

Ultrasensitive PGE2 ELISA

For the quantitative determination of Prostaglandin E2 in human saliva, serum, whole blood, tissue culture media and urine.

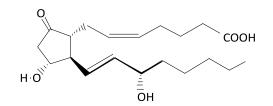
For Research Use Only. Not For Use In Diagnostic Procedures.

Catalog Number: Size: Version:

74-PG2HUU-E01 96 wells 02/09/2015 - ALPCO 2.1

Intended Use

The Ultrasensitive PGE2 ELISA kit is a competitive immunoassay for the quantitative determination of Prostaglandin E_2 in human saliva, serum, whole blood, tissue culture media and urine. For research use only. Not for use in diagnostic procedures.


Principle of the Assay

Please read the complete kit insert before performing this assay. The kit uses a monoclonal antibody to PGE₂ to bind, in a competitive manner, the PGE₂ in the sample or an alkaline phosphatase molecule which has PGE₂ covalently attached to it. After a simultaneous incubation at 4°C, the excess reagents are washed away and substrate is added. After an incubation at 37°C, the enzyme reaction is stopped and the yellow color generated is read on a microplate reader at 405nm. The intensity of the bound yellow color is inversely proportional to the concentration of PGE₂ in either standards or samples. The measured optical density is used to calculate the concentration of PGE₂. For further explanation of the principles and practice of immunoassays please see the excellent books by Chard¹ or Tijssen².

Introduction

Prostaglandin E₂ is formed in a variety of cells from PGH₂, which itself is synthesized from arachidonic acid by the enzyme prostaglandin synthetase³⁻⁶. PGE₂ has been shown to have a number of biological actions, including vasodilation⁷, both anti- and proinflammatory action^{8,9}, modulation of sleep/wake cycles¹⁰, and facilitation of the replication of human immunodeficiency virus¹¹. It elevates cAMP levels,¹² stimulates bone resorption¹³, and has thermoregulatory effects. It has been shown to be a regulator of sodium excretion and renal hemodynamics¹⁴.

Prostaglandin E₂

Precautions

For research use only. Not for use in diagnostic procedures.

- Some kit components contain azide, which may react with lead or copper plumbing. When disposing of reagents always flush with large volumes of water to prevent azide build-up.
- Stop Solution is a solution of trisodium phosphate. This solution is caustic; care should be taken in use.
- The activity of the alkaline phosphatase conjugate is dependent on the presence of Mg²⁺ and Zn²⁺ ions. The activity of the conjugate is affected by concentrations of chelators (>10 mM) such as EDTA and EGTA.
- The kit's performance has been tested with a variety of samples, however it is possible that high levels of interfering substances may cause variation in assay results.

• The Prostaglandin E₂ Standard provided is supplied in ethanolic buffer at a pH optimized to maintain PGE₂ integrity. Care should be taken handling this material because of the known and unknown effects of prostaglandins.

Materials Supplied

- 1. Goat anti-Mouse IgG Microtiter Plate, One Plate of 96 Wells A plate using break apart strips coated with goat antibody specific to mouse IgG.
- 2. **PGE**₂ **HS-EIA Conjugate, 6 mL** A blue solution alkaline phosphatase conjugated with PGE₂.
- PGE₂ HS-ELISA Antibody, 6 mL A yellow solution of a monoclonal antibody to PGE₂.
- 4. **Assay Buffer, 30 mL** Tris buffered saline containing proteins and sodium azide as preservative.
- 5. Wash Buffer Concentrate, 30 mL Tris buffered saline containing detergents.
- 6. **Prostaglandin E₂ Standard, 0.5 mL** A solution of 50,000 pg/mL PGE₂.
- 7. **pNpp Substrate, 20 mL** A solution of p-nitrophenyl phosphate in buffer. Ready to use.
- 8. **Stop Solution, 5 mL** A solution of trisodium phosphate in water. Keep tightly capped. Caution: **Caustic.**
- 9. PGE₂ Assay Layout Sheet, 1 each
- 10. Plate Sealers, 2 each

Storage

All components of this kit, **except the Conjugate and Standard**, are stable at 4°C until the kit's expiration date. The Conjugate and Standard <u>must</u> be stored at -20°C.

Materials Needed but Not Supplied

- 1. Deionized or distilled water
- 2. Precision pipets for volumes between 5 μ L and 1,000 μ L
- 3. Repeater pipets for dispensing 50 μ L and 200 μ L
- 4. Disposable beakers for diluting buffer concentrates
- 5. Graduated cylinders
- 6. A 37 °C incubator
- 7. Adsorbent paper for blotting
- 8. Microplate reader capable of reading at 405 nm, preferably with correction between 570 and 590 nm
- 9. Timer

26-G Keewaydin Drive, Salem, NH 03079 P: (800) 592-5726 F: (603) 898-6854 ts@alpco.com www.alpco.com

Sample Handling

The PGE_2 high sensitivity ELISA is compatible with PGE_2 samples in a wide range of matrices after dilution in Assay Buffer. Please refer to the Sample Recovery recommendations on page 10 for details of suggested dilutions. However, the end user **must verify** that the recommended dilutions are appropriate for their samples. **Samples containing mouse lgG may interfere with the assay.**

Samples in the majority of tissue culture media, including those containing fetal bovine serum, can also be read in the assay, provided the standards have been diluted into the tissue culture media instead of Assay Buffer. There will be a small change in binding associated with running the standards and samples in media. Users should only use standard curves generated in media or buffer to calculate concentrations of PGE_2 in the appropriate matrix. For tissue, urine and plasma samples, prostaglandin synthetase inhibitors such as indomethacin or meclofenamic acid at concentrations up to 10 µg/mL should be added to either the tissue homogenate or urine and plasma samples.

Some samples normally have very low levels of PGE₂ present and extraction may be necessary for accurate measurement. A suitable extraction procedure is outlined below:

Materials Needed

- PGE₂ Standard to allow extraction efficiency to be accurately determined
- 2M hydrochloric acid, deionized water, ethanol, hexane and ethyl acetate
- 200 mg C₁₈ Reverse Phase Extraction Columns

Procedure

- Acidify the plasma, urine or tissue homogenate by addition of 2M HCl to pH of 3.5. Approximately 50 μL of HCl will be needed per mL of plasma. Allow to sit at 4 °C for 15 minutes. Centrifuge samples in a microcentrifuge for 2 minutes to remove any precipitate.
- 2. Prepare the C₁₈ reverse phase column by washing with 10 mL of ethanol followed by 10 mL of deionized water.
- 3. Apply the sample under a slight positive pressure to obtain a flow rate of about 0.5 mL/minute. Wash the column with 10 mL of water, followed by 10 mL of 15% ethanol, and finally 10 mL hexane. Elute the sample from the column by addition of 10 mL ethyl acetate.
- 4. If analysis is to be carried out immediately, evaporate samples under a stream of nitrogen. Add at least 250 μL of Assay Buffer to the dried samples. Vortex well then let sit for five minutes at room temperature. Repeat twice more. If analysis is to be delayed, store samples as the eluted ethyl acetate solutions at -80 °C until the immunoassay is to be run.

Please refer to references 15-18 for details of extraction protocols.

Procedural Notes

- 1. Do not mix components from different kit lots or use reagents beyond the kit expiration date.
- 2. Allow all reagents to warm to room temperature for at least 30 minutes before opening.
- 3. Standards can be prepared in either glass or plastic tubes.
- 4. Pre-rinse pipet tips with the reagent, use fresh pipet tips for each sample, standard and reagent.
- 5. Pipet standards and samples to the bottom of the wells.
- 6. Add the reagents to the side of the well to avoid contamination.
- 7. This kit uses break-apart microtiter strips, which allow the user to measure as many samples as desired. Unused wells must be kept desiccated at 4°C in the sealed bag provided. The wells should be used in the frame provided.
- 8. Care must be taken to minimize contamination by endogenous alkaline phosphatase. Contaminating alkaline phosphatase activity, especially in the substrate solution, may lead to high blanks. Care should be taken not to touch pipet tips and other items that are used in the assay with bare hands.
- 9. Prior to addition of substrate, ensure that there is no residual wash buffer in the wells. Any remaining wash buffer may cause variation in assay results.

Reagent Preparation

1. PGE₂ Standard

Allow the 50,000 pg/mL PGE₂ standard solution to warm to room temperature. Label eight 12 x 75 mm glass tubes #1 through #8. Pipet 1 mL of standard diluent (Assay Buffer or Tissue Culture Media) into tube #1. Pipet 500 μ L of diluent into tubes #2 through #8. Remove 20 μ L of diluent from tube #1. Add 20 μ L of the 50,000 pg/mL standard to tube #1. Vortex thoroughly. Add 500 μ L of tube #1 to tube #2 and vortex thoroughly. Add 500 μ L of tube #2 to tube #3 and vortex. Continue this for tubes #4 through #8.

The concentration of PGE₂ in tubes #1 through #8 will be 1,000, 500, 250, 125, 62.5, 31.25, 15.63, and 7.81 pg/mL, respectively. See PGE₂ Assay Layout Sheet for dilution details.

Diluted standards should be used within 60 minutes of preparation.

2. PGE₂ Conjugate

Allow the conjugate to warm to room temperature. Any unused conjugate should be aliquoted and re-frozen at or below -20 °C.

3. Wash Buffer

Prepare the Wash Buffer by diluting 5 mL of the supplied concentrate with 95 mL of deionized water. This can be stored at room temperature until the kit expiration date, or for 3 months, whichever is earlier.

Assay Procedure

Bring all reagents to room temperature for at least 30 minutes prior to opening. All standards and samples should be run in duplicate.

- 1. Refer to the Assay Layout Sheet to determine the number of wells to be used and put any remaining wells with the desiccant back into the pouch and seal the Ziploc bag. Store unused wells at 4°C.
- 2. Pipet 100 µL of standard diluent (Assay Buffer or Tissue Culture Media) into the NSB and the Bo (0 pg/mL Standard) wells.
- 3. Pipet 100 µL of Standards #1 through #8 into the appropriate wells.
- 4. Pipet 100 μL of the Samples into the appropriate wells.
- 5. Pipet 50 µL of Assay Buffer into the NSB wells.
- 6. Pipet 50 µL of blue Conjugate into each well, except the Total Activity (TA) and Blank wells.
- 7. Pipet 50 µL of yellow Antibody into each well, except the Blank, TA and NSB wells.

NOTE: Every well used should be **<u>Green</u>** in color except the NSB wells which should be <u>**Blue**</u>.

The Blank and TA wells are empty at this point and have no color.

- 8. Incubate the plate overnight (18-24 hours) at 4°C. The plate should be covered with the plate sealer provided.
- 9. Empty the contents of the wells and wash by adding 400 μL of wash solution to every well. Repeat the wash 2 more times for a total of **3 Washes**.
- 10. After the final wash, empty or aspirate the wells, and firmly tap the plate on a lint-free paper towel to remove any remaining wash buffer.
- 11. Add 5 μ L of the blue Conjugate to the TA wells.
- 12. Add 200 μL of the pNpp Substrate solution to every well. Incubate at 37°C for 1 hour without shaking. The plate should be covered with the provided plate sealer.
- 13. Add 50 µL of Stop Solution to every well. This stops the reaction and the plate should be read immediately.
- 14. Blank the plate reader against the Blank wells, read the optical density at 405 nm, preferably with correction between 570 and 590 nm. If the plate reader is not able to be blanked against the Blank wells, manually subtract the mean optical density of the Blank wells from all readings.

Calculation of Results

Several options are available for the calculation of the concentration of PGE_2 in the samples. It is recommended that the data be handled by an immunoassay software package utilizing a 4-parameter logistic curve fitting program. If data reduction software is not readily available, the concentration of PGE_2 can be calculated as follows:

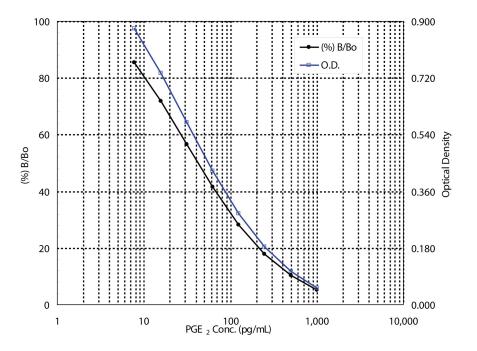
1. Calculate the average net Optical Density (OD) bound for each standard and sample by subtracting the average NSB OD from the average OD bound:

Average Net OD = Average Bound OD - Average NSB OD

2. Calculate the binding of each pair of standard wells as a percentage of the maximum binding wells (Bo), using the following formula:

Percent Bound = (Net OD/ Net Bo OD) x 100

3. plot Percent Bound versus Concentration of PGE₂ for the standards. Approximate a straight line through the points. The concentration of PGE₂ in the unknowns can be determined by interpolation.


Typical Results

The results shown below are for illustration only and should not be used to calculate results.

<u>Sample</u> Blank OD	Mean <u>OD(-Blank</u>) (0.105)	Average <u>Net OD</u>	Percent <u>Bound</u>	PGE₂ <u>(pg/mL)</u>
ТА	2.406	2.301		
NSB	0.104	0.000	0.0%	
Во	1.125	1.020	100%	0
S1	0.166	0.061	6.0%	1000
S2	0.214	0.109	10.7%	500
S3	0.269	0.164	16.1%	250
S4	0.378	0.273	26.8%	125
S5	0.567	0.462	45.3%	62.5
S6	0.684	0.579	56.8%	31.25
S7	0.811	0.706	69.2%	15.63
S8	0.994	0.889	87.2%	7.81
Unknown 1	0.283	0.178	17.5%	260
Unknown 2	0.489	0.384	37.7%	76

Typical Standard Curve

A typical standard curve is shown below. This curve **must not** be used to calculate PGE₂ concentrations; each user must run a standard curve for each assay.

Typical Quality Control Parameters

Total Activity Added %NSB %Bo/TA Quality of Fit	= = =	2.406 x 10 = 24.06 0.0% 4.2% 1.0 (Calculated from 4 parameter logistic curve fit)
20% Intercept	=	215 pg/mL
50% Intercept	=	42 pg/mL
80% Intercept	=	11 pg/mL

Performance Characteristics

The following parameters for this kit were determined using the guidelines listed in the National Committee for Clinical Laboratory Standards (NCCLS) Evaluation Protocols¹⁹.

Sensitivity

Sensitivity was calculated by determining the average optical density bound for sixteen (16) wells run as Bo, and comparing to the average optical density for sixteen (16) wells run with Standard #8. The detection limit was determined as the concentration of PGE₂ measured at two (2) standard deviations from the zero along the standard curve. The value was determined to be 8.26 pg/mL.

Linearity

A sample containing 200 pg/mL PGE_2 was diluted 4 times 1:2 in the kit Assay Buffer and measured in the assay. The data was plotted graphically as actual PGE_2 concentration versus measured PGE_2 concentration. The line obtained had a slope of 1.069 and a correlation coefficient of 1.000.

Precision

Intra-assay precision was determined by taking samples containing low, medium and high concentrations of PGE_2 and running these samples multiple times (n=24) in the same assay. Inter-assay precision was determined by measuring three samples with low, medium and high concentrations of PGE_2 in multiple assays (n=8).

The precision numbers listed below represent the percent coefficient of variation (%CV) for the concentrations of PGE₂ determined in these assays as calculated by a 4-parameter logistic curve fitting program.

	<u>PGE₂</u>	<u>Intra-assay</u>	Inter- assay
	<u>(pg/mL</u>)	<u>%CV</u>	<u>%CV</u>
Low	19	9.8	
Medium	56	6.1	
High	110	3.1	
Low	17		12.1
Medium	51		12.6
High	98		8.1

Cross-Reactivities

The cross-reactivities for a number of related eicosanoid compounds was determined by dissolving the cross-reactant (purity checked by N.M.R. and other analytical methods) in Assay Buffer at concentrations from 500,000 to 39 pg/mL. These samples were then measured in the PGE₂ assay, and the measured PGE₂ concentration at 50% B/Bo calculated. The % cross-reactivity was calculated by comparison with the actual concentration of cross-reactant in the sample and expressed as a percentage.

Compound	Cross-Reactivity
PGE ₂	100%
PGE1	70%
PGE₃	16.3%
PGF _{1α}	1.4%
PGF _{2α}	0.7%
6-keto-PGF _{1α}	0.6%
PGA ₂	0.1%
PGB ₁	0.1%
13,14-dihydro-15-keto-PGF _{2α}	<0.1%
6,15-keto-13,14-dihydro-PGF _{1α}	<0.1%
Thromboxane B ₂	<0.1%
2-Arachidonoylglycerol	<0.1%
Anandamide	<0.1%
PGD ₂	<0.1%
Arachadonic Acid	<0.1%

Sample Recoveries

Please refer to pages 4 and 5 for Sample Handling recommendations and Standard Preparation. PGE_2 concentrations were measured in a variety of different samples including tissue culture media, human saliva, serum, and urine. PGE_2 was spiked into the undiluted samples of these media which were then diluted with the appropriate diluent and assayed in the kit. The following results were obtained:

<u>Sample</u>	<u>% Recovery</u> *	Recommended
		Dilution*
Tissue Culture Media	104.4	None
Human Saliva	123.3	1:10
Human Urine	108.9	1:10
Human Male Serum	126.1	1:10
Human Female Serum	113.7	1:10
Human Whole Blood	101.2	1:10

* See Sample Handling instructions on page 4 for details.

References

- 1. T. Chard, "<u>An Introduction to Radioimmunoassay & Related Techniques 4th Ed.</u>,", (1990) Amsterdam: Elsevier.
- 2. P. Tijssen," Practice & Theory of Enzyme Immunoassays", (1985) Amsterdam: Elsevier.
- 3. P.W. Ramwell, <u>Biol. Reprod.</u>, (1977) <u>16</u>: 70.
- 4. R.J. Flower & G.J. Blackwell, <u>Biochem. Pharm.</u>, (1976) <u>25</u>: 285.
- 5. S. Moncada & J.R. Vane, Pharm. Rev., (1979) 30: 293.
- 6. B. Sameulsson, et al., Ann. Rev Biochem., (1978) 47: 997.
- 7. P.D.I. Richardson, et al., Brit. J. Pharmacol., (1976) 57: 581.
- 8. J. Raud, et al., Proc. Natl. Acad. Sci., USA, (1988) 85: 2315.
- 9. J.W. Christman, et al., Prostaglandins, (1991) 41: 251.
- 10. O. Hayaishi, <u>J. Biol. Chem.</u>, (1988) <u>263</u>: 14593.
- 11. S. Kuno, et al., Proc. Natl. Acad. Sci., USA, (1986) 83: 3487.
- 12. D.L. Bareis, et al., Proc. Natl. Acad. Sci., USA, (1983) 80: 2514.
- 13. L.G. Raisz, et al., Nature, (1977) 267: 532.
- 14. C.R. Long, et al., Prostaglandins, (1990) 40: 591.
- 15. K. Green, et al., Anal. Biochem, (1973) 54: 434.
- 16. J. Frolich, et al., J. Clin. Invest., (1975) 55: 763.
- 17. J.E. Shaw & P.W. Ramwell, <u>Meth. Biochem. Anal.</u>, (1969) <u>17</u>: 325.
- 18. K. Green, et al., Adv. Prostaglandin & Thromboxane Res., (1978) 5: 15.
- 19. National Committee for Clinical Laboratory Standards Evaluation Protocols, SC1, (1989) Villanova, PA: NCCLS.

PGE2 HIGH SENSITIVITY PLATE LAYOUT:

A1 Blank	A2 Std 1	A3 Std 5	A4	A5	A6	A7	A8	A9	A10	A11	A12
B1 Blank	B2 Std 1	B3 Std 5	B4	B5	B6	B7	B8	B9	B10	B11	B12
C1 TA	C2 Std 2	C3 Std 6	C4	C5	C6	C7	C8	C9	C10	C11	C12
D1 TA	D2 Std 2	D3 Std 6	D4	D5	D6	D7	D8	D9	D10	D11	D12
E1 NSB	E2 Std 3	E3 Std 7	E4	E5	E6	E7	E8	E9	E10	E11	E12
F1 NSB	F2 Std 3	F3 Std 7	F4	F5	F6	F7	F8	F9	F10	F11	F12
G1 Bo	G2 Std 4	G3 Std 8	G4	G5	G6	G7	G8	G9	G10	G11	G12
H1 Bo	H2 Std 4	H3 Std 8	H4	H5	H6	H7	H8	H9	H10	H11	H12

Date:				
Kit Lot:				
Expiration Date:				
Technician:				
	1st Incubation			
Start Time:				
Starting Temperature:				
End Time:				
Ending Temperature:				
2nd Incubation				
Start Time:				
Starting Temperature:				
End Time:				
Ending Temperature:				