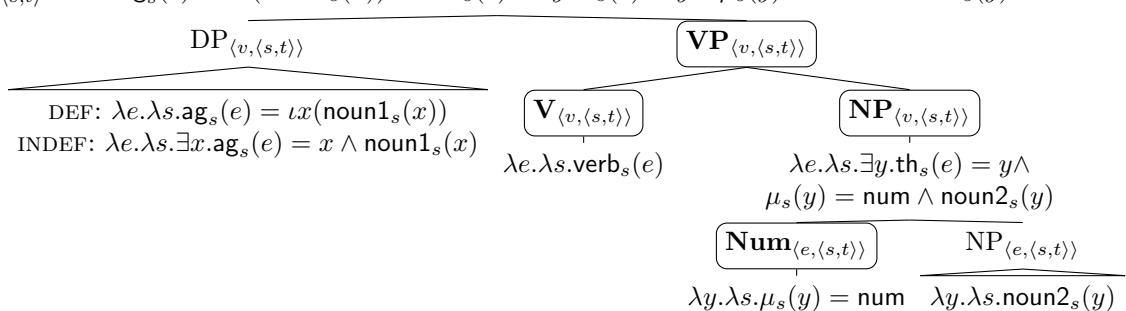


Unifying distributivity: A cross-linguistic account

Languages mark distributivity in morphosyntactically different ways. This paper proposes a unified semantics for distributivity with two related types: quantificational restrictor and anaphoric distributives.

Introduction Distributives involves some property (the SHARE) applying to individual parts of a plurality (the KEY). For (9-c), *the men* is the key, and *carried three suitcases* is the SHARE. Morphosyntactic differences in distributivity can be characterized based on two features: (i) morphological basis, (1), and (ii) constituency of the distributive construction, indicated by circled nodes in (8), where the distributive attaches. For example, English *each* comes from a determiner but has an NP constituent functioning as an argument in (9-a), an adnominal adjunct in (9-b), and adverbial adjunct in (9-c). Reduplication of numerals/predicates marks distributivity in Georgian, (11-a)–(11-c), which function as modifiers.


(1)	a. determiner/quantifier	English <i>each</i> (9-a), (9-b) – (9-c) ; Shan <i>lăj</i> (10-a), (10-b) – (10-c)
	b. numeral affix	Georgian (11-a), (11-b) ; Kaqchikel (13-a) REDUPLICATION
	c. verbal/predicate affix	Georgian (11-c) ; Maricopa <i>-xper</i> (12-a)–(12-b); Kaqchikel <i>-la'</i> (13-a)
	d. prepositional	English <i>two by two</i> (9-d)

Proposal Despite morphosyntactic differences, I propose distributivity can be captured using two distinct but related semantics: quantificational and anaphoric distributives, shown in (2). Both start as event/individual-type-flexible (2-a), but the anaphoric type (bold in (1)) first takes an anaphoric argument with a default-singular property (or non-singular as in Shan (10-b)). This requires that distributivity quantifies over minimal situations. I will assume an event semantics following Champollion (2016), except distributives combine with verbal arguments with theta role already specified. See (8) for basic semantics.

(2)	a. $\llbracket \text{DIST}_{\text{QUANT}} \rrbracket = \lambda \mathbf{Q}_{\langle e, \langle s, t \rangle \rangle} \cdot \lambda P_{\langle e, \langle s, t \rangle \rangle} \cdot \lambda e \cdot \lambda s \cdot \forall s' \leq s \exists e' [e' \leq e \wedge \mathbf{Q}_{s'}(e') \rightarrow P_{s'}(e')]$
	b. $\llbracket \text{DIST}_{\text{ANAPH}} \rrbracket = \lambda P_{\langle e, \langle s, t \rangle \rangle} \cdot \lambda e \cdot \lambda s \cdot \forall s' \leq s \exists e' [e' \leq e \wedge \exists \Theta \exists y \cdot \Theta_{s'}(e') = y \wedge \mu_{s'}(y) = 1 \rightarrow P_{s'}(e')]$

Below are derivations for Q-restrictor-type (English/Kaqchikel) and anaphoric-type (Shan/Georgian/Kaqchikel):

(4)	$\llbracket (9\text{-a}) \rrbracket = \lambda s \cdot \exists e [\forall s' \leq s \exists e' [e' \leq e \wedge \exists x \cdot \mathbf{ag}_{s'}(e') = x \wedge \mu_{s'}(x) = 1 \wedge \mathbf{man}_{s'}(x) \rightarrow \exists y \cdot \mathbf{th}_{s'}(e') = y \wedge \mu_{s'}(y) = 3 \wedge \mathbf{suitcases}_{s'}(y)]]$
(5)	$\llbracket (10\text{-b}) \rrbracket = \lambda s \cdot \exists e \cdot \mathbf{ag}_s(e) = \iota y \cdot \mathbf{students}_s(y) \wedge \mathbf{got}_s(e) \wedge \forall s' \leq s \exists e' [e' \leq e \wedge \exists \Theta, z [\Theta_{s'}(e') = z \wedge \mu_{\text{HUMANS}'}(z) = 3] \rightarrow \exists x \cdot \mathbf{th}_{s'}(e') = x \wedge \mu_{s'}(x) = \text{two} \wedge \mathbf{books}_{s'}(x)]$
(6)	$\llbracket (11\text{-b}) \rrbracket = \lambda s \cdot \exists e \cdot \mathbf{ag}_s(e) = \iota y \cdot \mathbf{men}_s(y) \wedge \forall s' \leq s \exists e' [e' \leq e \wedge \exists \Theta \exists z \cdot \Theta_{s'}(e') = z \wedge \mu_{s'}(z) = 3 \rightarrow \mathbf{solved}_{s'}(e') \wedge \mathbf{th}_{s'}(e') = \iota x \cdot \mathbf{problems}_{s'}(x)]$
(7)	$\llbracket (13\text{-a}) \rrbracket = \lambda s \cdot \exists e \cdot \mathbf{ag}(e) = \mathbf{b} \wedge \forall s' \leq s \exists e' [e' \leq e \wedge \exists \Theta \exists y \cdot \Theta_{s'}(e') = y \wedge \mu_{s'}(y) = 1 \rightarrow \mathbf{ate}_{s'}(e')] \wedge \exists x \cdot \mathbf{th}(e) = x \wedge \forall s' \leq s \exists z [z \leq x \wedge \mu_{s'}(z) = 3 \rightarrow \mathbf{tortillas}_{s'}(z)]$
(8)	Situation-anchored event-semantics skeleton $S_{\langle s, t \rangle} : \lambda s \cdot \exists e \cdot \mathbf{ag}_s(e) = \iota x (\mathbf{noun1}_s(x)) \wedge \mathbf{verb}_s(e) \wedge \exists y \cdot \mathbf{th}_s(e) = y \wedge \mu_s(y) = \mathbf{num} \wedge \mathbf{noun2}_s(y)$

Summary This brings morphologically distinct distributivity into a unified phenomenon using quantification over situations and type flexibility (event/individual). The property of events tied to the anaphoric component could be a thematic-role or property of places/times. It addresses differences between dependent numerals and pluractionals in Kaqchikel and can capture restrictions on determiner-derived distributives noted by Zimmermann (2002) and ambiguities noted by Gil (1982).

Unifying distributivity: A cross-linguistic account

(9)	English (Indo-European)		
a.	Each man carried three suitcases.	DET/QUANT, ARGUMENT	
b.	The men carried three suitcases each .	DET/QUANT, ADNOMINAL	
c.	The men each carried three suitcases.	DET/QUANT, ADVERBIAL	
d.	The men carried the suitcases, three by three/in threes .	PREPOSITION, ADVERBIAL	
(10)	Shan (Kra-Dai)		(Moroney, To appear)
a.	lukhén [sääm kô] läj laj pâplik sôj pâp student three CLF.H DIST get book two CLF.BOOK 'Each three students get two books.'	DET/QUANT, ARGUMENT	
b.	lukhén laj pâplik [sääm kô] läj sôj pâp student get book three CLF.H LAJ two CLF.BOOK 'Each three students get two books.'	DET/QUANT, ADNOMINAL	
c.	lukhén kaw kô tsý nân [sääm kô] läj laj pâplik sôj pâp student nine CLF.HUM PL that three CLF.HUM LAJ get book two CLF.BOOK 'Those nine students, each three get two books.'	DET/QUANT, ADVERBIAL	
(11)	Georgian (South Caucasian)		(Gil, 1982, 14-16,219)
a.	Orma k'acma sam-sami čanta c'aiyo two-ERG man-ERG three-DIST-NOM suitcase-NOM carried-3SG Two men carried three suitcases each.	NUMERAL AFFIX, NP-MOD	
b.	K'acebma amocanebi gamoicnes sam-samat men-ERG problems-NOM solved-3PL three-DIST-ADV (i) 'The men, in threes, solved the problems.' ¹ or (ii) 'The men solved the problems in sets of three problems.'	NUMERAL AFFIX, VP-MOD	
c.	K'acebma amocanebi gamoicnes prtxil-prtxilat men-ERG problems-NOM solved-3PL care-DIST-ADV 'Each man carefully solved the problems.' ¹ or 'The men carefully solved each problem.'	PREDICATE AFFIX, VP-MOD	
(12)	Maricopa (Yuman, Hokan)		(Gil, 1982, 14-16)
a.	?Ipač xvikk ?ii xmokxperm paayšík men-NOM 3-two-SG-SS stick 3-three-SG-DIST-DS 3-carried-DUAL-REAL		
b.	?Ipač xvikk ?ii xmokm paayxperšík men-NOM 3-two-SG-SS stick 3-three-SG-DS 3-carried-DIST-DUAL-REAL 'Two men carried three suitcases each.'	PREDICATE AFFIX, PRED.	
(13)	Kaqchikel (Mayan)		(Henderson, 2014, (105))
a.	X-e'-in-tij-la' ox-ox wäy. CP-A3p-E1s-eat-la' three-RED tortilla 'I kept eating the tortillas in groups of three.'	PRED/NUM AFFIXES, PRED./NP-MOD	

Select references. CHAMPOLLION, L. 2016. Overt distributivity in algebraic event semantics. *Semantics and Pragmatics* 9 • GIL, D. 1982. *Distributive Numerals*. United States – California: University of California, Los Angeles dissertation • HENDERSON, R. 2014. Dependent indefinites and their post-suppositions. *Semantics and Pragmatics* 7 • MORONEY, M. To appear. Question word distributivity. *Sinn und Bedeutung (Sub)*, v. 29 • SCHWARZ, F. 2009. *Two types of definites in natural language*. University of Massachusetts, Amherst dissertation • ZIMMERMANN, M. 2002. *Boys buying two sausages each: On the syntax and semantics of distance-distributivity*. Amsterdam, Netherlands: University of Amsterdam dissertation •

¹My paraphrases