AFGC Interpretive Summary requirements (see example):

- One page maximum; bullet points are permitted.
- 1 inch margins top, bottom, right, and left.
- All text is 12 pt Times Roman or CG Times font.
- Title (all caps) and authors are centered; insert two spaces after each.
- Summary is double-spaced, center-justified.
 - First line is indented.
 - Written in layman language to greatest extent possible.
 - English units are preferred, but not required.
 - Use a zero to the left of decimal points (0.05, not .05).
 - Use a slash for yield, rate, etc. (lb/acre).
- Author information is single-spaced, center-justified, not a footnote.
 - Two double-spaces after summary
 - Include name, department or agency, university or location, and email address.
FIELD DRYING RATE DIFFERENCES AMONG COOL-SEASON GRASSES HARVESTED FOR HAY

G.E. Brink, M.F. Digman, and R.E. Muck

Making high quality, cool-season grass hay is a challenge due to the field drying time needed to reach the appropriate moisture content and the high probability of rain in the spring when hay is typically produced. This study was conducted to determine if cool-season grasses with different yield potential and physical characteristics have different drying rates. Inflorescence-stage meadow fescue, orchardgrass, and reed canarygrass were cut to a 4-in stubble and placed in an 8-ft swath with a self-propelled, 16-ft rotary disc mower equipped with a steel roll conditioner (3-mm gap) at 11:00 am on three consecutive days of early June in each of two years. Moisture and nutritive value were measured hourly from 11:00 am until 4:00 pm of the day of harvest, and over the same time period of the next two days. Despite large differences in yield and leaf:stem ratio, there were few differences in drying rate among the grasses (mean of 0.229, 0.150, and 0.119/h on the first, second, and third days, respectively). Year-to-year variation may result in one grass having a lower initial moisture content at harvest like that observed in meadow fescue, which would allow earlier processing into silage on the first day of curing. The results of our study, however, indicate that species will not influence the drying rate of cool-season grasses harvested at the same relative maturity.

1Research Agronomist, USDA-ARS, U.S. Dairy Forage Research Center, Madison, WI (geoffrey.brink@ars.usda.gov); Mechanical Engineer, Kuhn North America, Inc., Brodhead, WI (matthew.digman@kuhn.com); Agricultural Engineer, USDA-ARS, U.S. Dairy Forage Research Center, Madison, WI (richard.muck@ars.usda.gov).