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ABSTRACT 

 

We describe a system for estimating pixel heights from a single multispectral RGB image, with or without sensor 

metadata. System components include an ensemble of convolutional-deconvolutional neural network (CNN) models 

and an optimization function. The chosen deep learning network model is validated per pixel using high-resolution 

aerial RGB imagery and lidar datasets. A knowledgebase of historical, time-stamped, multi-modal data for registration 

and 3D feature classification is provided. Given a large amount of elevation truth data, a model is trained to recognize 

image features of differing heights using CNN image-to-lidar regression. The models, when applied to an unseen 

image, estimate a preliminary height per pixel, based on a learned feature set. Multiple models are created and trained 

end-to-end, and the best model and results are determined. We use linear programming optimization with an ensemble 

of regression models and semantic segmentation information with a CNN classification model to determine optimized 

pixel height estimates. Semantic segmentation datasets help classify RGB imagery with feature class labels and refine 

land use feature classification with CNN classification to improve accuracy. Each land use classified feature can be 

weighted with a confidence metric that is used to help determine height information. Therefore, we use CNN 

regression for preliminary height estimation and CNN classification for land use feature classification plus a linear 

programming reward matrix per pixel to automatically decide optimized height estimation. The rows in the reward 

matrix contain CNN regression model results from image-to-lidar regression, while columns contain CNN 

classification model results from RGB imagery. An updated volumetric knowledgebase contains the system output 

and can be used subsequently for change detection and situational awareness. Both qualitative and quantitative 

analyses are performed and visualized. 

 

Index Terms: Classification, Cognitive, Decision, Deep Learning, Geospatial Data. 
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INTRODUCTION 

 

The visualization and simulation communities have shown an interest in classification products for sensor simulation. 

Visualization and simulation products are created by merging and mosaicking multi-source satellite and aerial imagery 

of different resolutions on an elevation surface to provide realistic, geo-specific terrain features. These products do, 

however, require that all image data be orthorectified, seamlessly co-registered, tonally balanced, and feather blended 

into mosaics from source data of different resolutions [16]. 

 

We can determine elevation from a single multispectral image. We improve the estimation of pixel height from various 

types of images to provide better 2D/3D maps, using images with and without sensor information. Deep learning on 

geospatial data is performed with a CNN network trained end-to-end. We use image semantic segmentation to classify 

land-use land-cover (LULC) features. The use of game theoretic decision analysis optimization with an ensemble of 

models and segmentation information helps determine whether pixel heights are high, medium, or low.  

 

Remote sensing requires that image analysts be able to identify regions in imagery that correspond to an object or 

material. Automatic extraction of image areas that represent a feature of interest requires two steps: accurate 

classification of pixels that represent the region, while minimizing misclassified pixels, and vectorization, which 

extracts a contiguous boundary along each classified region. This boundary, when paired with its geo-location, can be 

inserted into a feature database independent of the image [3].  

 

The sheer volume of available high-resolution satellite imagery and the increasing rate at which it is acquired present 

both opportunities and challenges for the simulation and visualization industry. Frequently updating material 

classification product databases, using high-resolution panchromatic and multispectral imagery, is only feasible if 

time and labor costs for extracting features, such as pixel labeling, and producing products from the imagery are 

significantly reduced. Our solution is designed to provide flexible and extensible automated workflows for LULC 

pixel labeling and material classification. The products of workflows undergo an accelerated review and quality 

control process for feature extraction accuracy by geospatial analysts [13]. 

 

A network can also be trained to predict semantic segmentation maps from depth images [20]. A large body of research 

in supervised learning deals with analysis of multi-labeled data, where training examples are associated with semantic 

labels. The concept of learning from multi-label data has attracted significant attention from many researchers, 

motivated by an increasing number of new applications, such as semantic annotation of images and video [21].  

 

In remote sensing, Digital Terrain Model (DTM) generation is a long-standing problem, involving bare-terrain 

extraction and surface reconstruction to estimate a DTM from a Digital Surface Model (DSM). Most existing methods 

have difficulty handling large-scale satellite data of inhomogeneous quality and resolution and often need an expert-

driven, manual parameter-tuning process for each geographical type. Feature descriptors based on multiscale 

morphological analysis can be computed to extract reliable bare-terrain elevations from DSMs [6]. 

 

Image-to-height estimation from a single monocular image, using deep learning networks, is a relatively recent 

research topic. Estimating height in a scene benefits remote sensing tasks, such as feature labeling and change 

detection, especially when lidar data is not available [15]. We can further advance this technology by adding image 

semantic segmentation and classification information and game theory optimization from an ensemble of models. Our 

enhanced solution can then be used as a seed for traditional image parallax height estimation algorithms, thus 

improving their accuracy. We use this labeled image data to train a CNN U-Net for automatic semantic classification 

of multispectral imagery. The image features can then be used to help predict elevation height, as shown in Figure 1. 
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Figure 1.  System Overview 

 

DEEP LEARNING 

 

Our Melbourne Florida dataset, shown in Figure 2, contains labeled training, validation, and test sets, with seven 

object class labels. The lidar data used was downloaded from the International Hurricane Research Center from Florida 

International University (FIU). We used commercial satellite imagery. Although collection of truth is somewhat 

subjective, the land cover features were collected via typical specifications. It is important to remember that 

considerable latitude is allowed when determining what should be collected. Different analysts can and will collect 

the same area differently, yet both views may be considered acceptable.  

 

Deep convolutional neural networks (CNNs) have recently performed extremely well on different tasks in the domain 

of computer vision, such as object detection, image classification, image segmentation, and object tracking. The 

structure of modern deep CNNs has evolved significantly. The renaissance of neural networks has ushered in a new 

era in which very deep networks have been proposed to carry out various tasks in computer vision. Humans can easily 

determine approximate height from a single image, based on object recognition and spatial context. [9]. 

 

Depth estimation in monocular imagery, which plays a crucial role in understanding 3D scene geometry, is an ill-

posed problem. Recent methods have brought about significant improvements by exploring image-level information 

and hierarchical features from deep CNNs. These methods model depth estimation as a regression problem and train 

regression networks by minimizing mean squared error, which suffers from slow convergence and unsatisfactory local 

solutions. Existing depth estimation networks employ repeated spatial pooling operations, resulting in undesirable 

low-resolution feature maps. To obtain high-resolution depth maps, skip-connections or multilayer deconvolution 

networks are required, which complicates network training and requires more computations. A multi-scale network 

structure can be used to avoid unnecessary spatial pooling and capture multi-scale information. [8]. 

 

Successful training of deep CNNs often requires many thousands of annotated training samples. Network training 

strategies rely on the strong use of data augmentation to optimize the efficient use of available annotated samples. 

Research is currently being conducted to determine whether networks can be trained end-to-end with fewer images 

and with GPU processing [17]. 
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Figure 2.  Melbourne Dataset 

 

Learning to predict scene depth from RGB inputs is challenging. Learning for scene depth is provided by monocular 

videos. Work in unsupervised image-to-depth learning has established strong baselines in this domain. High-quality 

results can be achieved by using geometric structure in the learning process for modeling, which has been shown to 

transfer across data domains, e.g., from outdoor to indoor scenes. The approach is of practical relevance, as it allows 

for transfer across environments by transferring models trained on data collected, for example, for robot navigation in 

urban scenes to indoor navigation settings [4]. 

 

Deep-learning-based approaches are effective for the detection and reconstruction of buildings from single aerial 

images. An optimized, multi-scale, convolutional-deconvolutional network derives the information needed to 

reconstruct the 3D shapes of buildings, including height data and linear elements of individual roofs, directly from the 

RGB image. Networks are composed of two feature-extraction levels to predict the coarse features and then 

automatically refine them. The predicted features include the normalized digital surface models [1]. 

 

Estimating the depth of each pixel in a scene can be done using a single monocular image. Unlike traditional 

approaches that attempt to map directly from appearance features to depth, semantic segmentation of the scene, using 

semantic labels, can guide the 3D reconstruction. Knowing the semantic class of a pixel or region allows for easy 

enforcement of constraints on depth and geometry. In addition, depth can be more readily predicted by measuring the 

difference in appearance with respect to a given semantic class. The incorporation of semantic features enables better 

results to be achieved, with simpler models [12]. 

 

To automatically extract height information from a multispectral image, we first train a CNN Unet to perform semantic 

segmentation of a multispectral image with four channels: three color and one near-infrared. This produces pixel-

based height maps. The first part of the U in the Unet performs convolutional feature extraction, while the second part 

of the U performs deconvolutional height estimation [15]. Our network, which we implemented using both Matlab 

and Python, is shown in Figure 3. 



 
 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 

2020 Paper No. 20229 Page 5 of 12 

 

Figure 3.  Lidar Deep Learning CNN Model 

 

How well each model works depends on feature properties, quality and quantity of training data, and parameter settings 

for individual algorithms. Extensive validation of results is needed to properly select the optimal model and model 

parameters for a given problem. If training data is drawn from a non-linear distribution, it is unlikely that a linear 

learning method would be a good fit for the data, resulting in a high bias, although this data can be generalized to 

some extent. If training data is linearly separable, and we use a highly non-linear-based learning algorithm, then it will 

likely over fit the data, suffer from high variance, and not be able to generalize well with the resulting output.  If only 

minimal training data is available or the data is not adequately representative of the feature space, then accuracy and 

precision will be negatively affected. We have tested each model on a few different images and geographic areas to 

understand how well each one might work in practice. Figure 4 shows that the CNN Unet trains to a decreasing Root 

Mean Squared Error (RMSE) of estimated heights, as compared against lidar truth. 

 

 

Figure 4.  Lidar Feature Training 
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Optimal decision analysis helps close the gap in terms of the difference between automated feature extraction and 

feature extraction performed by analysts. To make informed decisions, an expert must reason with multi-dimensional, 

heterogeneous data and analyze the results. Items in such datasets are typically represented by features. However, as 

argued in cognitive science, features do not provide an optimal space for human reasoning. In fact, humans tend to 

organize complex information in terms of prototypes or known cases rather than absolutes. When confronted with 

unknown data items, humans assess them in terms of similarity to these prototypical elements. Interestingly, an 

analogous, similarity-to-prototype approach, where prototypes are taken from data, has been successfully applied in 

machine learning. Combining such a machine learning approach with human prototypical reasoning in a Visual 

Analytics context requires integration of similarity-based classification with interactive visualizations. To that end, 

data prototypes should be visually represented such that they trigger direct associations to cases familiar to domain 

experts. Highly interactive visualizations are used to explore data and classification results. This approach not only 

supports human reasoning processes but is also suitable for enhancing an understanding of heterogeneous data [14]. 

 

A pixel is determined to belong to a classification set when the distance, in feature space, between the pixel’s spectral 

signature and the signature of a representative set of pixels is small. Classification algorithms vary in how the feature 

vector (and, therefore, feature space) is defined, how the distance metric is defined, how a representative set of pixels 

or distribution is determined, and in which algorithm to use to identify pixels matches. Nevertheless, they all share the 

concept of goodness-of-fit, i.e., how well a pixel fits the target spectral distribution, as measured by a per-pixel score. 

The goal is to accurately identify the boundary of a spatially consistent set of pixels that belong to a region of interest, 

with the intent being to extract that region as a distinct feature [3]. 

 

Semantic segmentation uses a label for each pixel. We can use deep learning to determine a precise measurement of 

land-use land-cover from high-resolution aerial imagery to differentiate classes with similar visual characteristics. To 

assign a classification of features over an image, we apply supervised learning to the imagery. Supervised learning 

creates a classifier model that can infer the classification of a test sample using knowledge acquired from labeled 

training examples. Figure 5 shows that the CNN network trained with 94% accuracy for our test dataset. 

 

 

Figure 5.  Image Feature Training (94% accuracy) 

 

We used a random patch extraction datastore in Matlab to feed the training data to the network. The datastore extracts 

multiple corresponding random patches from an image and pixel label datastores. Each minibatch contains 16 patches 

that are 256x256 pixels in size. We use 25 epochs, with 1000 minibatches per epoch. We use a U-Net structure from 

Matlab, such that the network can be drawn with a symmetric shape like the letter U. We train the network using 

stochastic gradient descent method (SGDM) optimization. [11]. Figure 6 shows the results of image feature testing, 

for which we achieved an accuracy of 92%. We did an 80/20 train/test split of the data. While the test area of 

Melbourne shows a local area with different geographical and height features, Florida is notoriously flat. The objective 

of these algorithms is to determine local height variation amongst grass, foliage, small hills and buildings. There is 

further work to be done to get good accuracy over a wider range of varied topographical characteristics. 
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Figure 6.  Image Feature Testing (92% accuracy) 

 

OPTIMIZATION 

 

If we can estimate the scene structure, we can better predict the scene heights by knowing the relationships between 

the features. Estimating height from image features puts a significant burden on the learning algorithm. Using semantic 

features from the image can unburden the image-to-height learning algorithm [12]. Many image analysis and computer 

vision problems can be formulated as a scene-labeling problem, in which each site is to be assigned a label from a 

discrete or continuous label set, with contextual information. An n-person cooperative game yields an efficient 

deterministic optimization algorithm that exhibits very fast convergence [5]. We use a linear program to optimally 

guide the height prediction with feature classes from imagery.  

 

We have developed a novel, game-theoretic perspective to solving the problem of supervised classification that takes 

the best pixel height prediction derived from an ensemble of CNN supervised classifications. This is a game in the 

sense that pixel data points are “players” that participate in the game to decide their heights by choosing the best 

network model. The land cover classification labels assist with decision analytics. Within this formulation, we use a 

weighted reward matrix for consistent labeling of height values with classification factors, resulting in higher accuracy 

and precision. 

 

We further optimize by performing supervised landmark-based image segmentation that employs game-theoretic 

concepts [10]. We create a reward matrix with land cover classifications and different model solvers, as shown in 

Table 1. The reward matrix is constructed from an MxCxN volume, where M is the number of models in the ensemble, 

C the number of classes, and N the number of surrounding pixels in a neighborhood around the subject pixel height 

to predict. In our simulation, we used one model for each solver, for a total of three models, i.e., Adam, Stochastic 

Gradient Descent Method (SGDM), and Root Mean Square Propagation (RMSProp); 7 classes, i.e., water, roads, 

vegetation low, vegetation medium, vegetation high, built up areas (BUAs), and bare earth; and a 3x3 or 9 neighbors.  

 

Table 1.  Game Theory Reward Matrix 
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An A matrix is then constructed and solved with linear programming, which is useful for solving game theory 

problems and finding optimal strategies. We use an interior-point algorithm, the primal-dual method, which must be 

feasible for convergence. We choose the best machine learning model per pixel. The primal standard form, which is 

used to calculate optimal tasks and characteristics [23], is shown in Equation 1. The x’s are the decision variables; 

A’s are the coefficients in the reward matrix; b’s are coefficients which satisfy the constraints; and f is a linear 

objective function of constants. 

 

 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝒇(𝒙) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (1) 

𝑨𝒙 ≤ 𝒃 

𝒙 ≥ 𝟎 

 

SIMULATION 

 

Figure 7 shows our simulation. Once the data and pretrained model are loaded, processing can begin. The heights of 

each pixel from the multispectral image are calculated with an ensemble of several solvers: Adam, SGDM, and 

RMSProp. The optimal choice is determined using a game theoretic algorithm with a segmented image land-use land-

cover classification. The accuracy for each solver is calculated for both the current image tile and a cumulative value. 

The Game Theoretic (GT) solution is shown to have a significantly better accuracy compared with any of the ensemble 

image-to-height network models. 

 

 

Figure 7.  Simulation 

 

There is a need for detailed surface representations so that a feasible platform can be provided for detailed simulation 

of urban modeling. First, a digital surface model is generated based on aerial image stereo pairs, using a matching 

method.  Methods to generate the 3D city structures have been investigated and possible solutions tested. Features and 

3D models extracted from these data can provide benefits in various GIS applications, for which the building is 
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necessary. For example, 3D surface objects extracted from aerial photographs can represent a significant layer of GIS 

databases for the simulation of natural disasters, telecommunications planning (i.e., positioning of antennas), 3D land-

use zoning, and allowed building volumes, usage, and density. They are the main tools that help define the image of 

a city and bring into focus, for instance, the model of best practice for rehabilitation and conservation [7]. 

 

It is a time-consuming process to generate cost coefficients for defining a 3D cost cube, using image-matching 

operators based on stereo-geographic image data. To save time and computational overhead, we initialize the 

adjustment of the cost coefficients of the 3D cost cube based on the geographic feature data to generate an adjusted 

3D cost cube for a best-cost surface. We can use the game-theoretic height prediction as an initialization seed value 

to enhance DSM height extraction, using a cost cube algorithm. Processing time is milliseconds for initial height map 

estimation from aerial imagery, using a trained model. Our use of this initial height map speeds up processing time 

and improves DSM accuracy. We also use predicted LULC features to determine the search range. Here, we add value 

by refining the area to search along each sensor ray. This not only allows for faster processing but also for a better 

starting point for improved height extraction accuracy. One product is shown in Figure 8. 

 

DSM extraction is the most complex and time-consuming part of the process. A great deal of effort goes into making 

the process efficient and accurate. Of high importance is the fact that high correlations can occur at multiple voxel 

locations. For example, the corner of one building could correlate very well with a corner on another building. Much 

effort and ingenuity go into algorithms and logic to sort out these ambiguities.  The processing time is dependent upon 

the computer hardware used.  

 

 

Figure 8.  Extracted Digital Surface Model over Rochester, NY. 

 

High-resolution imagery from today’s commercial satellites and airborne systems, with accompanying metadata, can 

be used to make very accurate, detailed, high-resolution reflective surface DSMs. The surface models accurately depict 

large features, such as mountain ridges, valleys and drainage patterns, as well as small features, such as roads, trails, 

buildings, houses and bridges. These models can be used in a wide range of applications, such as oil and gas industry 

seismic planning, well site planning, pipeline routing, drainage analysis and emergency response planning. 

 

Our reflective surface DSMs are produced from commercially available, high-resolution stereo imagery. The images 

are taken from overhead, using commercial satellites or airborne sensors. Our DSM extraction algorithm has been 

designed to handle multiple stereo pairs of the same scene.  The major benefit of this feature is that scene portions that 

are occluded in one stereo pair may be clear in the other.  This feature is usually impractical with satellite sensors but 

is very feasible with airborne cameras. The collection plan for airborne sensors is more flexible and typically includes 

considerable redundant stereo coverage over the scene. 

 

Monitoring of changes in topographic urban geospatial databases is one of the main requirements of urban planners, 

urban decision-makers and managers. An automatic change detection (ACD) process uses two types of datasets. In 

the first type, aerial and satellite images are used as data sources to generate DSMs and extract textural and spectral 

information. Aerial imagery, because of its geometric stability, provides metric information, while satellite imagery, 

because of the abundance of spectral information, can be used to generate spectral data. The second dataset type is 
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comprised of topographic urban geospatial databases. These datasets provide reference information that supplements 

the more recent information and changes provided by the aerial and the satellite imagery. The change detection process 

includes object identification, object extraction, object recognition, and change detection phases. [18]. 

 

Digital spatial data can be vulnerable to strong underlying temporal changes. Typically, to ensure that the data remains 

current, these changes must be updated by manually checking the data for correctness and superimposing any changes 

on updated orthophotos. Typical update cycles for large datasets are on the order of several years. Currently, there are 

two reasons that shorter update cycles are not practical. First, manual inspection of the data is very costly and time-

consuming, and, second, aerial photographs for large areas are often not available in the time intervals required. A 

significant new development is emerging, however, in the area of data availability. New satellite systems provide up-

to-date high-resolution orthophotos in short time periods and at high quality [22]. 

 

Photogrammetry and remote sensing have proven their efficiency for spatial data collection. Skilled operators 

routinely perform interactive mapping at digital workstations. Many national GIS databases have been acquired and 

supported, and considerable production effort is still devoted to them. In the field of image analysis, it has become 

evident that algorithms for scene interpretation and 3D reconstruction of topographic objects, which rely on a single 

data source, do not function efficiently. Research in two areas, however, does hold some promise. First, multiple, 

largely complementary, sensor datasets, such as range data from laser scanners, synthetic aperture radar (SAR), and 

panchromatic or multi-/hyper-spectral aerial images, have helped achieve robustness and better performance in image 

analysis. Second, GIS databases, e.g., layers from topographic maps, can be considered virtual sensor data, with 

geometric information and explicit semantics. In this case, image analysis seeks to supplement missing information, 

e.g., the extraction of the third dimension for 2D databases. A related goal that many expect will become more 

important in the future is the revision and update of existing GIS databases [2].  

 

 

KNOWLEDGEBASE 

 

We improve the accuracy associated with creating a geospatial model, using available data from multiple sources. 

Change detection (understanding changes) and resulting track extraction (understanding activities) is an important 

part of many Intelligence Community and commercial GIS-related applications. Given the recent explosion in 

available imagery data and the increasing number of areas-of-interest throughout the world, there is an increasing 

trend toward rapid, automated change detection algorithms. To ensure effective use of these imagery databases, care 

must be taken to verify that the new imagery matches the existing imagery in terms of coverage, field-of-view, spectral 

content, and, most notably, sensor location and viewpoint. In addition, the need exists to reliably monitor change over 

time to determine the route of objects (movers), using persistent change detection to derive tracks from multi-int, 

multi-modal data, if the collection cadences are adequate to determine activity, e.g., multiple frames per hour. This is 

problematic in that it is often time-consuming, difficult or even impossible to obtain, process and correlate imagery 

from multi-modal sources to generate persistent change detections and track extractions. The challenges include 

image-to-image registration; multi-modal image-to-image co-registration; and image-to-ground multi-modal 

registration. As a result, large amounts of collected multi-modal imagery go underutilized in terms of the potential for 

change detection and track extractions given lost opportunities for detailed analyses of change over time. 

 

Generation and maintenance of a Virtual Persistent Data Volume enables the creation of 2D, 3D, and 4D change 

detection products. It also enables the separation of the virtual products’ background and foreground, which allows 

for derivation of virtual track data (activity). Change detection involves the combined processing of elevation model 

differences (3D), multi-modal imagery content (2D), and voxel-level historical volumetric attribution. An automated 

method compares a collected image to a reference (source) image extracted from a pre-existing 3D scene (site model, 

lidar model, high-res DEM, etc.) through a synthetic camera created and placed in the scene such that it matches the 

collected image sensor’s location and parameterization (e.g., field-of-view, hyperspectral vs. monochromatic, etc.). 

Furthermore, relevant known and stored historical “real-world” phenomenology, such as atmospheric and time-of-day 

effects, overall ground lighting/reflectivity properties (e.g., soil/vegetation/water), etc., can be simulated in the scene 

before the reference image is extracted for enhanced change detection performance. An automated method to co-

register multi-int data enables the generation of predictive and forensic products that creates a Virtual Persistent Data 

Volume from any input source. 
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An important application is the use of single-channel SAR data with Moving Reference Processing (MRP) to focus 

and geolocate moving targets. Moving targets within a standard SAR image scene are defocused, displaced, or 

completely missing in the final image. The SAR-MRP method focuses and geolocates moving targets by reprocessing 

the SAR data to focus on the movers rather than the stationary clutter. SAR change detection is used so that target 

detection and focusing is performed more robustly [19]. Figure 9 shows the knowledgebase concept overview. 

 

 

Figure 9.  Knowledgebase 

 

 

CONCLUSION 

 

We described a system for estimating pixel heights from a single multispectral RGB image, with or without sensor 

metadata. System components included an ensemble of convolutional-deconvolutional neural network (CNN) models 

and an optimization function. The chosen deep learning network model was validated per pixel using high-resolution 

aerial RGB imagery and lidar datasets.  

 

A data knowledgebase provided historic, time-stamped, multi-modal data for registration and 3D feature classification. 

Given a large amount of height truth data, a model was trained to recognize image features of differing heights, using 

CNN image-to-lidar regression. The models, when applied to an unseen image, estimated a preliminary height per 

pixel, based on a learned feature set. Multiple models were created and trained end-to-end and the best model and 

results were determined.  

 

We used linear programming optimization with an ensemble of regression models and semantic segmentation 

information with a weighted classification model to decide optimized pixel height estimates. Semantic segmentation 

datasets help classify RGB imagery with feature class labels and refine land use feature classification with CNN 

classification to improve accuracy. We weighted each land use classified feature with a confidence metric that we 

used to help determine height information.  

 

We used CNN regression for preliminary height estimation and CNN classification for land use feature classification 

plus a linear programming reward matrix per pixel to automatically decide optimized height estimation. An updated 

volumetric knowledgebase contains the system output and can be used subsequently for change detection and 

situational awareness. Both qualitative and quantitative analyses were performed and visualized. 
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