
 
 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 

2020 Paper No. 20217 Page 1 of 12 

This is my robot. There are many like it, but this one is mine. 

 
Daniel M. Yurkovich, Mollie R. McGuire, Christian R. Fitzpatrick, Glenn A. Hodges 

Naval Postgraduate School 

Monterey, CA 

d.m.yurkovich@gmail.com, mrmcguir@nps.edu, christian.fitzpatrick@nps.edu, gahodges1@nps.edu 

 

 

ABSTRACT 

 

The USMC is committed to developing autonomous systems that will support Marines.  However, autonomous 

systems are only effective when users trust their capabilities enough to employ them. As machines transition from 

being teleoperated towards partially or fully autonomous, the performance and reasoning behaviors of the machines 

will further bewilder users and inhibit trust.  Experience and familiarity with automation can develop trust, but the 

complexities, maintenance, and cost of future machines create an environment that prohibits daily real-world training 

with autonomous ground vehicles (AGV).  These two factors contribute to an atmosphere of mistrust in valuable 

systems – systems designed to enhance combat effectiveness.   

 

This research sought to understand the interactions between serious gaming and autonomous behavior development 

on trust.  It was field-tested in a dual task paradigm with 40 participants in a 2-group design.  Measurement in choice, 

indicators of trust, and secondary task performance (STP) were used to assess the amount of trust and preference for 

autonomous teammates for an Infantry Marine.  The control group used a serious game to learn the capabilities and 

limitations of an off-the-shelf AGV.  The experimental group used a serious game to “train” the autonomous behaviors 

of their tailorable AGV through an interactive Machine Learning (iML) approach.  Time invested in the training 

environment was significantly greater for the experimental group.  During the dual-task paradigm, there were no clear 

indicators of a difference in trust or STP between groups.  A trend appears to be developing between time invested 

and choice of a trainable AGV that may imply that users would prefer a user-trained vice off-the-shelf AGV.  All data 

collected petitions for follow-on research on the topic of serious gaming to enable an iML approach for increased 

trust.  This research directly supports the Commandant’s vision and US Army’s desires to increase the use of 

unmanned systems in operations.   
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INTRODUCTION 

 

Background 

 

As computing capabilities and technology continue to improve, there is a greater call from the Department of Defense 

(DoD) to deliver artificial intelligence (AI) to the services.  Goals of increasing the speed of decision making and 

reducing risk to forces (Department of Defense, 2018a) further the demand for AI in the military’s day-to-day 

operations.  The United States Marine Corps future concepts seek to use AI to gain an edge on the battlefield. In the 

38th Commandant of Marine Corps’ (CMC) Planning Guidance (CPG), the CMC is focused on divesting from current 

programs and forces to “accelerate funding and modernization of the future force” (Berger, 2019a, p. 23).  In an online 

forum, the CMC published further guidance stating the USMC is underinvested in the use of lethal and non-lethal 

unmanned systems (Berger, 2019b).  The result of this guidance is the USMC 2030 Force Design which calls for a 

redesign of the Marine Corps’ Infantry Battalions and an analysis on the manned-unmanned capability balance 

(Berger, 2020).   

 

Though the 2018 Science and Technology Strategic Guidance from the Marine Corps Warfighting Laboratory 

(MCWL) pre-dates the 38th CPG, it is still prescient of the direction of movement for unmanned systems for Infantry 

Marines.  It states, “Focus on improving capabilities while reducing training and operating requirements of user 

Marines.  Fully autonomous vehicles are not necessarily the goal.  Technologies that enable effective ‘supervised 

autonomy’ by the Marine user, to include teleoperation, machine vision, perception, obstacle avoidance, convoy 

following, and the ability to self-navigate pre-planned routes are desired capabilities” (2016, p. 38).  The USMC is 

well on their way as forms of supervised autonomy have already been field tested (Harkins, 2019), but continued 

improvement is still required. What follows is distilled from research work conducted by the primary author for his 

master’s thesis at the Naval Postgraduate School in 2020.    

 

Manned-Unmanned Teaming 

 

The next step for the USMC and other services is to develop autonomous systems for use as teammates within manned-

unmanned teams (MUM-T).  The guidance for all services is outlined within the Secretary of Defense’s Unmanned 

Systems Integrated Robot Roadmap from 2018.  The DoD Roadmap utilizes the U.S. Army Robotic and Autonomous 

Systems Strategy’s definition for MUM-T.  “[MUM-T] is the synchronized employment of soldiers, manned and 

unmanned air and ground vehicles, robotics, and sensors to achieve enhanced situational understanding, greater 

lethality, and improved survivability. The concept of MUM-T is to combine the inherent strengths of manned and 

unmanned platforms to produce synergy and overmatch with asymmetric advantages” (2017, p. 24).  Seminal work 

in the field of MUM-T comes from research in 1951 on Air-Navigation from Fitts et al.  Fitts et al. created the baseline 

concept of humans are better at – machines are better at (HABA-MABA) (1951).   

 

The DoD roadmap acknowledges that a lack of trust within the man-robot team is a future challenge (Department of 

Defense, 2018b).  Compounding issues that will influence trust within MUM-T are the black-box nature of AI, live 

training opportunities, and system costs.  A system or process that allows for the human to train with the robot to 

develop autonomous behaviors in a serious gaming environment could mitigate the compounding issues to positively 

influence trust within the MUM-T.   

 

To achieve synergy within MUM-T, Johnson et al. advocate for a co-active design process for analyzing the HABA-

MABA sub-tasks to the team’s task (2011).  In 2014, Johnson et al. defined the interactions between the teammates 

(both human and unmanned) with the three following terms: “Observability—making pertinent aspects of one’s status, 



 
 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 

2020 Paper No. 20217 Page 3 of 12 

as well as one’s knowledge of the team, task, and environment observable to others;  Predictability—one’s actions 

should be predictable enough that others can reasonably rely on them when considering their own actions; 

Directability—one’s ability to direct the behavior of others and complementarily be directed by others” (Johnson et 

al., 2014).  From these terms, predictability ties directly to trust through reliability. 

 

Trust within MUM-T 

 

A critical element in any relationship is trust.  In 2004, Lee and See’s research Trust in Automation: Designing for 

Appropriate Reliance defines trust as “the attitude that an agent will help achieve an individual’s goals in a situation 

characterized by uncertainty and vulnerability” (2004, p. 54).  Reliance and trust are linked through the idea of attitudes 

and behaviors.  Lee and See concisely state the concepts developed by Ajzen and Fishbein in 1980 and Fishbein and 

Azjen in 1975 that “trust is an attitude, reliance is a behavior” (2004, p. 53) and that attitudes develop behaviors 

(2004).  Lee and See model trust as a feedback loop that refines itself over iterations of a user’s observations of 

performance.  Building from Lee and See (2004), Sheridan (2019) solidifies the concept of trust as a mental model 

and utilizes a Kalman control system feedback loop (1960) to show its evolution (Figure 1).  The same publication 

indicates the ability for the human’s mental model to predict the observed actions of the unmanned teammate confirms 

trust.  If expectations do not match the observed behaviors 

then the mental model is updated (2019).  The greater the 

time steps between the human’s attempt to observe the 

teammates actions can indicate a higher degree of trust.  The 

ability of the human’s mental model to predict the robot’s 

actions requires an intimate understanding of the robot’s 

behaviors.  The human will require familiarity of the inputs 

the robot receives to create outputs, as shown by the curvy 

box in Figure 1.  

 

Agent Development 

 

Agent to Automation, Autonomy, and AI  

Henceforth, robot will refer to hardware of the unmanned 

teammate, while the agent is the software that controls the 

robot.  The agent is a synthesis of automation, autonomy, 

and AI.  The DoD Roadmap and AI Strategy define clear 

and usable terms.  Defined in increasing complexity:  

“[Automated systems] are governed by prescriptive rules 

that allow for no deviations” (Department of Defense, 

2018b, p. 17).  “Autonomous systems are governed by 

broad rules that allow the system to deviate from the baseline” (Department of Defense, 2018b, p. 17). AI is “the 

ability of machines to perform tasks that normally require human intelligence—for example, recognizing patterns, 

learning from experience, drawing conclusions, making predictions, or taking action—whether digitally or as the 

smart software behind autonomous physical systems” (Department of Defense, 2018a, p. 5).  Robot actions will be 

created and controlled by an agent that can execute simplistic tasks, understand intent, and learn. 

 

The development of the agent’s behaviors can range from a programmer’s coding to machine learning (ML) 

techniques.  Gunning and Aha of the Defense Advanced Research Projects Agency (DARPA) Explainable AI (XAI) 

program generalized an agent’s performance and explainability as: when performance increases, explainability 

decreases (2019).  The lowest performance with greatest explainability is a programmer’s hard coding of rules.  The 

greatest performance with the lowest explainability is a deep neural network’s development of rules.  Even with easy 

explainability, the developed agent’s behaviors may not be the desired actions of the human teammate.  Additionally, 

to achieve the full advances of ML and AI within MUM-T lesser XAI is required for use.  A process that allows users 

to develop trust is required.  A necessary step to attain calibrated trust is for the human teammate to build their mental 

model as the agent’s behaviors mature. 

    

Interactive Machine Learning and Trust 

The current approach to traditional ML – automatic ML (aML) – is for a ML expert to develop the agent through the 

adjustment of parameters and algorithms based on the end-user’s data and insights (Amershi et al., 2014).  In 2014 

Figure 1. Sheridan’s Control Model of Trust.  

Source: (Sheridan, 2019). 
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Amershi et al. published Power to the People: The Role of Humans in Interactive Machine Learning (iML), they show 

how iML can be used to tighten the coupling between user and agent.  Amershi et al. advocate that iML is the end-

user’s involvement in the rapid, focused, and incremental development of the agent’s behaviors (2014). One of the 

three DARPA XAI performers focused on autonomy is using a form of iML for developing a more explainable AI.  

That performer, the Palo Alto Research Center, created a virtual environment for the development of agent behaviors 

and MUM-T concepts titled the COmmon Ground Learning and Explanation (COGLE) project (Stefik, 2018).  Within 

their virtual environment, the end-user and agent take a teacher-to-student form to execute a curriculum of instruction 

to develop agent behaviors and enable ML processes (Stefik, 2018).  The process aims to develop a common ground 

for both the agent and end-user (Stefik, 2018).  The development of the common ground can refine the human’s mental 

model of the agent.  

 

Gutzwiller and Reeder’s most recent publication of trust and iML provided evidence that users may trust iML 

developed agents more (2020).  In their research, multiple agents were developed and shown to the end-user during 

the ML evolutionary process.  In an iterative fashion, the end-user would assess multiple agents and select one for 

further development in the ML environment.  This process was repeated for a set number of iterations.  They 

concluded, “The IML [interactive machine learning] approach further allows the user to be the designer, as Muir 

(1994) suggested, which is likely to improve trust in ML.  In parallel, the “IKEA effect” also suggests that the 

experience of building these control models via interaction may impart an increased valuation to them (Norton et al., 

2012)” (2020, p. 3).  Though Gutzwiller and Reeder were able to show that end-users trusted iML developed agents 

more, they did not explore if that trust would transfer to execution with a live robot.   

 

Virtual Environments and Serious Gaming 

The interactive approach used by the robotics community for development of robotic behaviors can be categorized as  

automatic programming (Biggs & MacDonald, 2003).  In Biggs and MacDonald’s A Survey of Robot Programming 

Systems, automatic programming allows for the robot to generate code from a variety of indirect ways.  The actions 

can be demonstrated or directed by a user in either live or simulated virtual environments (2003).  This approach can 

be applied in agent development of autonomous robots. 

 

Simulations and virtual environments are heavily embedded into the DoD services for developmental testing, 

wargaming, and training.  The Marine Corps utilizes virtual environments and simulations for individual, small-unit, 

and staff training (Telford, 2016).  Of the many benefits of training, two critical outcomes are: mission familiarity and 

the practice of battle drills (Headquarters Marine Corps, 1997).   

 

EXPERIMENTATON 

 

The DoD and USMC guiding concepts and the literature review drove us towards the exploration of trust within 

MUM-T, specifically with squad leaders within the Marine Corps Infantry Community.  With the DoD’s use of 

simulations and serious gaming for training, an approach that incorporated an agent’s development of autonomous 

behaviors within serious gaming was used.  Measuring the transfer of trust of the agent in a simulated environment to 

an autonomous robot’s execution of a task was planned to provide insights into the demographic’s cultural perspective 

towards technology, acceptance of autonomous systems, and best approach for autonomous behavior development.  

The proposed hypotheses of the research were: 

 

H1:  There will be a greater proportion of Marines who will choose to use the “autonomous” robot over “tele-operated” 

in iML vs aML condition.  (piML – paML > 0).   

 

H2:  There will be more indicators of trust for the iML than the aML conditions. (µiML – µaML > 0). 

 

Methodology 

 

Design 

We crafted an experiment to measure a human’s transfer of trust from a simulated to live environment for an unmanned 

autonomous teammate.  Additionally, a survey of the current force was conducted to identify the type of control they 

would want in their unmanned teammate.  The study was a “two-group dual-task paradigm designed to measure 

choice, trust indicators, and [STP]” (2020, p. v).  The control group, Group B-aML, conducted serious gaming to learn 
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the capabilities and limitations of an aML “off-the-shelf” robot while the experimental group, Group A-iML, trained 

the agent’s behaviors for the robot.    

 

Participants 

There were 40 Infantry Marine participants with ranks ranging from Lance Corporal to Sergeant.  As there is limited 

experience across the combat arms military occupational specialties (MOSs) in MUM-T operations, we provided a 

succinct foundation for the participants to understand the research domain and experimental environment.  Although 

we hosted the Marine Corps’ squad leaders on a Military Operations on Urban Terrain (MOUT) range, they were still 

leaving their primary training to take part in this experiment. The Marines we hosted were from the Advanced Infantry 

Training Battalion (AITB) East’s Advanced Infantry Marine Course on Camp LeJeune, NC.  Weather impacts in 

Camp Lejeune during the research week caused the experiment to shut down early, leaving us with a substandard 

sample size. 

 

Materials 

In our setup for the conduct of the experiment, we maintained a tactical immersion for the participants. The setup 

(Figure 2) contained two Alienware M51 Laptop Computers, one GoPro Video Camera, one set of Tobii Pro Glasses, 

one portable computer screen, one Microsoft X-Box 

controller, and two program of record “small, unmanned 

ground vehicles (SUGV)”. Our live tactical scenario 

environment included one cardboard box required for 

inspection in the tactical area, and two buildings: one to 

house the experiment and the other to be used as the 

objective building for room clearing.  Adjacent to the two 

buildings was the tactical assault position. The Marine 

participating had to decide when he would send a Fire Team 

from this position to continue towards their objective as part 

of the experiment.  

 

Procedures 

To start, participants completed a baseline assessment with 

an attention enumeration task (AET), a timed task for 

counting and entering the number of blocks seen on the 

screen. Once the AET was completed, the participant then 

played the serious game by controlling the SUGV avatar. 

The games differed based on the group assignment.  Group 

A-iML used the serious game to “train” the agent through a set number of repetitions of basic tasks.  Figure 3 shows 

a screenshot of the Group A-iML game.  Participants in Group B-aML were learning the robot’s capabilities in the 

simulated environment. Both groups played the game and were given the opportunity to decide whether they would 

want to teleoperate or use their form of autonomous behaviors (iML vs. aML) for the robot to perform the 

reconnaissance and room clearing task.  If they chose to teleoperate the robot, we artificially intervened by telling 

them that we were having issues with the remote control. This was one of three areas of deception required to execute 

this experiment. 

 

For the iML participant (Group A), we incorporated a second form of deception. When the Marine played the serious 

game, a researcher was studying and tracking his tendencies and trends within the game.  This allowed for that same 

researcher to manually operate the robot from behind the scenes during the execution of the live task. Although the 

robot was not autonomous and controlled in a Wizard of Oz (WOZ) like manner, we wanted to give the impression 

of autonomy and machine learning by mimicking the behaviors the participant displayed during game play.  The final 

form of deception was when a researcher would load the serious game data into the SUGV to drive its behaviors in 

the courtyard and in the building. The researcher used a batch file showing a false download of the data to simulate 

retrieval and upload to the SUGV. 

 

The aML participant (Group B) was also given the opportunity to select teleoperated or autonomous, but again the 

teleoperated option was not possible. Instead, the participant was told that the SUGV was “off-the-shelf” and 

controlled by code developed by a leading technology firm in Silicon Valley.  

Figure 2. Participant’s Workstation.  Source: 

(Yurkovich, 2020). 
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The WOZ would still control the robot for Group 

B-aML, but in this instance, the WOZ followed 

the same script for every participant in this group 

and did not try to mimic behaviors displayed 

within the serious game.  

 

During the actual reconnaissance and room 

clearing task, the participant was required to 

complete a second AET which served to replicate 

the secondary tasks a squad leader would execute 

during MOUT operations, such as cross boundary 

coordination and coordination of supporting 

arms.  We anticipated the participants would 

spend most of their time completing the task 

rather than looking at the screen showing the 

robot’s camera view. However, we made the 

camera available to the participant to check 

progress in the reconnaissance and clearing task and measured the number and duration of “looks” at this screen to 

serve as indicators of trust. 

 

Upon completion of the AET, live data collection ceased.  Participants were then asked if they would send their 

subordinate fire team across the courtyard and into the objective building, regardless of the status of the SUGV.  Once 

affirmation was received, the experiment ended, and the participant transitioned to completing the trust survey. 

 

Data Analysis 

 

Data compiling was completed for the AETs on the Presentation program while the eye tracking data utilized the 

Tobii Pro Lab’s Area of Interests functionality.  The data was sorted via python code for analysis in JMP.  For the 

comparison of choice, directly associated with H1, a one-sided Two-Proportions z-Test (α = 0.05) was planned for 

use, but was replaced by Fisher’s Exact Test due to not meeting the assumption requirement of 10 success and failures 

per option.  For H2, a mix of multivariate analysis of variance (MANOVA) and a Two-Sample t-Test were planned 

for, but the t-Test was replaced by the Wilcoxon Signed-Ranks Test (α = 0.05) due to non-parametric data.  Within 

the data for the AETs, the Robust Fit Test for Outliers with 2.5 standard deviations were used to identify outliers who 

failed to follow the directions for the AET.  For data recorded with the Tobii Pro Glasses, data was excluded for either 

degraded eye-tracking or looking exclusively at only the SUGV screen or AET during live execution as the data 

recorded as null for the comparison.  

  

Results 

 

Hypothesis 1 – Choice 

A Fisher’s Exact Test revealed there was “no 

significant difference in the proportion of 

Marines choosing to use the autonomous mode 

in iML (Group A) rather than the aML (Group 

B) approach with 63.1% (12/19) choosing 

autonomous mode for iML, compared to 42.9% 

(9/21) for aML (p = .167)” (Yurkovich, 2020, p. 

75).  A graphical comparison is shown in Figure 

4. 

 

Hypothesis 2 – Trust 

All data recorded for indicators of trust and 

secondary task performance fail to reject the null 

hypothesis.  A limitation to the data was the 

smaller than expected number of participants 

which prevented statistical significance on 

Figure 3. iML Serious Game.  Source: (Yurkovich, 2020). 

Figure 4. Choice Comparison. Modified from: 

(Yurkovich, 2020). 
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multiple tests.  Six behavioral aspects were measured while the attitude of trust was measured post execution with a 

randomized trust in automated systems survey (Gutzwiller et al., 2019; Jian et al., 2000).   

  

“Difference in Overall Time of Task” is a STP measurement as the difference in time to complete the baseline AET 

as compared to during the dual task condition where participants completed another AET while the SUGV executed 

its task.  A number closer to zero is desired.  “Glances at Robot” is a count for the number of times that a user looked 

at the SUGV during the dual task.  In connection with Sheridan’s 2019 research, fewer glances would indicate greater 

trust.  For the “Trust in Automated Systems” survey results, the negatively biased questions were inverted to match 

the positively biased questions.  A number closer to seven is desired.  Table 1 shows the consolidated statistics for the 

two sample test results.   

 

“Average ‘Look’ Time Duration” is the averaged time for each look at AET and SUGV screen.  Longer duration on 

the AET and lower on the SUGV screen is the desired outcome. Two different reactions times were recorded for each 

execution of the task: 1) as the AET recorded time to count the blocks (Initial Reaction Time) and 2) the time to enter 

the number (Input Reaction Time). An outcome closer to zero was desired.  Figure 5 shows the relationship of average 

look durations. Figure 6 shows the relationship of reaction times between the groups.  Table 2 shows the consolidated 

statistics for the MANOVA test results.   

 

 

Data Comparison Recording 

Input 

Test Results 

Group A 

(iML) 

Group B 

(aML) 

Comparison 

Difference in Overall 

Time of Task 

Presentation Wilcoxon Signed-

Ranks Test 

M = -92,876 

SD = 123,331 

M = -54,434 

SD = 77,451 

Z = -0.717,  

p = .47, d = 0.373 

Glances at Robot Tobii Pro Eye 

Tracking 

Wilcoxon Signed-

Ranks Test 

M = 37.18  

SD = 36.80 

M = 36.61  

SD = 27.34 

Z = -0.215,  

p = .82, d = 0.018 

Trust in Automated 

Systems 

Survey Two-Sample t-

Test 

M = 4.79  

SD = 0.181 

M = 4.96 

SD = 0.172 

t(38) = 0.669,  

p = .75, d = 0.211 

 

 

Data Comparison Recording Input Test Results 

Average "Look" Time 

Duration 

Tobii Pro Eye Tracking MANOVA F(1,25) = 0.804, p = .459, 𝜂𝑝
2 = .060 

 

Difference in Average 

Reaction Times 

Presentation MANOVA F(1,31) = 0.656, p = .526, 𝜂𝑝
2 = .041 

 

 

While the performance in the secondary task in the AET data tends toward greater trust in the SUGV for aML Group 

(B), the amount of time invested in “looks” does not.  All data is inconclusive in identifying a significant difference 

in performance and behaviors to indicate a greater amount of trust between groups.   

                                                                                        

Table 1.  Two Sample Test Results. 

Table 2.  MANOVA Test Results. 

Figure 6. Reaction Time Comparison. Modified 

from: (Yurkovich, 2020). 

Figure 5. Average “Look” Time Comparison. 

Modified from: (Yurkovich, 2020). 
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A significant difference was found between groups for time invested in the serious game to complete the exact same 

tasks.  In the serious game, Group A (iML) “trained” the SUGVs behaviors for autonomous execution while learning 

its capabilities and limitations by controlling the SUGV’s avatar; Group B (aML) strictly controlled the avatar to learn 

capabilities and limitations.  A one direction Two-Sample t-Test indicates “times were higher for iML – Group A (M 

= 1150, SD = 94.7) than for aML – Group B (M = 898, SD = 70.6), t(15.55) = -2.05, p < .029, d = 3.017” (Yurkovich, 

2020, p. 83).   

 

DISCUSSION 

 

Recommendations 

 

Unmanned Teammates 

The unmanned teammate should arrive to the unit in the same fashion as a newly minted graduate of the School of 

Infantry arrives at an infantry battalion.  The Marine possesses a baseline of techniques and procedures and is prepared 

to join a fire team.  The agent will be programmed with a baseline set of autonomous actions like obstacle avoidance, 

threat detection, and an understanding of basic infantry techniques and procedures.   

 

Elements that deliver the application of the techniques and procedures will be developed by the human.  In 2019, 

Marine Corps Captains Franco and Spada utilized Johnson et al.’s (2014) interdependence analysis framework to 

develop the responsibilities of a MUM-T for occupying a support by fire position.  Non-lethal decisions that were left 

to the unmanned teammate were:  position in formation, appropriate speed, and to avoid or proceed near an obstacle 

(Franco & Spada, 2019).  These decisions are situationally dependent and a simple response to this concern is for the 

human to control these parameters, but then the human is quickly relegated to a “controller,” thus defeating the aim 

of MUM-T.  As a young Infantry Marine would learn through training scenarios, so should the unmanned teammate’s 

agent.   

 

Through a training curriculum, the agent’s baseline tasks will be improved through training in a virtual serious game 

environment with an iML approach.  To maintain adaptability, the agent must be able to record its state and action 

spaces during live events to allow for a voice initiated after-action review.  While learning and adapting is a critical 

element for success on the battlefield (Headquarters Marine Corps, 1997), this AI enabled trait should only happen 

with the approval of the human.  Authorization would occur during tactical pauses or rest and refit operations after 

the agent demonstrates the new behaviors in a virtual environment.   

 

Use of Serious Gaming for iML 

The serious game developed for iML training should have three training modes.  The first will be for the human to 

control the robot to learn the physical capabilities and limitations of the system.  The second form is scenario-based 

virtual training where a human will control the human’s avatar, and an additional human will control the robot’s avatar.  

These scenario-based training events will serve as the example for supervised ML to replicate.  The third form is when 

both teammates fulfill their respective roles in the virtual environment.  Within this mode, the human will have the 

ability to provide positive or negative rewards to the agent to continue to refine its behaviors.  Additionally, the agent 

can develop expectations of the human during these iterations. 

 

While the human is not executing virtual training with the unmanned teammate’s agent, the agent will continue to 

execute ML algorithms to develop a better agent.  When the human logs in, the human will be presented with 

demonstrations of multiple ML evolutionary agents that were produced.  The human will then choose which agent to 

continue to develop, discarding the rest.   

 

A benefit of the curriculum style approach is that it keeps the human informed of the training the agent completed.  

This will prevent misuse and disuse cases in live execution.  Additionally, it will allow for the trust and “IKEA” effect 

that Gutzwiller and Reeder stated (Gutzwiller & Reeder, 2020), as shown by the significant difference in the amount 

of serious gaming time.     
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Implementation into a Marine Corps Infantry Battalion 

The limitations of training time and areas and fiscal considerations are the catalyst for developing the concept of how 

unmanned teammates will be implemented into a Marine Corps Infantry Battalion (Yurkovich, 2020).  Figure 7 shows 

the lifecycle of the unmanned teammate in day-to-day training and operations.  Beginning in the top-left, the team 

trains in the serious game as outlined above.  The agent is exported for use and brought to the RoboPool via the 

Transfer Agent Device (TAD).  The RoboPool is similar to the motor-pool and armory each infantry battalion 

maintains.  The robot is maintained and updated at this location.  In the top right of the figure, the team deploys to 

field for its live operations, either training or in support of the greater DoD mission.  The team operates with calibrated 

trust as the team has a shared understanding and mental model of each teammate’s capabilities and limitations.  After 

the live operation, the human provides a verbal after-action to the agent through a negative or positive reward 

comment.  As intelligence / operation cycle continues to develop the follow-on mission, an unmanned aerial vehicle 

is launched to capture data to 

develop an intelligence picture 

and adversarial actions.  In the 

bottom left, the S-2 – Intelligence 

Section compiles the 

environment and inserts 

adversarial agents to develop a 

serious game for the MUM-T to 

use for a rehearsal prior to 

execution.  If time permits, ML 

algorithms compile updated 

behaviors for the agent.  Once the 

operations are complete, the robot 

is returned to the RoboPool and 

the TAD is brought along with the 

human for continued training. 

 

Operational Testing 

Testing with Marines from the Fleet Marine Force (FMF) created an environment of shared learning between 

researchers and the Marine Corps’ future squad leaders.  To researchers, it reinforced the true purpose of the research—

providing the Marines at the tactical edge with the best we can conceive.  It showed the Infantry Marines that there 

are people genuinely interested in improving their advantage against our future adversaries.   

   

Future Work 

 

Experimental Redesign 

A follow-on experiment to this research should remove the option for choice between teleoperated vs. autonomous 

mode, place the participant in an environment with increased vulnerability, and include an autonomous agent playback 

portion. 

 

During the experiment, participants were provided the opportunity to choose if they would like to use the SUGV in 

teleoperated or fully autonomous mode to satisfy a hypothesis aimed at identifying the preference of current Infantry 

Marines.  A comparison of choice to trust survey results in a Two Sample t-Test did not reveal a significant difference, 

[“autonomous” mode (M = 5.04, SD = 0.168) to choosing “remote control mode” (M = 4.69, SD = 0.177), t(38) = -

1.47, p = .150, d = 0.373]; but the difference may indicate a bias.  We believe this possible trend exists for one of two 

reasons:  1.  As the remote control for teleoperated mode was “broken,” this may have degraded the trust in the system.  

2.  The participant’s trust was pre-established at a lower level and remained there for the duration of the execution.  

The lower level of trust may have driven the participant to choose the teleoperated mode.  A pre-experiment trust 

survey could possibly unearth the reasoning at the expense of biasing the participants as to the intent of the research.  

We recommend moving the choice to a survey question following execution with the autonomous mode.   

 

Lee and See establish that trust is dependent upon a situation’s “uncertainty and vulnerability” (2004, p. 54).  During 

our research, the participant created their own atmosphere of risk and uncertainty.  We relied on the participant’s 

motivation to do their best during the dual task paradigm.  Including a competition and an atmosphere for positive and 

negative rewards to the user in the next iteration of this research could improve the user’s requirement for trust. 

Figure 7. Conceptual Model for Implementation into an Infantry 

Battalion.  Source: (Yurkovich, 2020). 
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While the research team identified the need for a playback portion of the autonomous agent’s behaviors upon 

completion of the serious game, resource constraints prevented the implementation.  If a WOZ approach is used, 

multiple pre-recordings reflecting the different preferences of the participant’s trained behaviors could be pre-loaded 

for remote selection by the WOZ for playback. Ideally, future iterations of this research can develop an autonomous 

agent. 

 

Autonomous Agent Development 

A byproduct of this research was to gauge if the efforts to create an autonomous agent via an iML approach within a 

virtual environment to transfer to a real robot was a worthy endeavor.  It is expected to be a challenging future step.   

There are ML developed autonomous agents that have made the jump from simulation to real world (Wiggers, 2019), 

but the literature does not reveal any from an iML approach.   

 

A possible way to test with a similar demographic and begin to create a baseline dataset would be through a web-

based gaming application.  Participants could remotely log-in to execute the curriculum.  As a demonstration of the 

agent’s performance is required for approval and a calibration of trust, a positive or negative reward for learning 

should also be incorporated.  The U.S. Army’s Early Synthetic Prototyping environment, Operation Overmatch, aligns 

with this concept of web-based testing, recording, and evaluation and could serve as a future sandbox.   

 

Serious Gaming Environment Development 

Significant coupling between machine vision and modeling experts is required to create a serious gaming environment.  

Robotic experts acknowledge that simulations are valid for preventing wear on systems, but lack the fidelity to 

replicate the noise within the real world (Bingham, 2019).  The serious gaming environment for the iML approach 

would require the appropriate object classifications within both the simulated environment to match the machine vision 

algorithms.  Priority should be given to the objects that are part of the agent’s state of inputs and outputs, e.g. doorway 

and obstacle identification. 

 

CONCLUSION 

 

Motivated by bringing the best resources to our warfighters, this research aimed to understand the development of 

trust within a MUM-T and how it transfers from a virtual environment to real life based on differing approaches for 

autonomous behavior development (Yurkovich, 2020).  Though many of the results were not significantly significant 

due to the limited number of participants, we did find that the iML approach group invested more time in the serious 

gaming environment where they “trained” the agents behaviors while the counterparts strictly learned about the agent.  

This, in coordination with the non-significant trend in choice, creates an indication that Infantry Marines may prefer 

to use an autonomous teammate development through an iML approach.  There were no indications or trends on trust.  

Future research is needed for the continued exploration of the topic for the use of serious games and the iML approach.  

Those studies can then inform decisions and actions on how to best develop greater trust and efficiency with MUM-

T through aligned mental models and expectations of performance.   
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