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Opportunities for Productive Struggle

At the October 
W i s c o n s i n 
Mathematics 

Council’s Mathemat-
ics Proficiency for Every 
Student conference, 
I presented the fol-
lowing statement to 
teachers: 
Mathematics class-
rooms that promote 
students’ understand-
ing “allow mathematics 
to be problematic for 
students” (Hiebert, 
2003,  p. 54). 

There were many comments that came to my 
mind before teachers discussed this statement. 
These comments included, “Sometimes we feel 
the need to reduce student struggle by funnel-
ing questions that guide them to the answer,” 
and “Student frustration means I may have not 
given my students the tools they need to solve a 
task.” However, the actual discussion focused on 
the detriment to removing student struggle as it 
will diminish students’ opportunities to develop a 
deep understanding of  mathematics. The authors 
of  the recent publication by the National Council 
of  Teachers of  Mathematics, Principles to Actions: 
Ensuring the Mathematical Success of  All, state that, 
“‘Rescuing” undermines the efforts of  students, 
lowers the cognitive demand of  the task, and de-
prives students of  opportunities to engage fully 

in making sense of  the mathematics" (NCTM, 
2014, p. 48).  Equipped with these ideas, I posed 
the question, “How can we support students’ pro-
ductive struggle in mathematics by engaging them 
in tasks that help them make sense of  and con-
nect various mathematical concepts?”  In short, we 
wondered how we could, in keeping with Hiebert’s 
suggestion, create opportunities for mathematics 
to be problematic for our students. 
In Principles to Actions, the writing team highlight-
ed five critical teacher actions that could provide 
opportunities for engaging students in productive 
struggle. These five actions include:
•  Use tasks that promote reasoning and problem 

solving; explicitly encourage students to perse-
vere; find ways to support students without re-
moving all the challenges in a task.

•  Ask students to explain and justify how they 
solved a task. Value the quality of  the explana-
tion as much as the final solution.

•  Give students the opportunity to discuss and 
determine the validity and appropriateness of  
strategies and solutions.

•  Give students access to tools that will support 
their thinking processes.

•  Ask students to explain their thinking and pose 
questions that are based on students’ reasoning, 
rather than on the way that the teacher is think-
ing about the task. (NCTM, 2014, p. 49)

One strategy that I have found to be helpful in 
meeting these recommendations is to “open up” 
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Grade Traditional Open Ended Question 

Elementary What is 2 + 8? There are 10 students on the playground. Some are boys and some 
are girls. How many boys and girls could be on the playground? 
Use pictures, words and numbers. 

Find the area and perimeter of a rectangle with 
a length of 3 inches and a width of 8 inches. 

Find all the rectangles with an area of 24 square inches. What do 
you notice about their perimeters? 

What is 8 x 7? Convince somebody in two different ways how you know that  8 x 
7 = 56? 

In a relay, three kids ran a total of 1 mile. If 
each kid ran the same distance, what fraction a 
mile did each kid run? 

In a relay, three kids ran a total of 1 mile. What fraction of a mile 
could each kid have run?  Show two different ways using numbers 
and a visual fraction model. 

Middle 
School 

Find the volume and surface area of a 
rectangular prism. 

Construct two rectangular prisms with the same volume but 
different surface areas.  

 
 
 
 
 
High School 

Solve: ¾ + x/10 Jenn was solving a proportional relationships task and came up 
with the following equation. ¾ + x/10 
 
Explain two different ways to can solve the equation. Construct a 
story situation that Jenn could be solving. 

If x = 45˚, verify that 
sin(2x) = 2 sin x cos x 

Decide whether each of the following statements are true. Justify 
your reasoning: 
sin(2x) = 2 sin x 
sin5x = sin x5 

 
These tasks are designed to provide students with the opportunity to engage in high-level thinking by highlighting multiple entry 
points and solutions strategies as student problem solve and reason with mathematics. Throughout the school year, I challenge you to 
(a) create open tasks that will provide students with the opportunity to productively struggle and (b) share your results with other 
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Editors' Notes
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rsT his issue of  the Wisconsin Teacher 
of  Mathematics focuses on 
implementing high-level tasks 

that engage students in developing 
the habits of  mind outlined by the 
Common Core State Standards for 
Mathematical Practice (SMP). The 
tasks and activities discussed in the 
issue’s six articles help “describe 
varieties of  expertise that mathematics 
educators at all levels should seek to 
develop in their students” (NGA/
CCSO, 2010, p. 6). 
Three articles explore how to engage 
students in making sense of  problems and 
persevere in solving them (SMP #1). In 
the article, Dynamic Geometry Software 
Meets the Pythagorean Theorem, Gilbert-
son and Lawrence explore how stu-
dents can use GeoGebra, the free dy-
namic mathematics software program, 
to make conjectures and investigate 
their relationship to the Pythagorean 
Theorem. In Curiosity and the Coin 
Sword, Paape describes how to engage 
students in problem solving with an 
activity focused on noticing and won-
dering. Richards, in the article Exploring 
Cognitive Demand Online with the WMSI 
Fellows, describes an online course of-
fered through the Brookhill Institute 
of  Mathematics that provides teach-
ers with a cyclical process to identify 
and increase the cognitive demand of  
mathematical tasks.
Two articles provide activities in which 
students will model with mathematics 
(SMP #4) as they “solve problems 
arising in everyday life, society, and the 
workplace” (NGA-CCSO, 2010, p. 7). 
In the article, Making the Most of  Math-
ematical Modeling, Junko and co-authors 
analyze research to describe several 
recommendations for implementing 
this important practice standard in 
the mathematics classroom. Ebert’s 
article Engaging Our Students in Upper-
Level Mathematics: The Power of  Parabolas, 
is the first in a series of  articles that 
will focus on using real-world applica-
tions to engage students in meaning-
ful problem solving. In this first piece, 
Ebert discusses several real-world ap-
plications of  the parabola including 
headlights, the Olympic torch, and a 
mini-golf  hole. 

In the final article, As the Gear Turns, 
Reiten, Ozgur, and Ellis describe an 
activity that serves as a vehicle to in-
troduce ratio concepts by reasoning 
with rates of  change. In doing so, the 
authors provide insight into how to en-
gage students in reasoning abstractly and 
quantitatively (SMP #2) and constructing 
viable arguments (SMP #3).
There are several ways that you can be 
involved in writing for the Wisconsin 
Teacher of  Mathematics. We hope that 
you can share the exciting work that is  
happening in your mathematics class-
rooms by:
• Writing an article for the journal! We 
encourage submissions on a variety 
of  topics including classroom innova-
tions, teaching tips, action research, and 
reviews of  technology. For example, 
if  you implement mathematical tasks 
that are designed to engage students in 
doing mathematics as outlined by the 
eight Standards for Mathematical Prac-
tice, we would love to hear from you! 
• Submitting a note from the field 
(~250 words) in which you provide 
feedback on journal content, sound 
off  on current issues in education, or 
briefly highlight a classroom innova-
tion. Notes From the Field can be sub-
mitted using the following link http://
goo.gl/np0qpN 
 • Submit a piece that focuses on the 
use of  technology in the classroom, 
a project that you have used in your 
teaching incorporating technology, or a 
review of  technology that you use with 
students.
We hope you enjoy this issue and find 
the articles to be useful in your class-
room practice. If  you have an idea for 
an article or questions about submis-
sion, please contact us.
Joshua Hertel 
Jennifer Kosiak 
Jenni McCool

References
National Governors Association 
Center for Best Practices & Coun-
cil of  Chief  State School Officers. 
(2010). Common Core State Standards 
for Mathematics. Washington, DC: 
Authors.

traditional mathematical tasks 
so that my students will have 
the opportunity “for delv-
ing more deeply into under-
standing the mathematical 
structure of  problems and 
relationships among mathe-
matical ideas, instead of  sim-
ply seeking correct solutions” 
(NCTM, 2014, p. 48).  The 
table on the previous page 
presents a variety of  modi-
fied tasks for different grade 
levels.
These tasks are designed to 
provide students with the op-
portunity to engage in high-
level thinking by highlighting 
multiple entry points and so-
lutions strategies as student 
problem solve and reason with 
mathematics. Throughout the 
school year, I challenge you 
to (a) create open tasks that 
will provide students with the 
opportunity to productively 
struggle and (b) share your 
results with other Wisconsin 
mathematics teachers by writ-
ing a short piece for the Wis-
consin Teacher of  Mathematics! I 
look forward to furthering the 
discussion about how to pro-
mote students’ understanding 
through problematic math-
ematics.

Jenn
Jennifer Kosiak 
WMC President, 2015-2017
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53-61). Reston, VA: NCTM.
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of  Mathematics. (2014). 
Principles to actions: Ensuring 
mathematical success for all. 
Reston, VA: Author.
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On a recent trip to the Milwaukee Public 
Museum, I found myself  captivated by 
one of  the exhibits. This exhibit was one 

of  many fascinating items that I would see on my 
trip, but this piece was different. It truly piqued my 
interest and I had a whole host of  questions that 
immediately popped into my head. The item of  my 
intrigue was a 19th century coin sword from China 
(Figure 1). I had never seen anything like it before, 
and it got me thinking. 

Classroom teachers have a similar hope for their 
students. Teachers want our students to enter our 
classrooms and immediately be engaged and filled 
with wonder. We know that this kind of  engage-
ment and wonder does not happen by accident. 
We can help to foster the curious; we can create 
an itch that simply must be scratched. The coin 
sword was my itch, and I needed to scratch it. 

Curiosity and the Coin Sword
By Adam Paape, Concordia University

Figure 1. The coin sword.

What follows is my flow of  curiosity caused by the 
sword. A wonderful characteristic of  a “noticing 
and wondering” activity like this is that the learn-
ers lead the way for what they see as curious. This 
kind of  activity is one where student-generated 
questions are central and puts the learner at the 
heart of  the educational exchange. The develop-
ment of  student curiosity becomes the vehicle by 
which students develop conceptual understand-
ing (Colin, 2011).

My First Noticing and Wondering
I noticed that the sword was made of  coins. This 
is a simple observation. However, this knowledge 
led me to think about a follow-up wondering. 
I wonder how many coins make up the sword. 
Based on the picture, I made a couple of  follow-
up wonderings that would influence my estima-
tion. Is the sword the same on both sides? Are 
all the coins the same size? They appeared to be 
identical coins throughout the sword.

These initial wonderings led me to reach out to 
the museum to ask my initial question. How many 
coins are there in the sword? I got an immediate 
response through Twitter. The museum represen-
tative said, “We've checked with our experts, but 
can't give you an exact number. The number of  
coins varies from sword to sword. It's the thread 
on the swords, always red or yellow, that is used 
to impart the idea of  wealth and fortune.” At 
first I was dissatisfied with this response. How-
ever, as I thought about this within a classroom 
environment, my dissatisfaction began to subside. 
Too often in mathematics, we make it so that our 
students expect one exact answer. This one-an-
swer philosophy disallows for students to express 
ideas, theories, and different perspectives. The 
open-ended nature of  this activity encourages 
students to enter “into the mathematics conversa-
tion, from their vantage point, … to increase their 
confidence in doing mathematics” (Varygiannes, 
2013, p. 278). The attributes of  this sword allows 
students to think about methods and strategies 
for estimation that are useful in daily life. How 
often do our students ask the question, "When 
are we ever going to use this stuff?"  Teachers 
need to show their students that estimation and 
general number sense are an everyday skill for the 
functioning members of  society.

Since one of  our goals as math teachers is to fa-
cilitate meaningful mathematical discourse among 
students, an open-ended answer to the coin count 
is wonderful (NCTM, 2014). As students express 
their ideas of  the count of  the coins, a teacher 
is given the opportunity to have students pres-



Wisconsin Teacher of Mathematics, Fall 2015 5

Figure 2. A different coin sword.

Figure 3. A close-up image of  the second coin sword.

ent a logical method for their estimation process. 
Kazemi and Hintz (2014) have as their fourth 
principle of  classroom talk the idea of  teachers 
making sure that all students are sense makers and 
that student ideas are valued. Therefore, if  stu-
dent A says the sword has 50 coins and student 
B says the sword has 1,000 coins, a conversation 
of  method, justification, and reasonableness of  
answer should follow. 

The Continued Chain of Wonder
I cannot help but think of  some more questions 
in respect to this sword. I would ask students to 
come up with questions of  their own for which 
the answers would satisfy their curiosity. Here are 
my questions of  curiosity.

• How heavy is the sword?

• Was the sword designed to be art work?

• How big is the biggest coin sword ever made?

•  Are all the coins the same kind of  coin? Are 
there swords made up of  multiple kinds of  
coins?

•  How does the diameter of  the coin relate to the 
height of  the coin? 

•  What if  I made coin swords out of  pennies, 
dimes, nickels, quarters, and silver dollars, how 
would these swords relate to each other? How 
would the lengths of  the swords relate? How 
would the weights of  the swords relate? How 
would the value of  the swords relate?

•  How much yellow and red thread is woven 
through the sword? Is the length of  the yellow 
and red thread the same? Is it different? 

•  How does one make a coin sword? Where and 
how does one start the process?

This is just the beginning of  my list of  curiosity 
questions. Do you have any questions?

Another Sword and the  
Curiosity It Created
I did a little additional research on coin swords 
and found a posting where an individual was 
looking to sell a Chinese coin sword. Here are the 
images. This sword was sold for $50. What a deal! 
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However, more wonderful questions came to 
mind.

•  If  the entire sword is worth $50, how much 
would each individual coin be worth?

•  Is there any significance to the additional blue 
thread in this sword? 

•  In the close-up image, I can see that a square is 
cut out of  the middle of  the coins. How does 
this influence the weight of  the coin?

What do I notice?

•  I notice that the additional tassel piece in Fig-
ure 3 has some wonderful geometric attributes 
(symmetry, octagonal red pattern, eight central 
angles, the octagon is regular).

•  It appears that the tassel piece forms a 1, 4, 4 
pattern with the number of  coins. Is there an-
other single coin on the other side? Then the 
pattern is 1, 4, 4, 1. 

•  What if  the tassel piece added another layer of  
coins? What would the pattern be then? How 
many coins in the tassel piece with another lay-
er? Would the pattern become 1, 4, 6, 4, 1? Pas-
cal’s triangle?

A sword like this is a wonderful confluence of  
history, art, and mathematics. A certain power 
and authenticity come into play when multiple 
disciplines of  content are found within an activ-
ity. As a result, I look forward to my next trip to 
the museum with my family to find more curious 
artifacts. I am willing to bet that the mathematical 
applications will be intriguing and wonderful. 

Benefits of a Noticing and 
Wondering Activity
The benefits of  an activity focused on noticing 
and wondering is that every student can partici-
pate, regardless of  their current mathematical 
understandings. This sword and all of  the mathe-
matical possibilities it contains, allows all students 
to access the math. As Boaler (2015) has noted in 
reference to a successful math class, “(Students) 
talked of  many different activities such as asking 
good questions, rephrasing problems, explaining 
ideas, being logical, justifying methods, represent-
ing ideas, and bringing a different perspective to 
a problem” (p. 67). This activity is filled with all 
of  these qualities of  an engaging mathematics 
classroom. Moreover, a noticing and wondering 
activity puts the student as the leader in the edu-
cational venture. 
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Ratios, proportions, and linear relationships 
are among the essential concepts that stu-
dents study in middle school, making up 

the foundational ideas supporting students’ pro-
gression into more advanced mathematical topics. 
However, many students experience difficulties in 
developing a robust understanding of  these con-
cepts and making connections between them. Re-
search in mathematics education (e.g. Ellis, 2007; 
Smith & Thompson, 2007) suggests that students 
can develop a better understanding of  algebraic 
relationships when they reason about real-world 
quantities. Quantities are individuals’ conceptions 
of  measurable attributes of  objects or events, such 
as length, area, volume, or speed. Working with 
quantitatively rich contexts can allow students to 
explore a situation, investigate and make sense 
of  the relationships between quantities, and test 
conjectures. The Common Core State Standards 
for Mathematics (CCSSM) (NGA/CCSSO, 2010) 
also emphasize modeling quantitative relationships 
with mathematics. In this article, we present ex-
amples from a classroom implementation of  a unit 
called As the Gears Turn, in which students identi-
fied, explored, and represented linear relationships 
through studying gear ratios. 

We also highlight some of  the mathematical prac-
tices advocated in the CCSSM, which we observed 
during the unit’s implementation. Specifically, we 
focus on the following three mathematical prac-
tices: (a) Reasoning abstractly and quantitatively, in 
which students make sense of  quantities and their 
relationships in problem situations; (b) Modeling 
with mathematics, in which students identify impor-
tant quantities in practical situations, analyze their 
relationships mathematically, and interpret results 
in the context of  the situation; and, (c) Constructing 
viable arguments and critiquing the reasoning of  others, in 
which students justify their conclusions, commu-
nicate them to others, and respond to the argu-
ments of  others. 

The As the Gears Turn unit serves as an introduc-
tion for students to begin forming ratios, rates of  
change, and determining whether data are linear. 
Ultimately, the goal of  this unit is to help students 
understand that a relationship is linear if  the rate 
of  change of  one quantity compared to another is 

Students Engaging in Mathematical Practices:  
As the Gears Turn
By Lindsay Reiten, Zekiye Ozgur, and Amy Ellis, University of Wisconsin-Madison

constant. The examples of  student work that we 
share here come from an 8th grade mathematics 
classroom at a public school. The class worked on 
the unit for ten days. Students worked with physi-
cal gears, identified the relevant quantities (teeth 
and rotations), and explored the relationships be-
tween those quantities. They began with gears with 
simple teeth numbers: 8 teeth, 12 teeth, and 16 
teeth. As students progressed, they began to rely 
less on physical gears and shifted to new problems 
that included more challenging gear pairs, e.g., 
gears with 5 and 7 teeth, as well as describing and 
representing different types of  situations involv-
ing gear pairs. Below we share two tasks, Gears 
Task 4 and Gears Task 5, from the unit. These 
tasks occur at the beginning of  the unit, therefore 
the examples we share demonstrate how students 
are being prepared to meet the ultimate unit goal. 
We hope that teachers will find these tasks useful 
for enriching their own linear functions units. 

Prior Task Information
Prior to the tasks presented below, students spent 
time investigating the gears, exploring how the 
gears rotated, how to keep track of  the number 
of  rotations two connected gears make, and how 
to determine the relationship between the ratio 
comparing the number of  teeth on the connect-
ed gears and the ratio comparing the number of  
rotations the gears make, i.e., the reciprocal rela-
tionship between the “teeth ratio” and the “ro-
tation ratio.”  For example, the “teeth ratio” for 
gears with 8 and 12 teeth is 8:12, or 2:3, whereas 
the “rotation ratio” for this same gear pair is 3:2 
(meaning that for every three rotations the smaller 
gear makes, the larger gear will make 2 rotations).

The main goal for Tasks 4 and 5 (see Figures 1 
and 4) is for students to understand why the gear 
ratio, or the relationship between the numbers 
of  rotations two connected gears make, is always 
constant. Sub goals of  the tasks include: creating 
a ratio by forming a constant multiplicative com-
parison, understanding and generating equivalent 
ratios, and constructing a constant rate of  change 
by thinking of  infinitely many equivalent ratios. 
Additionally, these tasks begin to lay the founda-
tion for students to recognize that a relationship 
is linear when either Quantity A is always n times 
Quantity B or the ratio of  the change in A to the 
change in B is constant. 
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Gears Task 4
Task 4 presents students with two uniform tables 
(see Figure 1) and asks students to determine (a) 
whether all of  the entries in each table are correct, 
and (b) how the two tables relate to one another. 
Notice that the entries in Dottie’s table are cre-
ated by doubling the previous entry whereas the 
entries in Jesse’s table are incremental, in which an 
increase of  one half  a rotation for the small gear 
results in an increase of  one third of  a rotation for 
the big gear.  Both tables have affordances. Dot-
tie’s table is helpful for noticing the constant ra-
tio between the number of  rotations of  the small 
and big gears (i.e., 3:2), and Jesse’s table is helpful 
for highlighting the covariation of  the number of  
rotations that the small and big gears make (for 
every one half  rotation of  the small gear, the big 
gear rotates one third of  a full rotation).  

Figure 1. Gears Task 4.

Figure 2. Gus’s work for Gears Task 4.

Figure 3. Hope’s work for Gears Task 4.

Students worked on the task in small groups first 
and then discussed their ideas as a whole class. 
During the small group work time, students de-
veloped and shared several different explanations 
for why they thought the entries all came from 
the same gear pair. Up to this point students had 
been engaging in quantitative reasoning by identi-
fying the quantities involved in the task situation, 
i.e., teeth and rotations, and trying to make sense 
of  the relationship between these quantities. For 
example, Gus recognized the pattern in Dottie’s 
table, i.e., the entries are multiplied by 2 (see Fig-
ure 2), while Hope described the same pattern in 
terms of  the relationship of  the two gears spin-
ning together, i.e., they covary. Hope said that the 
entries were correct “[b]ecause each time the small 
gear turned 3 times the big gear turns 2 times...
and all of  them [the entries in the table] reduce 
to 3/2” (see Figure 3). Although Gus and Hope 
recognized different patterns, and thus provided 
different explanations, their teacher encouraged 
both students to share their ideas with their peers. 
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When discussing how the tables related to each 
other (Question 2), several students commented, 
“The tables were the same, just different num-
bers.” As demonstrated in the following excerpt, 
the teacher (Ms. L) encouraged students to model 
with mathematics and to construct viable arguments by 
pushing them to elaborate on their explanations 
and make connections to the gears context. 

Hope: Seems like the same thing.
Ms. L: Well that's important to notice, though. Some 
people don't notice that.
Hope: Can I just write like it's the same thing?
Ms. L: You can but then you have to justify why you 
know it's the same thing.
Hope: Because this term's the same.
Ms. L: So what about the numbers can prove your opin-
ion that it's the same thing? So when you say it's the 
same thing, what do you mean? 

Later on, 

Ms. L: It's not very clear about what is exactly the same, 
because it's not exactly the same. (Points to something on 
Hope's sheet.) Like these are different numbers.
Leo: The [ratio's the same].
Hope: [The ratio's the same].
Ms. L: Oh! OK. The ratio of  what? 
Leo: The fractions. Like the small to the-
Ms. L: -There you go. 

In Question 3 students are asked to come up with 
other pairs of  gear rotations that are not present 
in the tables. Asking students to generate equivalent 
ratios may help them understand that there are infi-
nitely many equivalent ratios, thus encouraging stu-
dents to reason abstractly. Teachers can then build 
on this understanding to help students understand 
that it is the constant rate of  change that defines 
linear relationships. However, it is important to note 
that students who can generate some new rotation 
pairs may not necessarily understand that they can 
create infinitely many pairs, or that each pair will rep-
resent the same ratio. Therefore, eliciting students’ 
ideas and asking them to justify their conclusions is 
an important part of  deepening their understand-
ing as well as supporting students’ abilities to reason 
abstractly and construct viable arguments. 

In Task 4, students know that each entry is sup-
posed to represent a pair of  rotations of  the same 
gear pair, but there is a possibility that Dotty made 

an error when keeping track of  the rotations. 
Therefore, in this task, students primarily devel-
op a strategy to check each entry. For example, 
students may try to check the entries by actually 
rotating the gears the amount given in the tables, 
rather than trying to find a structural relationship. 
Although this strategy works for the first three 
rows, the remaining entries become cumbersome 
to rely on physically rotating the gears. Thus, Task 
4 initially allows students to use concrete tools 
(gears) if  needed, but also pushes students to 
move beyond thinking with the concrete tools to 
think more abstractly, which is needed for Task 5.

Gears Task 5
In an effort to further extend students’ under-
standing of  the constant gear ratio, Gears Task 
5 (see Figure 4) presents a non-uniform table of  
rotation pairs, which encourages students to rea-
son abstractly and quantitatively. Although evalu-
ating whether all entries come from the same gear 
pairs (Task 5) and deciding whether each entry 
is correct (Task 4) require the same kind of  rea-
soning, the prompts may have a different feel for 
students. Tasks 4 and 5 both encourage students 
to construct ratios, however, Task 4 enables stu-
dents to initially use their gears (if  they choose) 
before necessitating the need for constructing ra-
tios, i.e., when students begin working with the 
larger numbers. On the other hand, there is more 
ambiguity in Task 5 because there is a possibility 
that some entries come from different gear pairs. 
The only way for students to know whether the 
entries come from the same gear pair is to de-
termine if  there is a constant ratio between the 
rotations that the small and big gear make. The 
prompt does not tell students to make a ratio, but 
the nature of  the task encourages them to form 
a ratio each time in order to determine whether 
each pair comes from the same set of  gears. 

Figure 4. Gears Task 5.
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Because the teacher encouraged students to share 
multiple solution strategies in Task 4, students 
were able to draw on their own understanding of  
concepts as well as insights gained from the class 
discussion to engage in later tasks. For example, 
although not directed to do so, several students 
applied a strategy Lewis shared for Task 4 as they 
worked on Task 5. According to Lewis, for Task 
4, he took “half  of  the smaller number and added 
it to the smaller” number and checked to see if  
it was equal to the larger number. Many students 
figured out that the entries in the table were from 
the same gear pair. For example, Neelam (see 
Figure 5) decided that each of  the entries came 
from the same gear pair by determining whether 
the number of  smaller rotations was 1.5 times the 
number of  the bigger rotations. She checked this 
relationship by dividing the number in the big col-
umn by two and adding it to the original number 
in the big column to get the number of  turns the 
small gear made.

Figure 5. Neelam’s work for Gears Task 5.

Figure 6. Students shared class discussion about Gears Task 5.

In contrast, rather than applying the strategy he 
shared before, Lewis “reduced” each gear pair to 
the ratio 2:3. Lewis divided the number in the big 
column in half  (which gave him his “2” in the ra-
tio) and multiplied by 3 (mentally) to see if  it was 
equal to the number in the small column. Since 
each gear pair “reduced” to the ratio 2:3, Lewis 
concluded that the entries came from the same 
gear pair.

Throughout the unit, the teacher continually en-
couraged students to share their ideas and to re-
flect on the ideas their peers had provided. For 
instance, during a whole class discussion, after a 
student shared how she used Lewis’s strategy, the 
teacher asked the class “Okay, why do you think? 

Progression of Tasks
Consistent with what others have advocated for 
(e.g., Day, 2015; Hiebert et al., 1997), the math-
ematically rich tasks in As the Gears Turn unit fos-
ter student reasoning by providing opportunities 
for: reflecting, communicating, and engaging in 
the mathematical practices advocated for by CC-
SSM. As the tasks progress, the prompts encour-
age students to rely less on the physical gears and 
reason abstractly as they work with more chal-
lenging gear pairs, e.g., gears with 5 and 7 teeth. 
The students were supported and encouraged (by 
the teacher and tasks) to model quantitative rela-
tionships with mathematics and to construct vi-
able arguments. For example, students identified 
important quantities in the gears context and the 
relationship between them, represented and con-
nected those relationships, and drew, shared, and 
justified their conclusions. 

Why, can someone explain why they think this 
makes sense? Either explain why it makes sense 
or ask a question about it.” The teacher then built 
upon the explanations students shared and asked 
if  students had any additional explanations for 
determining whether the entries were coming 
from the same gear pair. Eventually this discus-
sion led to students recognizing the reciprocal 
relationship between the teeth and rotation ratio 
(see Figure 6).
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Figure 7. Gears Task 20.

Additionally, the tasks build off  each other by 
continually reinforcing and extending concepts as 
students progress from tasks focusing on form-
ing ratios to tasks requiring the development of  
equations that represent various gear situations. 
For instance, the goal of  Gears Task 20 (see Fig-
ure 7) is for students to understand how to de-
termine the relationship between the rotations of  
the gear pairs for situations that can be modeled 
with y=mx and y=mx+b. Prior to this task, stu-
dents are introduced to y=mx+b situations by ex-
ploring contexts in which one gear rotates a num-
ber of  times on its own before the second gear 
joins it and then the gears rotate together. The 
task begins by having students determine whether 
all of  the entries in the table come from the same 
gear pair, and then asks students to justify their 
conclusion. These prompts are similar to the ones 
given in Gears Tasks 4 and 5. However, to further 
extend students’ thinking and build from previ-
ous tasks, students are now also asked to describe 
the gear situation(s) that might have generated the 
entries. Students may choose to describe the situ-
ation in words and/or algebraically, thus provid-
ing different possibilities for how to engage with 
the task. For students who are ready, the teacher 
may also encourage them to express the relation-
ship algebraically. 

Closing Remarks
The tasks in the As the Gears Turn unit require 
students to identify the quantities involved in the 
problem context and investigate and describe the 
relationships between the relevant quantities (the 
number of  teeth on each gear and the number 
of  rotations the gears make). With the support 
of  the teacher, the students engaged in various 
mathematical practices that are advocated for by 
CCSSM. The students reasoned abstractly and 
quantitatively as they made sense of  the quanti-
ties and the relationships between them, modeled 
with mathematics by analyzing the relationships 
between different gear pairs, and constructed vi-
able arguments to justify their conclusions, com-
municating their ideas and responding to each 
other’s arguments. We hope that mathematics 
teachers find the tasks and ideas shared in this pa-
per helpful for their own classrooms. We invite 
teachers to visit the following website, https://
sites.google.com/site/badgerellis/sparq, for the 
complete set of  tasks, along with a description of  
the goals of  each task, suggestions for implemen-
tations, and some alternative tables and tasks. 
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According to Cai, et al. (2014), "Mathemati-
cal modeling itself  is an essential skill that 
all students should learn in order to be 

able to think mathematically in their daily lives" (p. 
5). Because of  its connection to our daily lives, we 
believe that mathematical modeling develops and 
challenges the minds of  students in both the real 
world and the mathematical world. The Common 
Core State Standards for Mathematics (CCSSM) 
also includes mathematical modeling in the require-
ments for all levels of  mathematics. The CCSSM 
Standard for Mathematical Practice for modeling 
states, “Mathematically proficient students can ap-
ply the mathematics they know to solve problems 
arising in everyday life, society, and the workplace” 
(NGA/CCSSO, 2010, p. 7). Real world problems 
open students’ eyes to the fact that mathematics is 
in the world around them. 

In addition, CCSSM states that "modeling is best 
interpreted not as a collection of  isolated top-
ics but in relation to other standards" (2010, p. 
57). Here we see that mathematical modeling is 
given special status because CCSSM identifies it 
as both a mathematical practice and a content standard. 
What about mathematical modeling requires such 
special treatment? To address this question, we 
read and analyzed research about mathematical 
modeling as part of  a directed studies course at 
the University of  Wisconsin–Eau Claire (http://
www.uwec.edu). This article details the results of  
this work and offers recommendations from our 
findings. 

What is Mathematical Modeling? 
Mathematical modeling is a cyclic process of  us-
ing mathematics to represent and better under-
stand real world situations (Blum & Ferri, 2009; 
Hodgson & Harpster, 1997; Munakata, 2006). 
The process begins when a question is asked 
about the world outside of  mathematics (See 

Making the Most of Mathematical Modeling
By Ellen M. Junko, Kelsey M. Jensen, Nicole A. Brooks, Courtney L. Bliss, Andrew K. Bonlender, Peter 
Nugent, Jordon C. Stevens, Brent A. Witkowski, Meghan A. Ricci, Scott S. Spear, Christopher S. Hlas 
(PhD.), Sherrie Serros (PhD.)

Figure 1). After finding the essential features and 
variables of  the situation at hand, this problem is 
then translated into mathematical terms and en-
ters the "math world" (Ang, 2010). Next, math-
ematical computations and analyses are applied to 
the mathematised problem. Before bringing the 
model back into the real world for reporting, the 
solution must be validated. If  the answer is not 
reasonable, then from the validation step, one can 
go back to any previous step to determine how to 
address the issues.

Figure 1. The process of  mathematical modeling (based on class discussion).

The process described sounds like a combina-
tion of  other mathematical techniques, such as 
problem solving and applications. As a result, one 
question our class asked was, "What are the differ-
ences between modeling, problem solving, and ap-
plications?" Applications can typically be found at 
the end of  a chapter. They are carefully defined so 
students can apply recent computation techniques, 
typically in a forced context. Problem solving in-
volves non-routine problems that are well-defined 
and typically have a specific solution. Modeling, 
however, involves open-ended problems that of-
ten do not have all relevant contextual informa-
tion (see Figure 2 for examples). 
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Figure 3. Relationships between problem types (based on class discussion).

Figure 2. Problem type descriptions.

Our conclusion is that mathematical modeling in-
cludes aspects of  problem solving (the process) 
and applications (contextual situations), which is 
why it can be difficult to distinguish between the 
problem types (see Figure 3). Further, the model-
ing process allows students to expand their think-
ing in ways that general problem solving or appli-
cation activities would hinder (Verschaffel & De 
Corte, 1997).

Why is Mathematical Modeling 
Important? 
In addition to the inclusion of  mathematical 
modeling in CCSSM, there are several other rea-
sons for implementing mathematical modeling. 
For example, modeling can promote students’ 
curiosity through real world problems such as the 
following: "A school needs to replace two flag-
staffs because they are aging. The two flagstaffs 
need to be measured (they are different lengths). 
Please provide a manual that tells us how to mea-
sure the length of  any flagstaff" (Kang & Noh, 
2012, p. 11). By posing real world problems that 
might relate to the students such as this, teach-
ers have a less difficult time motivating students. 
Further, the test of  the solution to the previous 
problem can be done by measuring the actual 
height of  the flagstaff  rather than checking the 
back of  the book. Thus, the curiosity and real-life 
application that mathematical modeling elicits can 
create a better learning environment for students 
and teachers alike.

Along with this new curiosity, the fear of  failure 
can also cause some students to shy away from 
modeling, or mathematics in general (Hodgson & 
Harpster, 1997). Failure in school is terrifying to 
students, teachers, and administration alike, but 
mathematical modeling encourages perseverance 
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however, involves open-ended problems that often do not have all relevant contextual 

information (see Figure 2 for examples).  

 Key features  Examples 

Exercises Computation without context. Allows 
students to practice techniques for long-term 
retention. 

Let x+5=7. Solve for x. 

Applications Exercises with guided context. Encourages 
students to find patterns in exercises with real 
world context to encourage near/far transfer. 

Gladys and Prudence have seven 
watermelons together. If Gladys has 5 
watermelons, how many watermelons 
does Prudence have? 

Problem 
Solving 

Non-routine problems. Provides students 
practice understanding problems without a 
specific solution technique. (Note: Once a 
student solves a problem-solving problem, it 
can become routine. Our example is likely 
routine for a student in calculus, but novel for 
a pre-algebra student.) 

Three pumpkins and two cantaloupes 
weigh 32 lbs. Four pumpkins and three 
cantaloupes weigh 44 lbs. What is the 
weight of two pumpkins and one 
cantaloupe? 

Modeling Cyclic process of using mathematics to 
represent and better understand real world 
situations. Enables students to ask 
mathematical questions and find 
mathematical solutions to real world 
problems. 

“The floor plans of airline terminals vary 
widely in design and are quite dissimilar. 
Which design is optimal for operations? 
Develop a mathematical model for 
airport design and operation. Explain 
how it would operate” (Munakata, 2006, 
p. 31). 

Figure 2. Problem type descriptions. 

 

Our conclusion is that mathematical modeling includes aspects of problem solving (the 

process) and applications (contextual situations), which is why it can be difficult to 
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(CCSSM, 2010, p. 6). Modeling encourages stu-
dents to try many different approaches when one 
approach does not work, and it encourages stu-
dents to work outside their comfort zones (Ang, 
2010). If  a modeling mentality is learned within 
mathematics classes, students may be less afraid 
to fail or try different approaches in other disci-
plines and after their schooling years.

Mathematical modeling also allows students to 
have more control over their learning (English, 
Fox & Waters, 2005) for several reasons. First, 
students are encouraged to ask their own ques-
tions. Problem posing creates a mind that is not 
told what to do, but instead a mind that is limit-
less with questions and possibilities (Ang, 2010). 
Second, mathematical modeling allows students 
to devise their own solutions, which promotes the 
valuable skill of  drawing from one’s own knowl-
edge to find a solution.

Yet another benefit is that mathematical model-
ing can encourage interdisciplinary approaches 
and co-teaching (Cai, et al., 2014). For example, 
a mathematical modeling problem that prompts 
students to predict the frequency, velocity, and 
size of  a hurricane requires knowledge of  both 
hurricanes and the mathematical equations that 
go along with the involved science (English, Fox, 
& Waters, 2005). Incorporating mathematics with 
other subjects not only allows for the learning of  
two subjects at once, but it also shifts the focus 
from mathematics to another topic. For some 
students, this shift could make a task more inter-
esting and less intimidating. Overall, the interdis-
ciplinary nature of  mathematical modeling leads 
to all varieties of  thinkers being able to succeed 
(Kang & Noh, 2012). 

Challenges for Teachers in 
Mathematical Modeling
Despite the many benefits, there are some bar-
riers to using mathematical modeling in class-
rooms because modeling requires a lot of  student 
involvement and input. Blum and Ferri (2009, p. 
54) alluded to some potential difficulties a teacher 
might encounter in a modeling activity:

1.  Maintaining a balance between student control 
and minimal instruction;

2.  Knowing different methods of  intervention 
for helping students throughout the modeling 
process; and,

3.  Presenting concepts to students using various 
models.

Along with these difficulties, our class discussions 
prompted us to add more challenges to the list:

4.  Maintaining consistent grading that still pro-
motes independent thought from the students;

5.  Choosing problems that are meaningful to 
the students, while still providing worthwhile 
mathematical content; and,

6.  Planning how students will use technology, if  
needed, as a tool. 

How Can We Overcome the 
Challenges? 
Despite the many challenges modeling can pose, 
we believe it is worthwhile and can improve a stu-
dent’s education both in mathematics and other 
disciplines (Sole, 2013). Therefore, understanding 
how we can overcome the challenges and teach 
mathematical modeling is the next step. Before 
diving into a modeling activity, it is crucial for a 
classroom dynamic centered around group work to be es-
tablished. According to a study done by Kaiser 
(2005), students value working in groups during 
the modeling process because they are able to cri-
tique their ideas and methods as a group, allow-
ing them to move through the modeling process 
more fluently. Thus, developing a classroom that 
is welcoming to group work may make mathemat-
ical modeling easier for students.

The next step is to develop or find mathematical 
modeling problems that are meaningful to the students. 
Understanding who students are and what inter-
ests them is important to the modeling process. 
A teacher must ask questions that are meaningful 
to the students so they are motivated to find so-
lutions. Ang (2010) provides an example of  how 
a teacher can design a problem that is related to 
students’ lives by constructing a modeling activ-
ity that asks if  the flood protection mechanism 
at their school was efficient in casting off  heavy 
rainfall or not. With mathematics, students were 
able to discover the best location to place the wa-
ter catching mechanism. Finding problems similar 
to this one, where students can make a difference 
with their answer, is an important motivational 
tool that teachers can utilize when developing 
questions for mathematical modeling.  

As the teacher, it is also important to encourage 
different ways of  going about problems. As discussed 
earlier, mathematical modeling is a process de-
signed for multiple answers and multiple ways of  
thinking. According to Blum and Ferri (2009), in-
dividual routes and multiple solutions should be 
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encouraged, which requires the teacher to have a 
very thorough understanding of  the content. If  a 
teacher has one way of  going about a problem in-
grained in their mind, different methods could be 
disregarded. Thus, it is important for the teacher 
to keep a flexible mind and be prepared to see 
many different methods.

In addition, it is important for teachers to relinquish 
some control to the students. Blum and Ferri (2009) ex-
plain that, “When treating modelling tasks, a per-
manent balance between maximal independence 
of  students’ and minimal guidance by the teacher 
ought to be realised” (p. 54). Letting students cre-
ate their own models while providing them with 
the tools to succeed is a delicate balance required 
for mathematical modeling.

As noted earlier, the cyclic nature of  mathematical 
modeling is a key feature of  the process. How-
ever, students are not likely to follow this cyclic 
format without guidance. Verschaffel and De 
Corte (1997) presented one approach to encour-
age validation of  a mathematical model. Students 
were presented with four questions that involved 
the same arithmetic operation but yielded differ-
ent answers due to the real-world context. In the 
end, students responded with comments such as, 
“The most important thing is that once you have 
finished the computational work, you still have to 
adapt the answer to the situation” (Verschaffel & 
De Corte, 1997, p. 591). This activity encouraged 
cyclical thinking by having students discover its im-
portance themselves.

Encouragement for validating answers can also provide 
guidance in cyclical thinking. Questions such as 
“Does this make sense?” greatly impact a stu-
dent’s thought process by making them pause to 
question their work instead of  just stopping at the 
answer. Being able to reflect on and pose ques-
tions about their work is an important skill for 
students to learn. As students become more com-
fortable with validation, they will begin to validate 
without being prompted (Kaiser, 2005). Another 
approach can arise from the idea of  teaching fail-
ure. Kaiser (2005) notes that students should “ex-
perience the feelings of  uncertainty and insecu-
rity, which are characteristics for real applications 
of  mathematics in everyday life and sciences” (p. 
4). Not only are these feelings realistic, but they 
are important for being comfortable question-
ing, validating, and modifying models. One of  
the reasons validation is important is that it is not 
realistic to assume one’s first attempt at a model 
is completely accurate. Therefore, students must 
become comfortable not getting everything right 

on the first try. One idea for building this comfort 
is engaging students in modeling activities that 
produce unexpected results. This, in turn, helps 
develop a cautious attitude in students (Hodgson 
& Harpster, 1997). 

Assessment
Mathematical modeling can be a challenge in 
terms of  assessment because many times there 
are not distinct right or wrong answers. To assess 
these problems for their value in a system, peer 
evaluation is helpful. For example, when students 
can describe their mathematical model to their 
peers, they are demonstrating a deeper under-
standing of  the modeling process (Verschaffel & 
De Corte, 1997). In addition, teachers can work 
together with other colleagues in the depart-
ment, or outside of  the department, to provide 
collaborative feedback. Such feedback can help 
the models be more valuable to a child’s learning 
(Munkata, 2006). Kang and Noh (2012) provide 
the following suggestions for rubric criteria:

•  Accuracy - does the output of  the model pro-
vide correct or near correct results based on the 
question and assumptions?

•  Descriptive realism - are essential features and 
appropriate assumptions the basis for the model?

•  Precision - does the model predict discrete num-
bers (or other definite kinds of  mathematical 
entities: functions, geometric figures, etc.) or an 
imprecise range of  numbers (or a set of  func-
tions, a set of  figures, etc.)?

•  Robustness - how does the model handle errors 
or outliers in the input data?

•  Generalizable - does the model apply to a wide 
variety of  situations?

•  Fruitfulness - are the model's conclusions useful 
or do they encourage the use of  other models? 
(p. 3)

For example, when looking at the airline terminal 
problem presented in Figure 2, the idea of  accuracy 
may be the number of  planes that are able to fit in 
the given area or the number of  people that they 
can move in and out of  the airport terminal. De-
scriptive realism may refer to the design the students 
choose to make their terminal. Precision may be 
being able to measure exactly how many planes 
the students can fit in their design. Robustness 
could be assessed by looking at whether planes 
might crash into each other entering or leaving. 
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Generalizable may show that the students have 
planned for more than one situation that could 
occur in the terminal. Fruitfulness would be if  solu-
tions could be applied to other airport terminals. 
There are many ways that the students could go 
about thinking of  this problem. These are just a 
few of  the options that could be included when 
looking at the problem and could be used as the 
basis for a rubric to ensure completeness in a stu-
dent’s model. 

Conclusion
There are several ways that mathematical model-
ing can be taught. There are different techniques 
that may work better than others. To summarize 
and extend the above text, we have created the 
following quick tips (Figure 4).

In conducting our research, our group had many 
discussions regarding what is and what is not 
mathematical modeling. In the end, we decided 
that two criteria would separate mathematical 
modeling from other types of  mathematics prob-
lems. First, mathematical modeling is a cyclic pro-
cess that requires iteration (or revision) of  ideas. 
Students must not think that their first attempt 
necessarily yields their final answer. Second, it is 
important that the process begins with student 
questions about the real world. 

Having addressed the benefits and challenges, the 
final big question for our group was to think about 
how modeling might look in a classroom. When 

and how to structure modeling activities within 
a lesson or unit depends on the structure of  the 
course and the goals of  the modeling activity. In-
terdisciplinary courses, or school-wide thematic 
units in which mathematics and other courses are 
fully integrated, appears to be a natural course 
structure to promote modeling (Cai, et al., 2014). 
If  interdisciplinary collaboration is not possible, 
then integrating real-life problems into each lesson 
could be used to motivate mathematical content 
(e.g., Coxford et al. 2003). Less integrated forms 
of  modeling include: an "end of  class" idea where 
modeling is used to review and apply recently 
learned mathematics material, including small 
projects within a class that seem totally separate 
from regular curriculum, and separating math-
ematics and modeling into distinct courses.

Through the semester, we created a Google Doc 
to collect real-world problems that might make 
good modeling problems. We end with some pos-
sible prompts to encourage mathematical model-
ing in your classroom:

• Should UW–Eau Claire build a parking ramp?
•  If  you open a gallon of  milk before its “sell by” 

date, how long before the milk goes sour? Does 
it depend on how many times you remove it 
from the refrigerator or the temperature of  the 
refrigerator?

•  How far away should trash cans be? (Walt Dis-
ney reportedly did this for Disney Amusement 
Parks)

Figure 4. Quick tips.
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•  How can you predict whether or not there will 
be room for you on the bus?

• How are sale prices computed at a grocery store?
• How fast could Ebola spread in the US?
•  What should you pick for paper, rock, and scis-

sors? (best two out of  three)
Good luck, and happy modeling!
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Two middle school students from different 
classes were having a conversation near a 
classroom door about their recent lesson 

on the Pythagorean Theorem from different teach-
ers. Charlie was telling Horace, “It’s pretty simple, 
it’s just a2 + b2 = c2.” Horace inquired, “Doesn’t 
it matter what a, b, and c are?” Charlie responded, 
“No, you just need to find the answer, as long as 
you know square roots, it’s easy.” This brief  con-
versation really illuminated some common student 
issues. This made us wonder if  Charlie had any 
sense of  how to apply the Pythagorean Theorem 
except in neatly packaged practice problems, and 
whether he had any intuition of  why the Pythago-
rean Theorem works beyond the numerical calcula-
tion. Most troubling, Charlie’s perspective on this 
theorem is likely more typical in mathematics class-
rooms—that the Pythagorean Theorem is simply a 
way to practice calculations that are more sophisti-
cated than linear equations. 

The Pythagorean Theorem holds a unique place 
in mathematics. It is one of  the earliest examples 
in the middle grades curriculum where students 
have the opportunity to engage in a complex al-
gorithm that has been around for thousands of  
years. It is a beautiful example of  the relation-
ship between numeric quantities, and geometric 
lengths and areas. Young students can understand 
and apply the relationship, yet extensions are suf-
ficiently rich to engage mathematicians for centu-
ries (see for example Wiles, 1995). Its presence is 
so ubiquitous in society that numerous references 
exist in pop culture from the Scarecrow in the 
Wizard of  Oz (Leroy & Fleming, 1939) to a Sha-
quille O’Neal press conference (Getz, 2011). Yet, 
testing data (National Center of  Education Sta-
tistics, 2009, 2011) and classroom practice have 
highlighted issues with students’ ability to apply 
and understand this theorem appropriately. In this 
article, we share some of  the issues that we have 
noticed in our own teaching of  middle grades and 
high school mathematics, and explore one activity 
that proved useful in developing a stronger under-
standing of  the Pythagorean Theorem. 

Dynamic Geometry Software Meets  
the Pythagorean Theorem
By Nicholas J. Gilbertson & Kevin Lawrence, Michigan State University

Issues with Understanding the 
Pythagorean Theorem
It always came as a surprise to us that after stu-
dents had solved problems in the unit or lesson 
on the Pythagorean Theorem that they were less 
consistent in future units with being able to (a) 
identify situations where the theorem could be 
correctly applied, and (b) correctly apply it. These 
types of  issues were mostly related to misapplica-
tion of  the formula. In some cases, this meant 
that students would not recognize that given two 
sides of  a right triangle, that the third side could 
be found using the Pythagorean Theorem. A sec-
ond related issue is confounding the variables by 
treating a leg as the hypotenuse in the formula, 
such as in the student error given in Figure 1 be-
low.

Figure 1. A common student error.

A second set of  issues relate mostly to students 
understanding the Pythagorean Theorem and its 
limitations. For example, some students have a 
difficult time understanding the relationship be-
tween a geometric representation of  the theorem 
and its algebraic-symbolic representation (see 
Figure 2) that goes beyond simply being able to 
calculate values. Some students may also over-
generalize the theorem to include all triangles, 
not just right triangles. These last two issues are 
particularly problematic if  students are going to 
understand meaningfully a proof   of  the Pythag-
orean Theorem, which relies on a right triangle, 
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Figure 2. Relating the geometric and symbolic representations

and understanding areas of  squares in relation to 
side lengths. These ideas are also important for 
understanding the converse of  the Pythagorean 
Theorem, that is, if  ∆ABC (where a < b < c) has 
the relationship that a2 + b2 = c2, then ∆ABC is a 
right triangle.

	  

b2	  

a2	  

c2	  

a2	  +	  b2	  =	  c2	  
	  

To limit the difficulties related to understanding 
and misapplication of  the Pythagorean Theorem, 
the first author created an activity for his students 
to investigate this topic. In relation to mathemati-
cal practices, this task focuses primarily on the first 
Standard for Mathematical Practice (NGA-CCS-
SO, 2010): Make sense of  problems and persevere in solv-
ing them. In this task, students actively consider the 
relationship between the general theorem and spe-
cial cases by conjecturing and investigating their 
conjectures. In relation to content, the broad goals 
for students were to have some enduring under-
standing of  the Pythagorean Theorem where they 
can (1) identify a situation and know how to apply 
it correctly and (2) have an intuitive sense of  why 
the theorem works. By “enduring” we mean that 
students are able not only to solve problems within 
a particular unit where the Pythagorean Theorem 
is the focus of  a lesson, but also perform well on 
problems involving this topic in future units and 
coursework. Put together, these goals will hope-
fully position students to restrict the theorem to 
only right triangles and better understand a proof  
of  the theorem. 

The Task
The mathematical task described in this section 
uses GeoGebra (GeoGebra.org), a free online 
dynamic geometry software program . There are 
many benefits in using GeoGebra in this prob-
lem context. First, the software can help students 
see multiple cases quickly and efficiently. Second, 
it allows students to focus on relationships they 
notice without being burdened by calculations 
because GeoGebra will calculate values such as 
areas of  squares. Third, it provides a venue for 
students to independently explore and extend 
what was discussed as a whole class. 

This lesson makes use of  the Launch-Explore-
Summarize (Lappan et al., 2014; Shroyer & 
Fitzgerald, 1986) format of  mathematics instruc-
tion. In this format, the teacher launches the prob-
lem by introducing students to the context with 
a whole-class discussion that promotes student 
talk about both the mathematics and the context. 
Next students independently, or in small-groups, 
explore the problem. During this time the teach-
er is monitoring students as they work, observ-
ing how they are solving the problem and asking 
probing questions (Smith & Stein, 2011). Finally, 
the teacher summarizes student thinking by con-
ducting a whole-class discussion based on how 
students thought about and solved the problem. 
In this lesson, GeoGebra is used in two ways, as 
part of  the whole-class discussion and as part of  
independent exploration .

Launch
The lesson begins with students looking at the 
following image. The class is asked to be as de-
scriptive as possible with all relevant information 
they see on the screen in Figure 3. For example, 
students may notice the particular areas of  the 
three squares, or the measure of  the angle. They 
may also see the text above the figure that de-
scribes the combined areas of  the squares. Other 
students might notice the dashed semi-circle or 
the white triangle that shares a side with each of  
the squares. 
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Figure 3. Launching the problem.

Figure 5. Moving point F further counterclockwise.

Figure 6. Equal areas of  squares.

Once students have described as much as they can 
about the figure, point F (the upper left corner of  
the blue square) can be moved along the path of  
the semi-circle. Ask students, “If  we move point 
F counterclockwise a little bit, what do you think 
will change about the figure and what will stay 
the same?” Students will have a variety of  conjec-
tures. Figure 4, shows this movement of  point F. 
Of  note is that the measure of  FED increased 
from 25o to 40o and the area of  square FGHD 
increased to approximately 7.49 square units. The 
areas of  the other two squares remained the same, 
however, because EF and ED are both radii of  
the semi-circle.

Next, ask students what would stay the same and 
what would change if  point F is moved further to 
the left along the path of  the semi-circle. Again, 
students will have a variety of  conjectures. Fig-
ure 5 below shows this movement. Similar to the 
last case, the two red squares have the same areas, 
the measure of  FED increased, and the area of  

An important relationship to notice at this point 
is that the area of  the blue square is less than the 
area of  each red square when the measure of   
FED was smaller (such as in Figures 3 and 4). 

In contrast, the area of  the blue square is greater 
than area of  each red square for a larger measure 
of  FED (such as in Figure 5). One question to 
have students explore at this point is: Is it possible 
for all three squares to have the same area? If  so, where 
would this occur? This equivalence occurs when 
∆FED is equilateral as in Figure 6.

the blue square increased. At this point, students 
should have a general sense of  what aspects of  
the figure will stay the same and what will change 
when point F is moved on the semi-circle.

Figure 4. Moving point F counterclockwise.
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Figure 7. The right angle case.

The purpose of  this question is to support stu-
dents as they explore relationships between areas 
of  the squares. When the first author taught this 
lesson, students were able to determine quickly 
that there would be only one situation where the 
areas of  the three squares were identical. Students 
were then asked, “As point F moved along the 
semi-circle, the combined areas of  the two red 
squares has always been 32 square units. Is there 
a location for point F, where the area of  the blue 
square will also be 32 square units? If  not, why 
not? If  so, where should point F be located, and 
how many different locations will result in an area 
of  32 square units?” These follow-up questions 
are less intuitive, but more important for under-
standing the Pythagorean relationship.

These questions generated a fair amount of  dis-
cussion as students talked with their peers in 
small groups and with the whole class. Although 
some students conjectured that there was no way 
to guarantee that a square with area of  32 square 
units existed, a typical conjecture was that the 
square should exist because the area grew con-
tinuously as F moved around the semi-circle. Ad-
ditionally, the area of  the blue square was occa-
sionally (as in Figure 6) less than 32 square units, 
and was at other times (as in Figure 5) greater 
than 32 square units. Only a few students had any 
idea where equality might occur, with even fewer 
students conjecturing that the relationship would 
hold true when FED was a right angle. Point F 
was moved slowly around the semi-circle until 
students saw the relationship given in Figure 7.

At this point, it may be easy to think that the les-
son is finished, because students have discovered 
the Pythagorean Theorem. What can be general-
ized from this figure, however, is not that clear. 
Figure 7 indicates that the relationship holds true 
in the case of  an isosceles right triangle where 
both legs are 4 units long. Students were asked 
if  they thought that there were other triangles 
where this same relationship holds true (i.e. the 
combined areas of  the red squares equals the area 
of  the blue square). Conjectures varied from be-
lieving this one triangle was uniquely special, to 
saying the property holds only for right triangles, 
only for isosceles triangles, or only for isosceles 
right triangles. Many students were unsure about 
whether this held true in any consistent way. 

Explore
The question of  whether other triangles would 
satisfy the relationship was the motivation for the 
exploration portion of  the lesson. At this point 
in the semester, students were familiar enough 
with GeoGebra that constructing a triangle and 
squares while having GeoGebra calculate areas 
was straightforward. Students investigated their 
own conjectures and those of  their classmates to 
verify empirically if  any types of  triangles main-
tained the Pythagorean relationship. After about 
25 minutes of  exploration time, the class came 
back as a whole to discuss what they found. 

Summarize
Some students had determined that the relation-
ship held true for all isosceles right triangles. This 
is an interesting case to begin with because it is 
correct, but is not as general as possible. Students 
showed examples that verified their results. Other 
students then argued that being isosceles did not 
matter and having a right triangle was sufficient. 
They also showed examples of  non-isosceles 
right triangles that verified their results. The main 
question that came out of  this discussion was why 
non-right triangles could not work. One student 
argued that it was for a similar reason why the re-
lationship held true only when point F was moved 
so the resulting triangle was a right triangle. If  F is 
moved so that FED is acute or obtuse, and two 
of  the squares (built off  the legs) keep the same 
area, the third square’s area will have to change. 
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Reflecting on the Task
Put together, the insights about the cases where 
the Pythagorean Theorem worked and when it 
did not supported students in better understand-
ing the relationship and deductive arguments that 
established the general nature of  the theorem for 
right triangles, which were a focus of  subsequent 
lessons. Having taught lessons on the Pythago-
rean Theorem several times, what was noticeably 
different about using this task in a dynamic ge-
ometry environment was the lasting effects on 
student understanding of  the relationship in fu-
ture units. First, when students encountered situa-
tions that required them to apply the Pythagorean 
Theorem, their language describing the numeri-
cal process was anchored frequently in geometric 
language. Instead of  saying, “well a is 3, and b is 
4, and I have to find c”, students would say, “the 
area of  this square is 9, plus the area of  this square 
is 16, which means the area of  this other square 
is 25.” This shows some evidence that students 
were able to re-present the image mentally when 
needing to apply this theorem. Second, because 
students explored all different types of  triangles, 
it was rare to see students apply the Pythagorean 
Theorem in non-right triangle cases. This is per-
haps due to the fact that the exploration focused 
on the three results of  the Pythagorean relation-
ship not just the right triangle case (Figure 8). As 
a result of  engaging in this task, students seemed 
more proficient in being able to apply and under-
stand the theorem, and gain valuable insight into 
understanding the geometric nature of  a proof  of  
this theorem. 

Using dynamic geometry software such as Geo-
Gebra proved useful in supporting students’ abil-
ity to generalize this important theorem, but not 
at the expense of  over-generalization. Students 
actively engaged in sense-making and persever-

Figure 8. Pythagorean equality and inequalities.

ing as they worked through the problem in de-
termining the types of  triangles for which the 
Pythagorean relationship held true. As in most 
engaging problems, students often engage in 
multiple mathematical practices at once, such as 
“constructing viable arguments and critiquing the 
reasoning of  others” (Standard of  Mathematical 
Practice 3) showing the inherent interconnected-
ness of  these standards. 
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As noted in Principles to Actions: Ensuring 
Mathematical Success for All (NCTM, 2014):

Tasks with high cognitive demand are the most 
difficult to implement well and are often transformed 
into less demanding tasks during instruction. (Stein, 
Grover, & Henningsen 1996; Stigler and Hiebert 
2004)

This past spring, 32 members of  the inaugural 
2015 WSMI Fellows cohort put this claim to the 
test. The WSMI Fellows grew out of  the Wis-
consin Statewide Mathematics Initiative (WSMI, 
www.wsmi.net), a program of  the Brookhill In-
stitute of  Mathematics. Since 2012, Brookhill 
has offered high quality, one week math courses 
to teachers through its WSMI summer Institutes. 
By the end of  the summer of  2014 there were a 
number of  teachers who had taken between two 
and four WSMI courses and were looking for a 
new challenge. In response, Brookhill designed a 
course that would take the content learning from 
WSMI to the next level, the classroom. 

This first cohort of  the WSMI Fellows, educa-
tors from all across Wisconsin, participated in 
an online semester long course. This impressive 
group of  educators has teaching experience rang-
ing from 9 to 20+ years. The Fellows collaborated 
as they identified, created, and implemented high 
cognitive demand tasks; examined student work; 
and made instructional decisions based on the 
student work. 

The online course consisted of  both synchronous 
and asynchronous sessions. There were four live 
sessions (synchronous). The asynchronous ses-
sions consisted of  weekly assignments and dis-
cussions that participants could join anytime dur-
ing the week. Both formats allowed for small and 
large group discussions.

The project goals for WSMI Fellows were:

1.  Continue developing teachers' understanding 
of  the content and pedagogy that was intro-
duced in the WSMI modules.

2.  Deepen teachers’ knowledge of  effective 
teaching practices through the use of  high 
cognitive demand tasks to increase student 
success in mathematics.

Exploring Cognitive Demand Online  
with the WSMI Fellows
By Paige Richards, Mathematics Program Specialist, Brookhill Institute of Mathematics

3.  Form a collaborative network of  mathemat-
ics instructional leaders in Wisconsin to en-
gage in the process of  inquiry and experi-
mentation.

Rather than presenting a comprehensive picture 
of  the work of  the Fellows, this article focuses 
on the second project goal, specifically the use 
of  high cognitive demand tasks. In what follows, 
I begin with a definition and discussion of  cog-
nitive demand. I then explore the collaborative 
process that was the heart of  the Fellows expe-
rience. Finally, insights from the Fellows about 
implementing tasks with high cognitive demand 
are shared. 

What is Cognitive Demand?
To understand cognitive demand, Brookhill used 
the work of  Smith and Stein (1998), who have 
delineated characteristics of  mathematical tasks 
into four levels of  cognitive demand. These four 
levels are:
• Lower-level demands (memorization)
•  Lower-level demands (procedures without 

connections)
•  Higher-level demands (procedures with  

connections)
• Higher-level demands (doing mathematics)

For more details on these levels see Smith and 
Stein’s (1998) Selecting and Creating Mathematical 
Tasks: From Research to Practice.

Stein, Smith, Henningsen, and Silver (2009) de-
scribe cognitive demand as, “The kind and level 
of  thinking required of  students in order to suc-
cessfully engage with and solve the task” (p.1). 
The course focused on cognitive demand because 
students experience the highest learning gains 
when they are engaged in mathematical tasks 
that require high levels of  reasoning and think-
ing (Stein & Smith, 1998). To help translate this 
research into practice, Brookhill used NCTM’s 
Principles to Actions (2014).

Principles to Actions describes eight mathematics 
teaching practices, one of  which requires that 
teachers implement tasks that promote reasoning and 
problem solving. This mathematics teaching practice 
is focused on cognitive demand and is grounded 
in the work of  Smith and Stein (1998). For that 



24 Wisconsin Teacher of Mathematics, Fall 2015

reason, the practice of  “reasoning and problem 
solving” drove the WSMI Fellows coursework. 

Framing the Work of the  
WSMI Fellows
The central focus of  the cohort during the first 
few weeks of  the course was to establish an un-
derstanding of  cognitive demand. The Fellows 
engaged in deep conversations about the think-
ing required of  students using six common math-
ematical tasks. These math tasks were studied and 
discussed, then participants examined the Smith 
and Stein levels, and finally participants re-exam-
ined the tasks with the levels side by side. Partici-
pants had discussion groups that focused on the 
tasks and engaged in a cyclical examination of  the 
levels of  demand, constantly analyzing the tasks 
in relation to the Smith and Stein levels. 

This cyclical process coupled with deep conversa-
tion using evidence from the tasks to ground the 
discussion deepened the understanding of  cog-
nitive demand. Without this necessary and chal-
lenging first step, the rest of  the work would not 
have been possible. When working in isolation the 
level of  demand can seem deceptively simple to 
identify. Through discussion with colleagues and 
opportunities for student trial, the understanding 
of  cognitive demand deepened.  

The Fellows were ready for the next step, select-
ing tasks to use with their students. Through the 
online platform, participants were placed in small 
grade band groups to create support networks 
and grade level expertise. Participants each select-
ed a task they planned on using in their classroom, 
determined the level of  demand, and shared the 
task and determination in their small group. Then 
group members weighed in and had discussions 
about the task and the level.  

Figure 1 is an excerpt from a discussion thread 
where a participant, Charlie*, who is a math coach, 
posted his task. 

Example First Grade Task
There were some bunnies in a yard. Three 
bunnies hopped away. There were four bunnies 
left in the yard. How many bunnies were in the 
yard at first?

Maria:
“Compare problems are so tough for our 
younger students! I’m wondering what are 
your thoughts on supporting students to 
access the problem while still maintaining the 
cognitive demand of the task?”

Charlie:
“One way I think we can maintain the cognitive 
demand of the task while still supporting them 
to access the problem is by keeping the focus 
on the process they are using to make sense 
of the problem. The other way is to focus on 
making sure they are modeling their thinking 
clearly and that their model actually matches 
up with how they solved the problem.”

Stephanie:
“I am wondering what takes this situation to the 
cognitive demand level of ‘doing mathematics’ 
vs. procedures with connections? How do you 
support the students while working on this 
problem and keep the cognitive demand level 
at this level? I liked Mike’s idea of using the 
actual students and chairs as ‘tools.’” 

Charlie:
“I really struggled with rating this problem. I 
initially rated it as procedures with connections. 
Then after talking with the classroom teacher, 
we decided to rate it as doing mathematics 
because we felt the students have not been 
given any explicit pathway or approach 
to solving the problem. The only explicit 
instruction that they have been given is only 
to make sense of a problem and persevering 
in solving it. Again, not sure how confident I 
am in rating this as doing mathematics.” 

*Participant names have been changed

Figure 1. Discussion thread from WSMI Fellows.
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Figure 2. The Mathematics Tasks Framework adapted from Stein and Smith (1998).

To assist participants as they planned for task im-
plementation, Brookhill created a Task Template 
(Figure 2) based on a framework from Stein and 
Smith (1998). Stein and Smith’s The Mathematics 
Tasks Framework is a representation of  how mathe-
matical tasks unfold during classroom instruction.

The template for the Fellows was designed to 
bring awareness to each stage of  the implemen-
tation process. Below are the three stages in the 
template. 

1. Before task implementation

2. During task implementation

3. Reflection after task implementation

For each of  the three stages of  task implementa-
tion, Brookhill’s template included questions and 
statements for the Fellows to consider. The intent 
of  the questions was to provide prompts for the 
detailed thinking that is necessary for teachers to 
engage in before each of  these three stages of  im-
plementation. This thinking should address ques-
tions such as, “What is the learning intention?”, 
“How will you know when a student is success-
ful?”, and “What are the anticipated challenges?” 

Mathematical Tasks (Before Task 
Implementation)
Each year there are more and more resources that 
provide teachers with access to high quality math-
ematics tasks. Many of  these different resources 
were used by the WSMI Fellows. Yet the further 
into the course they went, the more the Fellows 
developed an understanding of  the four levels of  
cognitive demand and found that they didn’t have 
to search as hard for these high cognitive demand 
tasks. They could change the level of  demand of  
any task in front of  them. 

	  

Original	  Task	  

Task	  as	  
implemented	  

by	  the	  	  
teacher	  	  

Task	  as	  the	  
students	  

interact	  with	  it	   Student	  
Outcome	  

The Fellows found that the time spent making 
sense of  and debating the levels of  cognitive de-
mand for different mathematics tasks empowered 
them to analyze other tasks. This, in turn, allowed 
the Fellows to look at other tasks that involved a 
lower level of  demand and to see the potential to 
increase the cognitive demand of  any task. What 
was important was the understanding of  what 
makes a task cognitively demanding. 

As one participant noted:

I think since the beginning of  the teaching profession, 
teachers have always been looking for those ‘perfect’ 
problems that would invoke deep student thinking. I 
know I have been on an unending quest of  searching, 
buying, and creating these types of  problems. I never 
felt quite satisfied with my results. I now finally realize 
(lightbulb moment) that even though I continually was 
searching for higher cognitive demand problems, I didn't 
really have a strong grasp of  what that meant. After 
taking this class and doing more reading on it, I think 
I am beginning to understand what this truly means.

Another participant said when describing altering 
worksheets in the mathematics program she uses: 

With examining and prioritizing the mathematics con-
tent and mathematical practices I can comfortably look 
at what the purpose of  the worksheet is and turn the 
concept and purpose into a task that promotes reasoning 
and problem solving...I can take the concept from the 
worksheet and organize and orchestrate a high cognitive 
demand task.

Here a participant describes the evolution of  the 
Fellows over the course of  the semester: 

The first time we had to choose a task, many teachers in 
the course just found a task that was already high level. 
But, as the course went on, teachers took it a step further 
and made modifications to existing tasks used in their 
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classrooms. We found activities that were on the lower 
end of  cognitive demand (memorization or procedures 
without connections) and changed components of  them 
to make them higher level tasks (procedures with connec-
tions and doing mathematics). This was so powerful. As 
teachers, we realized we didn’t have to reinvent the wheel 
or throw away all of  our current teaching materials. 
We could take what we have and just make modifica-
tions that both increase the level of  cognitive demand 
and engage our students. … This wouldn’t have been 
possible without the rich discussions that were going on 
throughout the course. We gave feedback to each other on 
how we could improve our tasks before we implemented 
them through the Task Template.

Based on this information, it would seem that it 
is not simply finding, modifying or creating tasks 
that is valuable but really taking the time upfront 
to deepen the understanding as to what makes 
some tasks more cognitively demanding than 
others. The practice that was found to be most 
valuable for this work was to collaboratively look 
at mathematics tasks while going back to the lev-
els of  cognitive demand. This collaboration sur-
faced the understanding that Principles to Actions 
describes, “In determining the level of  task, it is 
important to consider prior knowledge and expe-
riences of  the students who will be engaged in the 
task.” (p. 22) It was these discussions and conver-
sations that deepened everyone’s understanding.

Maintain and Implement (During 
Task Implementation) 
The next part of  Brookhill’s Task Template was 
titled during task implementation. This portion 
of  the template asked teachers to describe how 
they set up the task and to rate the level of  de-
mand. Then the teacher described how students 
interacted with the task and again, rated the level 
of  demand. Many participants noted that they 
had not taken into consideration the teacher’s role 
in terms of  altering or maintaining the cognitive 
demand of  a task. 

Some further thoughts from two participants:

The challenge that continues to jump to the front of  my 
mind is ME. I have been trying to incorporate more 
tasks for a while and as I read the articles for class and 
participate in the activities, I continue to see how some of  

the tiniest things I am doing continue to reduce the cogni-
tive demand. I love the idea of  videotaping or having a 
partner teacher observe on a regular basis. Recognizing 
the problem is the first step and now it is time for real 
change.

Finding the tasks isn't that hard - they are literally all 
over the place. You can find them on the internet, in text-
book series, down the hallway, on YouTube, etc. What 
IS challenging is how you implement the tasks, how you 
modify it for your students to pique their interest while 
setting them up for just the right amount of  productive 
struggle. Then when implementing the task, the teacher 
has to tie his/her hands behind his/her back and ask 
Socratic questions tailored to each small group's needs 
while at the same time maintaining classroom discipline 
and differentiating for the students who arrive at a viable 
conclusion earlier.

It turns out that the during task implementation 
part of  the template was probably the most valu-
able. The act of  anticipating and reflecting on 
how the task was set up and the interaction with 
students during the task forced participants to 
pay careful attention to the role of  maintaining, 
increasing, or decreasing the level of  cognitive 
demand. 

Reflection as a Part of the 
Process (Reflection After Task 
Implementation)
Stein and Smith (1998) remind us that reflection 
is a critical factor in teachers’ professional growth 
and that “cultivating a habit of  systematic and 
deliberate reflection may hold the key to improv-
ing one’s teaching as well as to sustaining life-
long professional development.” (p. 268) These 
thoughts led Brookhill to make reflection after 
task implementation the third component of  the 
Task Template. This portion of  the template pro-
vided participants with an opportunity to reflect 
on different parts of  the task implementation and 
offered the richest reflection focused on the level 
of  cognitive demand. 

Here is an excerpt from a Task Template  
Reflection:

What did you do that led to task maintenance or 
task decline?
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Task maintenance – I was conscious not to give away 
solution pathways or answer questions too readily. I tried 
to answer questions with questions.

Task decline – I selected a problem that provided a 
pathway. I should have modified that before implement-
ing. I think I was doing too much “teaching” during the 
task.  When students didn’t have the procedural skills 
down and I tried questioning or giving clues, but they still 
didn’t get it, I stepped in.

Many of  the Fellows’ reflections were similar. 
As the course progressed, the reflections be-
came more celebratory. This became a space 
to acknowledge that the cognitive demand was 
maintained! The more the Fellows planned for 
and anticipated their role in maintaining the cog-
nitive demand, the more successful they were in  
this goal. 

Conclusion
The work of  the 2015 WSMI Fellows cohort re-
inforces the importance of  giving professional 
educators the freedom and opportunity to think 
in a collaborative environment with challenging 
tasks. The experience showed that implementing 
tasks that promote reasoning and problem solving 
is a bigger challenge than it appears. The act of  
making that happen is a high cognitive demand 
task. Teachers need ample time to really dig in 
and make sense of  cognitive demand. They need 
to integrate knowledge of  cognitive demand into 
their everyday practice.

Time to collaborate matters! To deeply under-
stand cognitive demand, teachers need to talk 
about what cognitive demand IS and build that 
understanding collaboratively. 

One of  the WSMI Fellows summarized the course 
experience as follows:

Another big component of  this course was analyzing 
how we could keep a high level of  cognitive demand 
throughout the entire implementation of  a task. Prin-
ciples to Actions suggests that teachers should “support 

students in exploring tasks without taking over student 
thinking” (NCTM, p. 24). Through course discussion 
forums, we all agreed that this was hard for us! As 
teachers, we tend to do anything possible to help our stu-
dents find success within a task. However, that often 
leads to us taking over student thinking by providing 
too many scaffolds, or worse, taking their pencil away 
(I was guilty of  that!). We realized that this was some-
thing we needed to address if  we really wanted to keep 
a high level of  cognitive demand. To combat this, we 
were given the Task Template which had us reflect on 
student misconceptions and how we would address them 
before we taught the lesson. This specific type of  prepa-
ration taught us the importance of  scaffolding only when 
students need it (more “on the spot” scaffolding) rather 
than giving them too much help and bringing down the 
demand of  the task. Also, we realized that it’s impor-
tant to prepare questions ahead of  time that can be 
used to help students persevere when they were stuck. 
This truly transformed how I teach math. I realized 
that my students had way more “ah ha” moments when 
I questioned them rather than when I gave them hints 
when they were stuck. The cognitive demand stayed high 
throughout the task because I made sure the thinking 
was being done by the students. Through these course 
activities, we (WSMI Fellows) were able to support stu-
dents without taking over their thinking.
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In the Spring of  2014, the National Council of  
Teachers of  Mathematics (NCTM) released 
Principles to Actions: Ensuring Mathematical Suc-

cess for All. This publication calls for moving “from 
‘pockets of  excellence’ to ‘systemic excellence’ by 
providing mathematics education that supports 
the learning of  all students at the highest possible 
level” (p. 3). In order to achieve this goal, all teach-
ers must look for ways to engage their students 
through the discovery of  mathematical concepts 
and the application of  mathematics in our world.

When planning a unit, all teachers need to focus 
on the needs of  our students. Do the lessons en-
gage our students? Are our students actively in-
volved in the discovery of  new material? Are our 
students exposed to the applications of  the math-
ematical concepts in other subject areas and/or 
in the world around us? Teachers can teach any 
mathematical topic in a teacher-centric manner, 
or in a student-centric manner that answers all of  
these questions and leads to student engagement 
and retention of  subject material. This article will 
focus on ways to engage our students in a unit on 
parabolas. 

The Common Core State Standards for Math-
ematics (NGA/CCSSO, 2010) includes many 
examples of  content standards related to pa-
rabolas that students must know. These content 
standards, which are included in the Number and 
Quantity, Algebra, Functions, and Geometry con-
ceptual categories, include:

•  Solve quadratic equations with real coeffi-
cients that have complex solutions. (N-CN7)

•  Factor a quadratic expression to reveal the  
zeros of  the function it defines. (A-SSE3a)

•  Complete the square in a quadratic expression 
to reveal the maximum or minimum value of  
the function it defines. (A-SSE3b)

•  Use the method of  completing the square to 
transform any quadratic equation in x into an 
equation of  the form (x – p)2 = q that has the 
same solutions. Derive the quadratic formula 
from this form. (A-REI4a)

Engaging Our Students in Upper-level  
Mathematics: The Power of Parabolas
By Dave Ebert, Oregon High School

•  Solve quadratic equations by inspection (e.g., 
for x2 = 49), taking square roots, completing 
the square, the quadratic formula and factor-
ing, as appropriate to the initial form of  the 
equation. Recognize when the quadratic for-
mula gives complex solutions and write them 
as a ± bi for real numbers a and b. (A-REI4b)

•  Graph linear and quadratic functions and 
show intercepts, maxima, and minima.  
(F-IF7a)

•  Derive the equation of  a parabola given a fo-
cus and directrix. (G-GPE2)

Standards on their own do not inspire and excite 
our students to want to learn more; that is the 
role of  the teacher with a well-designed unit plan. 
By connecting the mathematics of  parabolas to 
the students’ individual experiences, students are 
intrinsically motivated to extend their experiential 
and theoretical knowledge of  parabolas.

Real-World Applications of Parabolas
Without realizing it, many teachers and students 
use a three-dimensional paraboloid daily. The 
cross section of  a headlight of  a car is a parabola. 
Rotating the parabola around the axis of  symme-
try gives a paraboloid. There is a light bulb at the 
focus, and the paraboloid is a mirrored reflector. 
Although the light from the bulb disperses in ev-
ery direction, the parabolic reflector will focus the 
light in an outgoing beam (Figure 1).

Figure 1. The parabolic reflector within a headlight.
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Figure 2. Lighting the Olympic Torch. (source: Wikipedia)

Figure 3. An old radar dish covered with reflective tape.

A similar idea works with a satellite dish. Parallel 
waves are transmitted from a satellite to the dish, 
focused onto a receiver, and translated into a tele-
vision signal. With both of  these examples, the 
proper location of  the focus is imperative.

Likewise, the Olympic Torch begins its journey 
every four years by being lit using a parabolic re-
flector (Figure 2). From Wikipedia:

The Olympic Torch today is ignited several 
months before the opening ceremony of  the 
Olympic Games at the site of  the ancient 
Olympics in Olympia, Greece. Eleven women, 
representing the Vestal Virgins, perform a cel-
ebration at the Temple of  Hera in which the 
torch is kindled by the light of  the Sun, its rays 
concentrated by a parabolic mirror. The torch 
briefly travels around Greece via short relay, 
and then starts its transfer to the host city af-
ter a ceremony in the Panathinaiko Stadium in 
Athens.

A brief  video of  the torch lighting can be viewed 
on YouTube at the following URL: https://youtu.
be/U2gbuOGcpzg.

Parabolic solar cookers work in a similar manner. 
The sun’s rays reflect off  the parabolic surface to 
a focus, where water is boiled in a pot or food is 
cooked in a pan. There is a 15-meter diameter so-
lar bowl in Auroville, India that can cook enough 
food for 1,000 people per day. At least two hu-
manitarian organizations, the Jewish World Watch 
and Solar Cookers International, provide para-
bolic solar cookers to people in need throughout 
the world.

Parabolic troughs are also used to harness the 
power of  the sun. A parabolic trough is a three 
dimensional shape with parabolas on two ends 
and a curved rectangular surface connecting these 
parabolas. The focus is extended parallel to the 
curved rectangular shape. Power plants, such as 
the AREVA Kimberlina Solar Facility in Bakers-
field, California, use hundreds of  mirrors tilted 
along a parabolic surface to reflect the sun’s rays 
onto a pipeline that lies at the focus of  the pa-
rabola. A liquid is pumped through this pipeline, 
and the reflected solar energy heats the liquid to 
very high temperatures to generate electricity. A 
brief  video of  this solar facility can be viewed on 
YouTube at the following URL: https://youtu.
be/XA9RiNu5ZnI.

Applications in the Classroom
Students learn by doing, so teachers should strive 
to have their students experience the mathematics 
they learn to lead to long-term retention. To dem-
onstrate the focus of  a paraboloid, obtain an old 
radar dish and cover it with reflective tape (Figure 
3). The author announced to his classes that the 
first student to bring in an old radar dish would 
receive a candy bar, and one was brought in the 
very next day. Once covered, take the radar dish 
outside on a sunny day. Students can place their 
hands near to the dish without feeling any heat; 
once their hands are at the focus, the heat is un-
bearable. In fact, a dry leaf  held at the focus will 
start to burn.
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Another easy way to demonstrate the focus of  
a paraboloid is with a Fresnel Lens. If  one were 
to take an upward-opening paraboloid and slice 
it horizontally, then compress those slices onto a 
flat surface, the result would be a Fresnel Lens. 
These are relatively inexpensive and are used by 
farsighted people to magnify text, or by backpack-
ers to light a campfire. Students love using these 
to light paper on fire, and they demonstrate the 
focus of  a paraboloid very well.

The author has also built a parabolic mini golf  
hole to demonstrate the focus of  a parabola. This 
was built by drawing a point and a line on a piece 
of  wood, and finding numerous points equidis-
tant from the point (focus) and the line (direc-
trix). These points were connected with a smooth 
curve, and another piece of  wood was cut in this 
shape. Any golf  ball hit parallel to the axis of  
symmetry will reflect off  the parabolic curve and 
into the hole (Figure 4).

Figure 4. A parabolic mini golf  hole.

Figure 5. A parabolic hotdog cooker.

The best way to have students apply their knowl-
edge about parabolas is to have them build a para-
bolic hot dog cooker (Figure 5). Given some brief  
instructions, students can complete this work 
outside of  class time with materials they can find 
around the house. Here are the steps to build a 
parabolic hot dog cooker.

1.  Determine the distance from the vertex to the 
focus. Any distance will work, but a distance 
around two inches works best.

2.  Use this distance to find the equation of  the 
parabola. If  p is the distance from the vertex 
to the focus, the equation of  a parabola with 
vertex at the origin is 
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3.  Use the equation of  the parabola to generate a 
table of  points, then plot these points on large 
graph paper, or create a grid on which to plot 
the points.

4.  Glue the graph to cardboard and cut out. Cut 
out a similar shape for the two ends of  the par-
abolic trough.

5.  Cut out a rectangular piece of  cardboard using 
the length of  the parabolic piece and a width 
of  about two hot dogs. Score the cardboard by 
lightly slicing along the grain, and curve to fit 
between the parabolic pieces. Attach using duct 
tape.

6. Staple aluminum foil to the curved section.

7.  Poke a hole in each parabolic section at the fo-
cus. Straighten a metal coat hanger and place 
it through this hole to use as a skewer for the 
hot dogs.

 

 Pssst….love  ge t t ing thi s  journal?  
Remember to renew your WMC membership today! 
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Once completed, pick a day to have the students 
bring in their parabolic hot dog cookers. It is rec-
ommended that the class gather in a prominent 
place so that students can explain the mathemat-
ics to any people walking by. Having the teacher 
provide the hot dogs and the students provide 
buns, condiments, chips, and beverages gives the 
perfect opportunity for a class party to celebrate a 
memorable learning experience. 

By connecting the study of  parabolas to real-
world applications, and having students actively 
experience the mathematics they learn, students 
are naturally engaged in their learning.  Teach-
ing in a student-centric manner engages all our 
students and leads to the long-term retention of  
mathematical concepts.
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Ken Ken 
 
Fill in the blank squares so that each row and 
each column contain all of the digits 1 through 4. 
The heavy lines indicate areas that contain 
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order) to produce the result shown with the 
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with radius 3? 
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The 2016 STATE MATHEMATICS CONTESTS, 
sponsored by the Wisconsin Mathematics Council, 
will be held the week of February 29-March 4, 2016.   
WMC offers contests for both middle and high 
school students.  Schools participate at their home 
sites, and each school chooses the day the team will 
participate in the contest.  Registration fee—$50 for 
WMC members, $100 for non-members. 
 

The school team advisor corrects the individual and 
team events, and tests and results are returned to 
WMC.   Medals are given to individuals from top 
scoring high school teams, ribbons to high scoring 

middle school teams, and plaques to top scoring schools.  Top team and individual scores are published in 
the WMC Newsletter, and students with perfect scores are awarded an additional prize. 

For more information, please visit  http://www.wismath.org/contests or call (262) 437-0174. 
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