Colorectal Cancer Syndromes

Barbara Jung, MD AGAF
Associate Professor and Chief
University of Illinois at Chicago

Outline

- Colon cancer
 - General Genetics, Risk, Screening
- Specific Syndromes, when to suspect, what to do
 - Lynch Syndrome
 - Familial adenomatous polyposis (FAP)
 - MutYH-associated polyposis (MAP)
 - Hamartomatous syndromes
 - Serrated polyposis syndrome

Learning Objectives

After completion of this lecture participants should be better able to

- Obtain a thorough family history
- Understand genetic colon cancer syndromes
- Appropriately start work-up and referral of high risk individuals

Colorectal Cancer is Common and Deadly

- Approximately 150,000 Americans/year are diagnosed with colorectal cancer
- Average lifetime risk is about 6% or 1 in 16
- Increased incidence in certain populations
- Preventable at early stages, but
 - About 50% of those diagnosed die of the disease
 - Second-leading cause of cancer-related deaths in the United States
 - Strong familial component

Colorectal Cancer Genetics

- Genetic predisposition affects development of colon cancer
- Genetic defects could be inherited from the parents (cancers early in life) or
- Genetic defects can spontaneously occur in an individual or an individual tumor (cancers later in life)

Colon cancer risk is multifactorial

In 44,000 pairs of identical and non-identical twins colon cancer risk was associated with

- 0.35 Heritable factors
- 0.05 Shared environmental factor
- 0.60 Non-shared environmental factors

Lichtenstein P. et al. *N Eng J Med* **343**:78-85, 2000

Family History and Colon Cancer

Colon Cancer in First Degree Relative	Lifetime Risk
One or more	10%
Two or more	15%
One or more younger than 45 years	33%

Reviewed in *Jung and Carethers*, GI Neoplasia, Digestive Disease Self Education Program 5.0 2007 Kendal/Hunt Publishers

Colorectal Cancer Increases with Age

Colon Anatomy

End of reach of sigmoidoscope

Colonoscope

Polypectomy

Stepwise progression of colon cancer

Normal

Adenoma

Cancer

Colon Cancer - Endoscopic View

Screening for Colorectal Cancer

- Testing asymptomatic, <u>average risk</u> individuals for colorectal cancer
- Screening must be:
 - sensitive
 - specific
 - acceptable to asymptomatic people
 - reduce mortality or morbidity
 - affordable

Implementation of Colorectal Cancer Screening

 Colorectal cancer screening use is 20-30 % of all eligible individuals and under –utilized

- Prostate ~60%
- Cervical ~70%
- Breast ~78%

Screening Colonoscopy

- No published reports that directly examine effectiveness
- Indirect evidence
 - National Polyp Study shows removing polyps reduces incidence of cancer
 - Case-control study showed fewer cancers in persons after colonoscopy [Mueller, Ann Int Med 1995]
 - Interval of screening safe > 5 years [Rex Gastroenterol 1996]
- More costly, increased procedural risk

Case

You see a 40-year old male for heartburn. He has not had a colonoscopy. He reports a mother who developed endometrial cancer at age 48. What is the most appropriate next step?

- a) Full family history
- b) Colonoscopy
- c) Genetic testing
- d) Reassurance

Case

You see a 40-year old male for heartburn. He has not had a colonoscopy. He reports a mother who developed endometrial cancer at age 48. What is the most appropriate next step?

- a) Full family history
- b) Colonoscopy
- c) Genetic testing
- d) Reassurance

Spectrum of Genetic Susceptibility in CRC

Adapted from Burt RW et al. Prevention and Early Detection of CRC, 1996

FH

- Family history of cancer and premalignant GI conditions should be obtained for <u>all patients</u> being evaluated in outpatient and endoscopy practices
- Essential components are:
 - Presence and type of cancer in FDR and SDR
 - Presence and type (ideally) of polyps in FDR
 - Age
- Low rates of adherence to minimal family history data collection and referral especially for colorectal cancer
 - Limited by knowledge of family history in certain populations

Pre-procedure family history assessment

		YES	NO
•	Do you have a first-degree relative (mother, father, brother, sister or child) with any of the following conditions diagnosed before age 50?		
	Colon or rectal cancer		
	Cancer of the uterus, ovary, stomach, small intestine, urinary tract (kidney,		
	ureter, bladder), bile ducts, pancreas, or brain		
•	Have you had any of the following conditions diagnosed before age 50?		
	Colon or rectal cancer		
	Colon or rectal polyps		
•	Do you have 3 or more relatives with a history of colon or rectal cancer? (this includes parents, brothers, sisters, children, grandparents, aunts, uncles and colon or rectal cancer?	Ousins)	

Lynch syndrome

Lynch syndrome overview

- Hereditary non-polyposis colorectal cancer (HNPCC)
 - Families who meet clinical criteria but don't necessarily have germline mutation
- Autosomal dominant
- Germline mutations in DNA mismatch repair genes (defines LS)
- Accounts for 2-3% of CRC overall
- 80% penetrance

DNA mismatch repair

Normal DNA repair

Base pair mismatch

TCAC

Mutation introduced by unrepaired DNA

AGCTG

Lynch Syndrome Variants

Turcot syndrome

 Hereditary syndrome of multiple CRC and primary brain tumors (glioblastomas)

Muir-Torre Syndrome

 Typical features of Lynch syndrome with sebaceous gland tumors and keratoacanthomas

Sebaceous adenomas

Fig : White GM et al: Diseases of the Skin – A Color Atlas. Mosby, 2000

Lynch syndrome overall cancer risks

Cancer Risk Up to Age 70 Years in Individuals with Lynch Syndrome Compared to the General Population

	General Population Risk ¹	MLH1 and MSH2 ^{1,2}		MSH6 ²		PMS2 ³	
Cancer		Risk	Mean Age of Onset	Risk	Mean Age of Onset	Risk	Mean Age of Onset
Colon	5.5%	40%-80%	44-61 years	10%-22%	54 years	15%-20%	61-66 years
Endometrium	2.7%	25%-60%	48-62 years	16%-26%	55 years	15%	49 years
Stomach	<1%	1%-13%	56 years	≤3%	63 years	+	70-78 years
Ovary	1.6%	4%-24% ⁵	42.5 years	1%-11%	46 years	+	42 years
Hepatobiliary tract	<1%	1.4%-4%	50-57 years	Not reported	Not reported	+	Not reported
Urinary tract	<1%	1%-4%	54-60 years	<1%	65 years	+	Not reported
Small bowel	<1%	3%-6%	47-49 years	Not reported	54 years	+	59 years
Brain/CNS	<1%	1%-3%	~50 years	Not reported	Not reported	+	45 years
Sebaceous neoplasms	<1%	1%-9%	Not reported	Not reported	Not reported	Not reported	Not reported
Pancreas ⁴	<1%	1%-6%	Not reported	Not reported	Not reported	Not reported	Not reported

+ Combined risk for renal pelvic, stomach, ovary, ureter and brain is 6% by age 70

Amsterdam criteria

- Amsterdam I
 - Only includes CRC
- Amsterdam II
 - LS-associated tumors (CRC, endometrium, small bowel, ureter or renal pelvis)
- "3-2-1-1-0" rule
 - At least 3 relatives with cancer
 - At least 2 successive generations affected
 - One is first-degree relative of the other two
 - One diagnosis <50 years
 - Exclude FAP
- About 50% will be missed by these criteria and 50% will meet criteria but not have LS

Revised Bethesda criteria

- For testing CRC for Lynch syndrome by IHC and/or MSI
 - CRC < 50 years of age</p>
 - Presence of synchronous or metachronous CRC or other LS-associated tumors regardless of age
 - CRC with MSI-H histology in patient < 60 years
 - CRC in patient with ≥1 1st degree relative(s) with LS-associated cancers with one < 50 years
 - CRC in patient with ≥2 1st or 2nd degree relatives with LS-associated cancer regardless of age

Tumor screening

- Immunohistochemistry (IHC) and microsatellite instability (MSI) analyses are screening tests
- Done on colorectal or endometrial tissue after surgery (or biopsy in some cases)
 - Do NOT test radiated rectal tumor; risk of false positives
- >90% of LS tumors are MSI-high (MSI-H) and/or lack expression by IHC
 - 10-15% of sporadic tumors are MSI-H and/or lack MLH1 expression due to abnormal methylation

Immunohistochemistry

MSH2 mutation

MLH1 +

MSH2 and MSH6 -

Brown staining=presence of protein

AGA!

MSH6 mutation

How to Follow-up on IHC Results

MSI testing

- PCR test on tumor DNA
- Amplification of areas that are commonly mutated
- Changes in 2-5 microsatellite markers=MSI
- MSI may not be due to gene mutation
- Does not allow for narrowing down likely gene involved
- 5-10% false negative rate

MSI versus IHC – What to choose?

- IHC can be performed by any pathology lab
- MSI requires molecular diagnostics and normal for comparison
- Cost similar, but
- IHC directs gene testing and can save \$\$ downstream
- Ethical issues with IHC- consent, disclosure
- Both have significant false negative rates and technical limitations

Screening and surveillance

Test	Frequency	Age to start	Evidence
Colonoscopy	Every 1-2 years	20-25 years or 2-5 years prior to earliest CRC	Cohort studies ^{1,2}
Upper endoscopy	Every 3-5 years	30-35 years	Expert opinion ³
Endometrial biopsy	yearly	30-35 years?	Expert opinion ³
Hysterectomy		After childbearing	Expert opinion ³

Screening for other LS-associated cancers **no consensus**:

- Urothelial cancer (annual UA and/or urine cytology)
- CNS (neurological examination)
- Pancreatic cancer (MRCP/EUS)
- Small bowel (capsule endoscopy)

¹ Jarvinen HF et al *Gastroenterol* 2000

² Vasen HF. *Gastroenterol* 2010

³ Lindor NM et al JAMA 2006

Mallorca Group recommendations Gut 2013

Familial adenomatous polyposis (FAP)

- Germline mutations APC
- Classical and attenuated

- Autosomal recessive
- Attenuated polyposis or only CRC
- FAP-like
- Endometrial cancer (?others)
- POLD and POLE mutations
- Multiple serrated polyps
- Likely genetic basis but no GT available
- Juvenile polyposis (JPS)
- Peutz-Jeghers (PJS)
- PTEN (PHTS)

Familial adenomatous polyposis (FAP)

- Mutations in APC gene
- Autosomal dominant inheritance
- 100% penetrance
- De novo rate 25-30%
- Variants
 - Attenuated FAP (AFAP) less polyps, different APC cluster
 - Profuse polyposis
 - Gardners syndrome
 - FAP + prominent extraintestinal manifestations
 - Turcot's syndrome
 - FAP + brain tumor (esp medulloblastoma)

Intestinal features of FAP

Duodenal polyp*

Rectal polyps*

Fundic gland polyps

* Malignant potential

Age and Development of Adenomas and CRC in FAP

Extraintestinal features of FAP

Benign lesions	Malignant lesions
Congenital hypertrophy of the retinal pigmented epithelium (CHRPE) (70-80%)	Papillary thyroid cancer (2-3%)
Epidermoid cysts (50%)	Brain tumor (<1%)
Osteoma (50-90%)	Hepatoblastoma (1%)
Desmoid tumor (10-15%)	Gastric (0.6%)
Supernumerary teeth (11-27%)	
Adrenal gland adenomas (7-13%)	

FAP: extraintestinal manifestations

FAP: desmoid tumors

- Neoplasms of fibroblastic origin
- 10-25% prevalence in FAP
- Leading cause of death post colectomy
- Risk factors
 - trauma, APC mutation,
 family history, estrogens
- Rx: observation, NSAIDs, chemotherapy, surgery

FAP: diagnosis

- > 100 adenomatous colorectal polyps
 - 10-100 cumulative polyps (AFAP)
- Genetic testing
 - Clinical diagnosis:
 - full APC sequencing
 - Unaffected family member:
 - Test affected family member first
 - Test for specific mutation
 - If proband not available, consider full sequencing

FAP management

- Genetic testing for those with clinical FAP and family members of FAP
- ? testing in children <5 years
 - hepatoblastoma screening?
- Sigmoidoscopy/colonoscopy starting age 10-12
- Appropriately timed colectomy
- Upper endoscopy with side-viewing exam every 1-5 years depending on polyp burden
 - Spigelman classification

FAP: colectomy

- No recommended age
- In children & adolescents, can delay with surveillance until mature enough for surgery
 - Consider delaying in patients at risk of desmoids
- Procedures
 - Subtotal with ileorectal anastamosis (IRA)
 - Proctocolectomy with ileal pouch-anal anastamosis (IPAA)

Restorative Proctocolectomy

- Germline mutations APC
- Classical and attenuated

- Autosomal recessive
- Attenuated polyposis or only CRC
- FAP-like
- Endometrial cancer (?others)
- POLD and POLE mutations
- Multiple serrated polyps
- Likely genetic basis but no GT available
- Juvenile polyposis (JPS)
- Peutz-Jeghers (PJS)
- PTEN (PHTS)

MutYH associated polyposis

MutYH-associated polyposis (MAP)

- Oligopolyposis
 - Accounts for 40% of AFAP mutation negative
- Autosomal recessive
- Mixed polyposis
 - adenomas, sessile serrated polyps and hyperplastic polyps
- 93-fold excess risk of CRC in biallelic carriers
- CRC not necessarily associated with polyps

MAP pedigree

MAP genetics

- MutYH gene
 - oxidative damage repair
 - Part of base excision repair pathway
- Two common mutations in Western European population (Y165C, G382D)
- Clinical testing available

MAP - Biallelic Cancer Risks

- ~80% lifetime risk for CRC
- 38% lifetime risk for extra-colonic malignancies
- Duodenal cancer risk
 - Duodenal polyps ~17%
 - Duodenal cancer ~4%
- Sebaceous gland tumors ~2%
- Ovarian, bladder, skin cancer significantly increased
- Ages of onset and spectrum of cancer suggest need for increased screening only for duodenum cancer risk

Nielsen M et al. Crit Reviews in Oncology Hematology 2010 Vogt S et al Gastro 2009

Hamartomatous and Serrated Polyposis Syndromes

- Germline mutations APC
- Classical and attenuated

- Autosomal recessive
- Attenuated polyposis or only CRC
- Endometrial cancer (?others)
- POLD and POLE mutations
- Multiple serrated polyps
- Likely genetic basis but no GT available
- Juvenile polyposis (JPS)
- Peutz-Jeghers (PJS)
- PTEN (PHTS)

Hamartomatous Syndromes

- Juvenile Polyposis SMAD4BMPR1A
 - Juvenile polyps in stomach and colon
 - Isolated juvenile polyps in childhood common (2%) but not part of syndrome
- Peutz-Jeghers syndrome STK11
 - PJ polyps in small intestine
 - May present with bleeding or obstruction
 - Characteristic freckling
- Cowden's syndrome PTEN
 - Hamartomas, <u>breast cancer</u>, colon cancer, thyroid abnormalities

Gastric & colon juvenile polyps

colon

stomach

Hamartomatous Syndromes

- Juvenile Polyposis SMAD4BMPR1A
 - Juvenile polyps in stomach and colon
 - Isolated juvenile polyps in childhood common (2%) but not part of syndrome
- Peutz-Jeghers syndrome STK11
 - PJ polyps in small intestine
 - May present with bleeding or obstruction
 - Characteristic freckling
- Cowden's syndrome PTEN
 - Hamartomas, breast cancer, colon cancer, thyroid abnormalities

PJS polyps

Small bowel polyp

Colon hamartoma

Peutz-Jeghers Syndrome (PJS)

- Autosomal dominant
- 1 in 200,000 live births
- Peri-oral melanin pigment >95% of cases
- Characteristic polyps throughout GI tract
- Gene: STK11 (19p13.3)
- Overall cancer risk 93% by age 65

PJS, GI Cancer Screening

- Colon cancer screening
 - Colonoscopy with symptoms or in late teens
 - Repeat every three years
- Pancreas:
 - endoscopic ultrasound q2 yrs, start 30 yrs alternate with MRI/MRCP?
- Stomach:
 - EGD q2 yrs, start 10 yrs
- Small intestine:
 - X-ray q2 yrs, start 10 yrs or Capsule endoscopy
- Esophagus:
 - same as stomach

PJS lifetime cancer risks

Hamartomatous Syndromes

- Juvenile Polyposis SMAD4BMPR1A
 - Juvenile polyps in stomach and colon
 - Isolated juvenile polyps in childhood common (2%) but not part of syndrome
- Peutz-Jeghers syndrome STK11
 - PJ polyps in small intestine
 - May present with bleeding or obstruction
 - Characteristic freckling
- Cowden's syndrome PTEN
 - Hamartomas, <u>breast cancer</u>, colon cancer, thyroid abnormalities

Cowden Syndrome

- Autosomal dominant, 1 in 200,000
- Mainly hamartomatous polyps throughout GI tract
- Characteristic Skin Findings: tricholemomas
- Large head circumference
- Colon cancer ? risk
- Extra-GI cancers:
 - Thyroid, 3% to 10%
 - Breast 25% to 50%
 - Uterine increased? Risk

Serrated polyposis syndrome (SPS)

- Formerly called hyperplastic polyposis
- WHO criteria
 - 5 or more serrated polyps proximal to sigmoid colon with 2 > 1cm
 - 1 proximal serrated polyp in patient with family history
 - 20 or more cumulative serrated polyps
- Genetic basis yet to be identified
- CRC incidence 37-69%
- No screening or management guidelines exist

Boparai KS et al *Gut* 2010; Snover D et al *WHO* classification of tumors 2010; Kalady MF et al *Dis* Colon Rectum 2011

SPS Phenotypes

>5 SP, 2 or more > 1cm
SSA
BRAF
Right and Left sided CRCs

>20 SP throughout
HP
KRAS
Left sided CRCs

CRC Risk 25-70%, Family History of CRC 10-50%

Gene Panels

- Next generation sequencing allows multiplex testing of multiple genes at once
- APC, Lynch, MUTYH, hamartomatous and many other genes
- Leads to variants and unexpected findings
- Often cheaper than specific tests
- Management can be complex

Gene Panels- Caveats

- Cannot counsel for all possible outcomes
- Variants of uncertain significance
 - More common than known deleterious mutations
 - Can lead to confusion
- Minor frequency mutations
 - Does genetic testing change screening above FH?
- Unexpected mutations
 - BRCA mutation when looking for hereditary CRC
 - CDH mutation (gastric cancer) when looking for hereditary CRC

Take Home Points

- Ask about family history and low threshold to refer for genetic evaluation
- Failure to find a genetic mutation does not rule out a syndrome completely.
- Tumor MSI negative makes Lynch syndrome very unlikely
- Specific mutation testing should follow finding a pathogenic mutation in families
- When mutation not found in high risk family, screening is based on family history
- Ask for help in interpreting results of genetic panels

Acknowledgements

- My patients
- CCCC collaborators, UIC team
- Dr. John Carethers,
 University of Michigan
- Dr. Rick Boland, Baylor College of Medicine
- Dr. Sonia Kupfer, University of Chicago
- Dr. Dennis Ahnen, University of Colorado

Questions? bjung@uic.edu

