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ABSTRACT

The USMC is committed to developing autonomous systems that will support Marines. However, autonomous
systems are only effective when users trust their capabilities enough to employ them. As machines transition from
being teleoperated towards partially or fully autonomous, the performance and reasoning behaviors of the machines
will further bewilder users and inhibit trust. Experience and familiarity with automation can develop trust, but the
complexities, maintenance, and cost of future machines create an environment that prohibits daily real-world training
with autonomous ground vehicles (AGV). These two factors contribute to an atmosphere of mistrust in valuable
systems — systems designed to enhance combat effectiveness.

This research sought to understand the interactions between serious gaming and autonomous behavior development
on trust. It was field-tested in a dual task paradigm with 40 participants in a 2-group design. Measurement in choice,
indicators of trust, and secondary task performance (STP) were used to assess the amount of trust and preference for
autonomous teammates for an Infantry Marine. The control group used a serious game to learn the capabilities and
limitations of an off-the-shelf AGV. The experimental group used a serious game to “train” the autonomous behaviors
of their tailorable AGV through an interactive Machine Learning (iML) approach. Time invested in the training
environment was significantly greater for the experimental group. During the dual-task paradigm, there were no clear
indicators of a difference in trust or STP between groups. A trend appears to be developing between time invested
and choice of a trainable AGV that may imply that users would prefer a user-trained vice off-the-shelf AGV. All data
collected petitions for follow-on research on the topic of serious gaming to enable an iML approach for increased
trust. This research directly supports the Commandant’s vision and US Army’s desires to increase the use of
unmanned systems in operations.
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INTRODUCTION
Background

As computing capabilities and technology continue to improve, there is a greater call from the Department of Defense
(DoD) to deliver artificial intelligence (Al) to the services. Goals of increasing the speed of decision making and
reducing risk to forces (Department of Defense, 2018a) further the demand for AI in the military’s day-to-day
operations. The United States Marine Corps future concepts seek to use Al to gain an edge on the battlefield. In the
38th Commandant of Marine Corps’ (CMC) Planning Guidance (CPG), the CMC is focused on divesting from current
programs and forces to “accelerate funding and modernization of the future force” (Berger, 2019a, p. 23). Inan online
forum, the CMC published further guidance stating the USMC is underinvested in the use of lethal and non-lethal
unmanned systems (Berger, 2019b). The result of this guidance is the USMC 2030 Force Design which calls for a
redesign of the Marine Corps’ Infantry Battalions and an analysis on the manned-unmanned capability balance
(Berger, 2020).

Though the 2018 Science and Technology Strategic Guidance from the Marine Corps Warfighting Laboratory
(MCWL) pre-dates the 38th CPG, it is still prescient of the direction of movement for unmanned systems for Infantry
Marines. It states, “Focus on improving capabilities while reducing training and operating requirements of user
Marines. Fully autonomous vehicles are not necessarily the goal. Technologies that enable effective ‘supervised
autonomy’ by the Marine user, to include teleoperation, machine vision, perception, obstacle avoidance, convoy
following, and the ability to self-navigate pre-planned routes are desired capabilities” (2016, p. 38). The USMC is
well on their way as forms of supervised autonomy have already been field tested (Harkins, 2019), but continued
improvement is still required. What follows is distilled from research work conducted by the primary author for his
master’s thesis at the Naval Postgraduate School in 2020.

Manned-Unmanned Teaming

The next step for the USMC and other services is to develop autonomous systems for use as teammates within manned-
unmanned teams (MUM-T). The guidance for all services is outlined within the Secretary of Defense’s Unmanned
Systems Integrated Robot Roadmap from 2018. The DoD Roadmap utilizes the U.S. Army Robotic and Autonomous
Systems Strategy’s definition for MUM-T. “[MUM-T] is the synchronized employment of soldiers, manned and
unmanned air and ground vehicles, robotics, and sensors to achieve enhanced situational understanding, greater
lethality, and improved survivability. The concept of MUM-T is to combine the inherent strengths of manned and
unmanned platforms to produce synergy and overmatch with asymmetric advantages” (2017, p. 24). Seminal work
in the field of MUM-T comes from research in 1951 on Air-Navigation from Fitts et al. Fitts et al. created the baseline
concept of humans are better at — machines are better at (HABA-MABA) (1951).

The DoD roadmap acknowledges that a lack of trust within the man-robot team is a future challenge (Department of
Defense, 2018b). Compounding issues that will influence trust within MUM-T are the black-box nature of Al, live
training opportunities, and system costs. A system or process that allows for the human to train with the robot to
develop autonomous behaviors in a serious gaming environment could mitigate the compounding issues to positively
influence trust within the MUM-T.

To achieve synergy within MUM-T, Johnson et al. advocate for a co-active design process for analyzing the HABA-

MABA sub-tasks to the team’s task (2011). In 2014, Johnson et al. defined the interactions between the teammates
(both human and unmanned) with the three following terms: “Observability—making pertinent aspects of one’s status,
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as well as one’s knowledge of the team, task, and environment observable to others; Predictability—one’s actions
should be predictable enough that others can reasonably rely on them when considering their own actions;
Directability—one’s ability to direct the behavior of others and complementarily be directed by others” (Johnson et
al., 2014). From these terms, predictability ties directly to trust through reliability.

Trust within MUM-T

A critical element in any relationship is trust. In 2004, Lee and See’s research Trust in Automation: Designing for
Appropriate Reliance defines trust as “the attitude that an agent will help achieve an individual’s goals in a situation
characterized by uncertainty and vulnerability” (2004, p. 54). Reliance and trust are linked through the idea of attitudes
and behaviors. Lee and See concisely state the concepts developed by Ajzen and Fishbein in 1980 and Fishbein and
Azjen in 1975 that “trust is an attitude, reliance is a behavior” (2004, p. 53) and that attitudes develop behaviors
(2004). Lee and See model trust as a feedback loop that refines itself over iterations of a user’s observations of
performance. Building from Lee and See (2004), Sheridan (2019) solidifies the concept of trust as a mental model
and utilizes a Kalman control system feedback loop (1960) to show its evolution (Figure 1). The same publication
indicates the ability for the human’s mental model to predict the observed actions of the unmanned teammate confirms
trust. If expectations do not match the observed behaviors

then the mental model is updated (2019). The greater the
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“[Automated systems] are governed by prescriptive rules ~ Source: (Sheridan, 2019).

that allow for no deviations” (Department of Defense,

2018b, p. 17). “Autonomous systems are governed by

broad rules that allow the system to deviate from the baseline” (Department of Defense, 2018b, p. 17). Al is “the
ability of machines to perform tasks that normally require human intelligence—for example, recognizing patterns,
learning from experience, drawing conclusions, making predictions, or taking action—whether digitally or as the
smart software behind autonomous physical systems” (Department of Defense, 20183, p. 5). Robot actions will be
created and controlled by an agent that can execute simplistic tasks, understand intent, and learn.

The development of the agent’s behaviors can range from a programmer’s coding to machine learning (ML)
techniques. Gunning and Aha of the Defense Advanced Research Projects Agency (DARPA) Explainable Al (XAl)
program generalized an agent’s performance and explainability as: when performance increases, explainability
decreases (2019). The lowest performance with greatest explainability is a programmer’s hard coding of rules. The
greatest performance with the lowest explainability is a deep neural network’s development of rules. Even with easy
explainability, the developed agent’s behaviors may not be the desired actions of the human teammate. Additionally,
to achieve the full advances of ML and Al within MUM-T lesser XAl is required for use. A process that allows users
to develop trust is required. A necessary step to attain calibrated trust is for the human teammate to build their mental
model as the agent’s behaviors mature.

Interactive Machine Learning and Trust

The current approach to traditional ML — automatic ML (aML) — is for a ML expert to develop the agent through the
adjustment of parameters and algorithms based on the end-user’s data and insights (Amershi et al., 2014). In 2014
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Amershi et al. published Power to the People: The Role of Humans in Interactive Machine Learning (iML), they show
how iML can be used to tighten the coupling between user and agent. Amershi et al. advocate that iML is the end-
user’s involvement in the rapid, focused, and incremental development of the agent’s behaviors (2014). One of the
three DARPA XAl performers focused on autonomy is using a form of iML for developing a more explainable Al.
That performer, the Palo Alto Research Center, created a virtual environment for the development of agent behaviors
and MUM-T concepts titled the COmmon Ground Learning and Explanation (COGLE) project (Stefik, 2018). Within
their virtual environment, the end-user and agent take a teacher-to-student form to execute a curriculum of instruction
to develop agent behaviors and enable ML processes (Stefik, 2018). The process aims to develop a common ground
for both the agent and end-user (Stefik, 2018). The development of the common ground can refine the human’s mental
model of the agent.

Gutzwiller and Reeder’s most recent publication of trust and iML provided evidence that users may trust iML
developed agents more (2020). In their research, multiple agents were developed and shown to the end-user during
the ML evolutionary process. In an iterative fashion, the end-user would assess multiple agents and select one for
further development in the ML environment. This process was repeated for a set number of iterations. They
concluded, “The IML [interactive machine learning] approach further allows the user to be the designer, as Muir
(1994) suggested, which is likely to improve trust in ML. In parallel, the “IKEA effect” also suggests that the
experience of building these control models via interaction may impart an increased valuation to them (Norton et al.,
2012)” (2020, p. 3). Though Gutzwiller and Reeder were able to show that end-users trusted iML developed agents
more, they did not explore if that trust would transfer to execution with a live robot.

Virtual Environments and Serious Gaming

The interactive approach used by the robotics community for development of robotic behaviors can be categorized as
automatic programming (Biggs & MacDonald, 2003). In Biggs and MacDonald’s A Survey of Robot Programming
Systems, automatic programming allows for the robot to generate code from a variety of indirect ways. The actions
can be demonstrated or directed by a user in either live or simulated virtual environments (2003). This approach can
be applied in agent development of autonomous robots.

Simulations and virtual environments are heavily embedded into the DoD services for developmental testing,
wargaming, and training. The Marine Corps utilizes virtual environments and simulations for individual, small-unit,
and staff training (Telford, 2016). Of the many benefits of training, two critical outcomes are: mission familiarity and
the practice of battle drills (Headquarters Marine Corps, 1997).

EXPERIMENTATON

The DoD and USMC guiding concepts and the literature review drove us towards the exploration of trust within
MUM-T, specifically with squad leaders within the Marine Corps Infantry Community. With the DoD’s use of
simulations and serious gaming for training, an approach that incorporated an agent’s development of autonomous
behaviors within serious gaming was used. Measuring the transfer of trust of the agent in a simulated environment to
an autonomous robot’s execution of a task was planned to provide insights into the demographic’s cultural perspective
towards technology, acceptance of autonomous systems, and best approach for autonomous behavior development.
The proposed hypotheses of the research were:

H1: There will be a greater proportion of Marines who will choose to use the “autonomous” robot over “tele-operated”
in iML vs aML condition. (pimL — pamL > 0).

H2: There will be more indicators of trust for the iML than the aML conditions. (limL — HamL > 0).

Methodology

Design

We crafted an experiment to measure a human’s transfer of trust from a simulated to live environment for an unmanned
autonomous teammate. Additionally, a survey of the current force was conducted to identify the type of control they

would want in their unmanned teammate. The study was a “two-group dual-task paradigm designed to measure
choice, trust indicators, and [STP]” (2020, p. v). The control group, Group B-aML, conducted serious gaming to learn
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the capabilities and limitations of an aML “off-the-shelf” robot while the experimental group, Group A-iML, trained
the agent’s behaviors for the robot.

Participants

There were 40 Infantry Marine participants with ranks ranging from Lance Corporal to Sergeant. As there is limited
experience across the combat arms military occupational specialties (MOSs) in MUM-T operations, we provided a
succinct foundation for the participants to understand the research domain and experimental environment. Although
we hosted the Marine Corps’ squad leaders on a Military Operations on Urban Terrain (MOUT) range, they were still
leaving their primary training to take part in this experiment. The Marines we hosted were from the Advanced Infantry
Training Battalion (AITB) East’s Advanced Infantry Marine Course on Camp LeJeune, NC. Weather impacts in
Camp Lejeune during the research week caused the experiment to shut down early, leaving us with a substandard
sample size.

Materials
In our setup for the conduct of the experiment, we maintained a tactical immersion for the participants. The setup
(Figure 2) contained two Alienware M51 Laptop Computers, one GoPro Video Camera, one set of Tobii Pro Glasses,
one portable computer screen, one Microsoft X-Box
controller, and two program of record “small, unmanned
ground vehicles (SUGV)”. Our live tactical scenario
environment included one cardboard box required for
inspection in the tactical area, and two buildings: one to
house the experiment and the other to be used as the
objective building for room clearing. Adjacent to the two
buildings was the tactical assault position. The Marine
participating had to decide when he would send a Fire Team
from this position to continue towards their objective as part
of the experiment.

Procedures

To start, participants completed a baseline assessment with
an attention enumeration task (AET), a timed task for
counting and entering the number of blocks seen on the
screen. Once the AET was completed, the participant then  Figure 2. Participant’s Workstation. Source:
played the serious game by controlling the SUGV avatar.  (Yurkovich, 2020).

The games differed based on the group assignment. Group

A-iIML used the serious game to “train” the agent through a set number of repetitions of basic tasks. Figure 3 shows
a screenshot of the Group A-iML game. Participants in Group B-aML were learning the robot’s capabilities in the
simulated environment. Both groups played the game and were given the opportunity to decide whether they would
want to teleoperate or use their form of autonomous behaviors (iML vs. aML) for the robot to perform the
reconnaissance and room clearing task. If they chose to teleoperate the robot, we artificially intervened by telling
them that we were having issues with the remote control. This was one of three areas of deception required to execute
this experiment.

For the iML participant (Group A), we incorporated a second form of deception. When the Marine played the serious
game, a researcher was studying and tracking his tendencies and trends within the game. This allowed for that same
researcher to manually operate the robot from behind the scenes during the execution of the live task. Although the
robot was not autonomous and controlled in a Wizard of Oz (WOZ) like manner, we wanted to give the impression
of autonomy and machine learning by mimicking the behaviors the participant displayed during game play. The final
form of deception was when a researcher would load the serious game data into the SUGV to drive its behaviors in
the courtyard and in the building. The researcher used a batch file showing a false download of the data to simulate
retrieval and upload to the SUGV.

The aML participant (Group B) was also given the opportunity to select teleoperated or autonomous, but again the

teleoperated option was not possible. Instead, the participant was told that the SUGV was “off-the-shelf” and
controlled by code developed by a leading technology firm in Silicon Valley.
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s - The WOZ would still control the robot for Group
B-aML, but in this instance, the WOZ followed
the same script for every participant in this group
and did not try to mimic behaviors displayed
within the serious game.

During the actual reconnaissance and room
clearing task, the participant was required to
complete a second AET which served to replicate
the secondary tasks a squad leader would execute
during MOUT operations, such as cross boundary
coordination and coordination of supporting
arms. We anticipated the participants would
spend most of their time completing the task
rather than looking at the screen showing the
Figure 3. iML Serious Game. Source: (Yurkovich, 2020), ~ robot’s camera view. However, we made the
camera available to the participant to check
progress in the reconnaissance and clearing task and measured the number and duration of “looks” at this screen to
serve as indicators of trust.

Upon completion of the AET, live data collection ceased. Participants were then asked if they would send their
subordinate fire team across the courtyard and into the objective building, regardless of the status of the SUGV. Once
affirmation was received, the experiment ended, and the participant transitioned to completing the trust survey.

Data Analysis

Data compiling was completed for the AETs on the Presentation program while the eye tracking data utilized the
Tobii Pro Lab’s Area of Interests functionality. The data was sorted via python code for analysis in JMP. For the
comparison of choice, directly associated with H1, a one-sided Two-Proportions z-Test (o = 0.05) was planned for
use, but was replaced by Fisher’s Exact Test due to not meeting the assumption requirement of 10 success and failures
per option. For H2, a mix of multivariate analysis of variance (MANOVA) and a Two-Sample t-Test were planned
for, but the t-Test was replaced by the Wilcoxon Signed-Ranks Test (a = 0.05) due to non-parametric data. Within
the data for the AETS, the Robust Fit Test for Outliers with 2.5 standard deviations were used to identify outliers who
failed to follow the directions for the AET. For data recorded with the Tobii Pro Glasses, data was excluded for either
degraded eye-tracking or looking exclusively at only the SUGV screen or AET during live execution as the data
recorded as null for the comparison.

Results

Hypothesis 1 — Choice

A Fisher’s Exact Test revealed there was “no
significant difference in the proportion of
Marines choosing to use the autonomous mode
in iML (Group A) rather than the aML (Group

100%
90%
80%
70%

B) approach with 63.1% (12/19) choosing ove
autonomous mode for iML, compared to 42.9% 0%
(9/21) for aML (p = .167)” (Yurkovich, 2020, p. 40%
75). A graphical comparison is shown in Figure 30%
4. 20%
10%
Hypothesis 2 — Trust 0% Group A p——
All data recorded for indicators of trust and a Teleoperated ; T
secondary task performance fail to reject the null EN— b 9

hypothesis. A limitation to the data was the
smaller than expected number of participants  Figure 4. Choice Comparison. Modified from:
which prevented statistical significance on  (Yurkovich, 2020).
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multiple tests. Six behavioral aspects were measured while the attitude of trust was measured post execution with a
randomized trust in automated systems survey (Gutzwiller et al., 2019; Jian et al., 2000).

“Difference in Overall Time of Task™ is a STP measurement as the difference in time to complete the baseline AET
as compared to during the dual task condition where participants completed another AET while the SUGV executed
its task. A number closer to zero is desired. “Glances at Robot” is a count for the number of times that a user looked
at the SUGV during the dual task. In connection with Sheridan’s 2019 research, fewer glances would indicate greater
trust. For the “Trust in Automated Systems” survey results, the negatively biased questions were inverted to match
the positively biased questions. A number closer to seven is desired. Table 1 shows the consolidated statistics for the
two sample test results.

“Average ‘Look’ Time Duration” is the averaged time for each look at AET and SUGV screen. Longer duration on
the AET and lower on the SUGV screen is the desired outcome. Two different reactions times were recorded for each
execution of the task: 1) as the AET recorded time to count the blocks (Initial Reaction Time) and 2) the time to enter
the number (Input Reaction Time). An outcome closer to zero was desired. Figure 5 shows the relationship of average
look durations. Figure 6 shows the relationship of reaction times between the groups. Table 2 shows the consolidated
statistics for the MANOVA test results.

Table 1. Two Sample Test Results.

Data Comparison Recording Test Results
Input Group A Group B Comparison
(iML) (aML)
Difference in Overall | Presentation | Wilcoxon Signed- | M =-92,876 M =-54,434 | Z=-0.717,
Time of Task Ranks Test SD=123,331 | SD=77,451 | p=.47,d=0.373
Glances at Robot Tobii Pro Eye | Wilcoxon Signed- | M =37.18 M = 36.61 Z =-0.215,
Tracking Ranks Test SD = 36.80 SD=2734 |p=.82,d=0.018
Trust in Automated Survey Two-Sample t- M=4.79 M =4.96 t(38) = 0.669,
Systems Test SD =0.181 SD=0.172 | p=.75,d=0.211

Table 2. MANOVA Test Results.

Data Comparison Recording Input Test Results

Average "Look" Time Tobii Pro Eye Tracking MANOVA | F(1,25) = 0.804, p = .459, TI;Z; =.060
Duration

Difference in Average Presentation MANOVA | F(1,31) = 0.656, p = .526, n; = .041
Reaction Times

60000

50000

40000

Time (ms)
Time (ms)

30000
20000

o

10000
Avg Rob Time

-100
-200
-300
-400
-500
-600
700

-900 . - -
Dif in Avg Init React Time

-728.0504762
-469.6485716

Dif in Avg Inpt React Time
-521.5302522
-291.4907142

Avg Att Time

B Group A

uG A mG B
roup roup u Group B

Figure 5. Average “Look” Time Comparison.

re ) Figure 6. Reaction Time Comparison. Modified
Modified from: (Yurkovich, 2020).

from: (Yurkovich, 2020).

While the performance in the secondary task in the AET data tends toward greater trust in the SUGV for aML Group
(B), the amount of time invested in “looks” does not. All data is inconclusive in identifying a significant difference
in performance and behaviors to indicate a greater amount of trust between groups.
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A significant difference was found between groups for time invested in the serious game to complete the exact same
tasks. In the serious game, Group A (iML) “trained” the SUGVs behaviors for autonomous execution while learning
its capabilities and limitations by controlling the SUGV’s avatar; Group B (aML) strictly controlled the avatar to learn
capabilities and limitations. A one direction Two-Sample t-Test indicates “times were higher for iML — Group A (M
= 1150, SD = 94.7) than for aML — Group B (M =898, SD = 70.6), t(15.55) = -2.05, p < .029, d = 3.017” (Yurkovich,
2020, p. 83).

DISCUSSION
Recommendations

Unmanned Teammates

The unmanned teammate should arrive to the unit in the same fashion as a newly minted graduate of the School of
Infantry arrives at an infantry battalion. The Marine possesses a baseline of techniques and procedures and is prepared
to join a fire team. The agent will be programmed with a baseline set of autonomous actions like obstacle avoidance,
threat detection, and an understanding of basic infantry techniques and procedures.

Elements that deliver the application of the techniques and procedures will be developed by the human. In 2019,
Marine Corps Captains Franco and Spada utilized Johnson et al.’s (2014) interdependence analysis framework to
develop the responsibilities of a MUM-T for occupying a support by fire position. Non-lethal decisions that were left
to the unmanned teammate were: position in formation, appropriate speed, and to avoid or proceed near an obstacle
(Franco & Spada, 2019). These decisions are situationally dependent and a simple response to this concern is for the
human to control these parameters, but then the human is quickly relegated to a “controller,” thus defeating the aim
of MUM-T. Asayoung Infantry Marine would learn through training scenarios, so should the unmanned teammate’s
agent.

Through a training curriculum, the agent’s baseline tasks will be improved through training in a virtual serious game
environment with an iML approach. To maintain adaptability, the agent must be able to record its state and action
spaces during live events to allow for a voice initiated after-action review. While learning and adapting is a critical
element for success on the battlefield (Headquarters Marine Corps, 1997), this Al enabled trait should only happen
with the approval of the human. Authorization would occur during tactical pauses or rest and refit operations after
the agent demonstrates the new behaviors in a virtual environment.

Use of Serious Gaming for iML

The serious game developed for iML training should have three training modes. The first will be for the human to
control the robot to learn the physical capabilities and limitations of the system. The second form is scenario-based
virtual training where a human will control the human’s avatar, and an additional human will control the robot’s avatar.
These scenario-based training events will serve as the example for supervised ML to replicate. The third form is when
both teammates fulfill their respective roles in the virtual environment. Within this mode, the human will have the
ability to provide positive or negative rewards to the agent to continue to refine its behaviors. Additionally, the agent
can develop expectations of the human during these iterations.

While the human is not executing virtual training with the unmanned teammate’s agent, the agent will continue to
execute ML algorithms to develop a better agent. When the human logs in, the human will be presented with
demonstrations of multiple ML evolutionary agents that were produced. The human will then choose which agent to
continue to develop, discarding the rest.

A benefit of the curriculum style approach is that it keeps the human informed of the training the agent completed.
This will prevent misuse and disuse cases in live execution. Additionally, it will allow for the trust and “IKEA” effect
that Gutzwiller and Reeder stated (Gutzwiller & Reeder, 2020), as shown by the significant difference in the amount
of serious gaming time.
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Implementation into a Marine Corps Infantry Battalion

The limitations of training time and areas and fiscal considerations are the catalyst for developing the concept of how
unmanned teammates will be implemented into a Marine Corps Infantry Battalion (Yurkovich, 2020). Figure 7 shows
the lifecycle of the unmanned teammate in day-to-day training and operations. Beginning in the top-left, the team
trains in the serious game as outlined above. The agent is exported for use and brought to the RoboPool via the
Transfer Agent Device (TAD). The RoboPool is similar to the motor-pool and armory each infantry battalion
maintains. The robot is maintained and updated at this location. In the top right of the figure, the team deploys to
field for its live operations, either training or in support of the greater DoD mission. The team operates with calibrated
trust as the team has a shared understanding and mental model of each teammate’s capabilities and limitations. After
the live operation, the human provides a verbal after-action to the agent through a negative or positive reward
comment. As intelligence / operation cycle continues to develop the follow-on mission, an unmanned aerial vehicle
is launched to capture data to
develop an intelligence picture

RoboPool:
* Maintenance

Live Op:

*  Execution w/

Training the Al:
+ Simulations by Al

Deliver the “TAD"

and adversarial actions. In the + iMLin a Virtual « Boot-Up calibrated trust
bottom left, the S-2 — Intelligence Environment

Sec'_:lon Complles A the I Focus area of this research. I

environment and inserts

B1eQ WYY pling

adversarial agents to develop a
serious game for the MUM-T to
use for a rehearsal prior to
execution. If time permits, ML

=
2
=
i

=
£
wvy
2]
=
@

After Action Review:

Virtual Environment Dev: Hasty — Operator

algorithms ~ compile  updated |- uav > 30 Terrain Creation Transition to Next Real World Operation led by Voice

behaviors for the agent. Once the |-_S2!mplement Ensit + Deliberate — Serious
. e et

operations are complete, the robot ﬁjg’;“fﬁfatf;:““s

is returned to the RoboPool and
the TAD is brought along withthe ~ Figure 7. Conceptual Model for Implementation into an Infantry

human for continued training. Battalion. Source: (Yurkovich, 2020).

Operational Testing

Testing with Marines from the Fleet Marine Force (FMF) created an environment of shared learning between
researchers and the Marine Corps’ future squad leaders. To researchers, it reinforced the true purpose of the research—
providing the Marines at the tactical edge with the best we can conceive. It showed the Infantry Marines that there
are people genuinely interested in improving their advantage against our future adversaries.

Future Work

Experimental Redesign

A follow-on experiment to this research should remove the option for choice between teleoperated vs. autonomous
mode, place the participant in an environment with increased vulnerability, and include an autonomous agent playback
portion.

During the experiment, participants were provided the opportunity to choose if they would like to use the SUGV in
teleoperated or fully autonomous mode to satisfy a hypothesis aimed at identifying the preference of current Infantry
Marines. A comparison of choice to trust survey results in a Two Sample t-Test did not reveal a significant difference,
[“autonomous” mode (M = 5.04, SD = 0.168) to choosing “remote control mode” (M = 4.69, SD = 0.177), t(38) = -
1.47, p = .150, d = 0.373]; but the difference may indicate a bias. We believe this possible trend exists for one of two
reasons: 1. Asthe remote control for teleoperated mode was “broken,” this may have degraded the trust in the system.
2. The participant’s trust was pre-established at a lower level and remained there for the duration of the execution.
The lower level of trust may have driven the participant to choose the teleoperated mode. A pre-experiment trust
survey could possibly unearth the reasoning at the expense of biasing the participants as to the intent of the research.
We recommend moving the choice to a survey question following execution with the autonomous mode.

Lee and See establish that trust is dependent upon a situation’s “uncertainty and vulnerability” (2004, p. 54). During
our research, the participant created their own atmosphere of risk and uncertainty. We relied on the participant’s
motivation to do their best during the dual task paradigm. Including a competition and an atmosphere for positive and
negative rewards to the user in the next iteration of this research could improve the user’s requirement for trust.
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While the research team identified the need for a playback portion of the autonomous agent’s behaviors upon
completion of the serious game, resource constraints prevented the implementation. If a WOZ approach is used,
multiple pre-recordings reflecting the different preferences of the participant’s trained behaviors could be pre-loaded
for remote selection by the WOZ for playback. Ideally, future iterations of this research can develop an autonomous
agent.

Autonomous Agent Development

A byproduct of this research was to gauge if the efforts to create an autonomous agent via an iML approach within a
virtual environment to transfer to a real robot was a worthy endeavor. It is expected to be a challenging future step.
There are ML developed autonomous agents that have made the jump from simulation to real world (Wiggers, 2019),
but the literature does not reveal any from an iML approach.

A possible way to test with a similar demographic and begin to create a baseline dataset would be through a web-
based gaming application. Participants could remotely log-in to execute the curriculum. As a demonstration of the
agent’s performance is required for approval and a calibration of trust, a positive or negative reward for learning
should also be incorporated. The U.S. Army’s Early Synthetic Prototyping environment, Operation Overmatch, aligns
with this concept of web-based testing, recording, and evaluation and could serve as a future sandbox.

Serious Gaming Environment Development

Significant coupling between machine vision and modeling experts is required to create a serious gaming environment.
Robotic experts acknowledge that simulations are valid for preventing wear on systems, but lack the fidelity to
replicate the noise within the real world (Bingham, 2019). The serious gaming environment for the iML approach
would require the appropriate object classifications within both the simulated environment to match the machine vision
algorithms. Priority should be given to the objects that are part of the agent’s state of inputs and outputs, €.g. doorway
and obstacle identification.

CONCLUSION

Motivated by bringing the best resources to our warfighters, this research aimed to understand the development of
trust within a MUM-T and how it transfers from a virtual environment to real life based on differing approaches for
autonomous behavior development (Yurkovich, 2020). Though many of the results were not significantly significant
due to the limited number of participants, we did find that the iML approach group invested more time in the serious
gaming environment where they “trained” the agents behaviors while the counterparts strictly learned about the agent.
This, in coordination with the non-significant trend in choice, creates an indication that Infantry Marines may prefer
to use an autonomous teammate development through an iML approach. There were no indications or trends on trust.
Future research is needed for the continued exploration of the topic for the use of serious games and the iML approach.
Those studies can then inform decisions and actions on how to best develop greater trust and efficiency with MUM-
T through aligned mental models and expectations of performance.
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