draw new lines that connect the vertices of the super-
tetrahedron to the added point, creating four new
tetrahedrons. The super-tetrahedron will not be in the
output, it is merely a staging space required to contain the
created tetrahedrons. We now iterate through the rest of
R, adding points and drawing new tetrahedrons. If a point
is ever within the volume of a tetrahedron’s circumsphere,
that tetrahedron is removed and recalculated with the new
point. Once the algorithm is complete, the
tetrahedralization can be converted into a \oronoi
diagram. Figure 4 shows the results of Delaunay
tetrahedralization. Each yellow sphere represents a
randomly generated vertex of the tetrahedralization. Each
white line represents the tetrahedron edges.

Figure 4: Generated Delaunay tetrahedralization.

A Delaunay tetrahedralization is dual to a VVoronoi diagram as follows: Each vertex of a Delaunay tetrahedralization
corresponds to the center of a Voronoi cell. The circumcenter of each Delaunay tetrahedron corresponds to a vertex
in the VVoronoi diagram. If two Delaunay tetrahedrons share a face, their circumcenters are connected with a face in
the Voronoi diagram (Ledoux, 2007).

To convert the Delaunay tetrahedralization into a VVoronoi diagram, we begin with four givens: the tetrahedralization
itself (a list of tetrahedrons), a dictionary that maps tetrahedron edges to tetrahedrons that contain them, a dictionary
that maps tetrahedron faces to tetrahedrons that contain them, and the original super-tetrahedron. We first determine
the unbounded Voronoi edges. For each tetrahedron face, we check if two tetrahedrons share it (signaling adjacency
between the tetrahedrons). If it does, we then determine if
either of the tetrahedrons shares a vertex with the super-
tetrahedron. If it does, this tetrahedron face’s dual
Voronoi edge is unbounded, and we add this edge to the
cells dual to the face’s vertices as a ray. Now we will
record the bounded Voronoi edges. We first remove all
tetrahedrons which share a vertex with the super-
tetrahedron. For each remaining tetrahedron edge within
the tetrahedralization, we determine its dual VVoronoi face
by calculating the circumcenters of the tetrahedrons that
contain the edge and containing the circumcenters in a list
representing the face. The face is then sorted so that
traversing it in order would form a single closed path. In
cases that the face has less than 3 vertices, sorting is not
needed. VVoronoi edges are created by iterating through
the Voronoi face and assigning the current element with

Figure 5: Generated 3D Voronoi diagram.
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the element proceeding it to a new edge. The Voronoi edges are added to the Voronoi cells dual to the tetrahedron
edge’s vertices as line segments. We now have a Voronoi diagram, which contains cells, which contain line segments
to represent bounded edges and rays to represent unbounded edges.

Figure 5 shows the results of 3D Voronoi mesh generation. Each VVoronoi cell is represented by a set of lines sharing
the same color. Lines extending into infinity represent unbounded Voronoi edges. Whether a cell is bounded or
unbounded does not change how mesh fragments will be calculated from them; A fragment is always the intersecting
volume between the mesh and a cell. One cell is highlighted in white. Meshes will be sliced according to the diagram,
each cell carving a piece of the mesh by its cell volume.

We now store the diagrams as JSON files for use at runtime. It is not necessary to save individual VVoronoi edges; we
only need to associate a cell with its faces. Furthermore, we don’t need to save a face’s vertices as we will be treating
them as planes during mesh cutting. So each face is represented as a plane in point-normal form, and each cell is a
collection of planes. Several diagrams are stored to provide a variety of destruction shapes at runtime. Diagrams do
not differ in severity of destruction; the selected diagram will be modified in scale to match the munition used. When
destruction occurs, one of the stored diagrams will be randomly selected. Each destruction type has its own set of
diagrams. Currently that includes concrete and wood, with plans for more types in the future.

To handle munition types, two user interface (UI) sliders are provided to the user to adjust destruction power and
destruction radius. Power modifies the amount of force that fragments are blown from the epicenter with. Range
modifies the scale of the Voronoi diagram, modifies the radius of the ground crater, and modifies the radius within
which fragments can break off the mesh. In the future, presets for specific munitions will be available.

At runtime when destruction is called, we first check if the object within the radius of the explosion is capable of
fracture. If its Terraininformation component’s TerrainType is “Building” or any tree variant, it can be destroyed. We
then determine which destruction material should be used, “Concrete” or “Wood”. (Though it sounds repetitive to
have building and tree types at the same time as having concrete and wood materials, in the future a building may be
made of wooden beams or glass.) We then randomly select a Voronoi diagram appropriate for the destruction material.
For each cell in the diagram, we iterate through the cell’s planes, stored in point-normal format, and slice the mesh by
each plane. We are using a third party tool, UnityAssets, to handle mesh slicing (Whirle, 2020). A new game object
is created from the sliced mesh. Each sliced face is assigned a texture appropriate for its destruction material. Each
game object, a fragment, represents a Voronoi cell and fills the cell’s volume up to the boundaries of the mesh. This
process repeats for each cell. We discard the original GameObject and are left with fragments that combined take up
the same volume as the original GameObiject did.

If a fragment’s center is within the radius of the explosion, a Unity Rigidbody will be added to that fragment.
Rigidbodies allow Unity GameObijects to interact with the built-in physics system. The fragment is given a mass based
on its size. A force is applied to the fragment, pushing it away from the epicenter. The closer to the epicenter it is, the
larger the force is. Fragments that are outside the radius of the explosion instead stay in place, but keep track of other
non-mobile fragments adjacent to them. Adjacencies are
tracked to avoid a fragment floating in the air without
being connected to the ground. Every destruction,
fragments that track adjacencies check if they are still
attached to the ground via their neighbors (and their
neighbor’s neighbors, etc.). If a fragment is not attached
to the ground, it is given a Rigidbody and is removed from
the adjacency matrix.

Concrete uses a 3D Voronoi diagram to simulate the
effect of a rock-like object breaking apart (Figure 6).
Wood uses a 2D Voronoi diagram stretched into three
dimensions) to simulate the effect of a long grained object
breaking apart (Figure 6).

Figure 6: Concrete and wood destruction,
respectively.

Wood destruction runs on the same principles of building
destruction, but uses a different diagram. Whereas

2020 Paper No. 20270 Page 9 of 13



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

concrete uses an unmodified 3D Voronoi diagram, wood uses a 2D Voronoi diagram stretched into 3D, then further
sliced. To begin, we calculate a Delaunay triangulation given a random set of points. We convert the triangulation into
its dual Voronoi diagram. At this point we have a 2D diagram of polygons. We then add a third dimension to all the
vertices of the diagram, and duplicate the vertices twice. The first duplicate’s vertices’ Z points are set to 1, and the
second duplicate’s vertices Z points are set to -1, giving us a 2D diagram stretched into 3D space. It appears as a set
of long, conjoined columns. The tops and bottoms of each column contain lines stretching up and down to infinity
respectively to represent unbounded edges in the Voronoi diagram. Each of these columns will represent a bundle of
wood fibers that have split from the tree. To further increase the realism of the fracture, we split the columns along
their length. Each column splits into a top, middle, and bottom piece. The position of each split is randomized along
the axis of the length. All columns are then saved to JSON as lists of normal vectors for later use. At run-time,
destruction appears as in Figure 6. The ‘middle” columns are close enough to the epicenter to detach from the mesh,
but not the top and bottom columns, resulting in a splintering effect.

Findings

Mesh deformation at run-time is a computationally non-trivial operation. It is important to optimize whenever possible
to reduce the chance of the simulation holding while it waits for an operation to complete. We found that using optimal
data structures and caching calculation output greatly reduced the time it took to apply destruction on a target object.
We also found that upscaling a model’s vertex count was needed when it was too low so that mesh deformation would
appear as expected.

Any valid Voronoi diagram can be used to cut any valid mesh; it is unnecessary to calculate VVoronoi diagrams at
runtime. We stored our diagrams in JSON format, with each cell holding a list of rays, which each represent a plane
to cut the mesh with. This way we do not need to bloat the data with cell vertices, edges, faces, etc. At runtime, we
simply choose a diagram and carve the mesh accordingly.

Destruction creates a large number of new objects, many now interacting with the physics engine. This puts heavy
strain on the computer’s resources. To keep frame rates stable, the simulation deletes certain fragments after a period
of time. Deleting fragments is undesirable to the realism of the simulation, so we prioritize fragments smaller than a
certain threshold as they are too small to significantly obstruct the environment. Tree leaves are automatically marked
for deletion, as they have flat meshes and exist in very high numbers per tree. In the case that large fragment count
grows too large, large fragments begin spontaneously breaking apart into small fragments until large fragment count
falls below the count limit. The new small fragments will delete themselves over time.

Deleting fragments has a 950% framerate improvement from keeping them in the scene in the tested environment.
The workstation utilized for testing was running Windows 10 Pro 64-bit, with an Intel Core i7-8750H CPU @ 2.20
GHz, 16 GB RAM, and an NVIDIA GeForce GTX 1070 with Max-Q Design. 25 objects in a given terrain were
fragmented across all trials.

Table 1. Comparing Fragment Deletion Performance

Framerate (frames per second)
Small fragments are [Small fragments are not
deleted deleted
Trial #1 59 4
Trial #2 55 7
Trial #3 57 7
Average 57 6

The SpeedTrees we use contain the whole tree within one mesh (discounting LODs). Because destruction affects
leaves differently from wood, it is more convenient to separate the mesh into trunk, branch, and leaf meshes. Since
we know which trees will be used for a given scenario, we can separate the tree meshes beforehand and cache them
in memory. When a tree is destroyed, we don’t calculate its separated form and instead look up its pre-broken variant,
saving additional time.
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Caching reusable separated trees has an 1863.66% calculation speed improvement from separating trees individually
on the tree tested on. The workstation utilized for testing was running Windows 10 Pro 64-bit, with an Intel Core i7-
8750H CPU @ 2.20 GHz, 16 GB RAM, and an NVIDIA GeForce GTX 1070 with Max-Q Design. The same tree was
fragmented across all trials. The time recorded represents the time it took to get separated tree data; the cached version
looks up a cached separated tree, while the non-cached version calculates separations itself.

Table 2. Comparing Tree Separation Performance

Time to separate tree (ms)
Trees are cached Trees are not cached
Trial #1 2.62 63.73
Trial #2 2.98 61.89
Trial #3 4.41 60.56
Average 3.33 62.06

Limitations

Our destruction system is being developed in parallel with the classification system that determines if a given GIS
mesh is the ground, building, or a tree. As the classification grows more features, we will be able to be more specific
with the destruction. A building won’t simply be made of concrete; walls, windows, etc. will be able to be
differentiated.

Due to float precision error, we occasionally run into cases where data comparisons return unequal when they should
have been equal. This can result in overlapping Voronoi cells. We implemented more lenient equality methods to
greatly reduce the chance of an error, but a stronger solution is being considered.

FUTURE WORK
Unity Data-Oriented Technology Stack (DOTS)

Our work on modifying mesh information would be a good candidate for modifying for use with Unity ECS (Entity
Component System) and Unity Burst Compiler. Both are used in a data oriented programming ideology, a departure
from Unity’s standard component oriented design.

Within the Entity Component System, data such as mesh information is stored separately from the objects they
represent. Instead of an object containing its own vertices and triangles, all vertices of all objects are stored within one
data structure, and all triangles in their own data structure. By doing this, like data is guaranteed to be sequential in
physical memory. When calculations are done en-masse on vertices, lookup times are reduced due to much less
frequent cache misses. The Burst Compiler creates strict requirements of code design that allows the compiler to make
time saving assumptions that would otherwise cause errors in a standard compiler.

Previous work (McCullough et al., 2019) showed significant gains in calculation speed when using Unity DOTS.
Using DOTS to calculate transformations for hundreds of thousands of identical entities traversing across a map had
significant performance improvements (7400% faster than conventional object oriented programming) (McCullough
et al., 2019). Destructibility exists in a similar situation, in which many calculations must be done on a large amount
of objects of the same type.

Geotypical, Geospecific Interiors

Currently when a building is fragmented, it is treated as if the entire interior were filled with concrete. Buildings in
real life are rarely solid blocks of concrete and have interior spaces. It would greatly increase the realism of the
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simulation for buildings to have interiors. A trainee would no longer treat buildings as thick walls. They would have
to be mindful of the ability to enter buildings, and the effects of destruction on those who may be inside.

Two options exist in moving forward with interiors. Geotypical interiors would be procedurally generated, either
possibly completely, or by stitching geotypical interiors together to fit the building space. This would automate
populating interiors but wouldn’t be able to replicate real world buildings. Real world, geospecific interiors would
require GIS capture of the building interior, and then matching up the exterior 3D mesh with the interior mesh.

Interior generation would be a non-trivial task. Geospecific interiors would need to be properly scaled and positioned
to fit within the building it represents. The increased vertex count would affect calculation time. Geotypical interiors
would require a knowledge of a building’s volume, when currently our buildings are created of multiple game objects.

Material and Feature Attribution

As the system works now we apply varied techniques to buildings, ground, and trees. Furthering our integration with
the STPLS+ pipeline as it develops will allow us to begin taking advantage of higher precision attribution into deeper
levels of a classification hierarchy. In the future we will be able to identify if a building is made of wood, steel,
concrete, clay or any other building material. We will be able to utilize additional ground material classification to
understand if the affected target is dirt, sand, or road. Taking these factors into account will allow us to expand the
programmatic destruction models to more realistically represent a destruction event, as well as beginning to account
for more complex materials such as glass and ductile objects such as vehicles.

Effects on the Navigation Mesh

Fragments created from destructibility contain Unity’s Rigidbody as a component. Rigidbodies affect an object’s mass
and allow it to interact with Unity’s physics system. However, fragments do not affect the navigation mesh used for
artificial intelligence (Al) pathing. An Al entity would walk into a hunk of concrete in its way instead of pathing
around it. Implementing a way for mesh fragments to alter the navigation mesh would increase destructibility’s
interaction with the environment.

CONCLUSION

Implementing destructibility in a simulation allows users to visualize the effect of munitions on real world terrains.
Users will be able to visually confirm destruction and will interact with a changed environment as a result of their
actions. A real time simulation that uses a large number of algorithmically derived models cannot feasibly use pre-
destroyed models, so this solution was developed as a way to calculate mesh destruction and deformation in real-time.
By optimizing choice of data structure and caching as many calculation results as possible, the performance of this
destructibility was improved. While the Unity engine was used for prototyping, destructibility is designed to be engine
agnostic only requiring replacing physics function calls for functions used in the given environment. In the future, this
system will further enhance its capabilities and performance.
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