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Abstract

Background: Saturated fatty acids (SFA) have been reported to promote inflammation. Nevertheless, evidence linking
dietary SFA and low-grade inflammation in adolescents is scarce and inconsistent. The modulatory role of physical activity
(PA) on fat metabolism and inflammation may provide a potential explanation. Thus, we assessed the association of
dietary SFA with high-sensitivity C-reactive protein (hsCRP), a marker of low-grade inflammation, in 15-year-olds, and
evaluated possible interactions between dietary SFA and different levels of PA.

Methods: Children participating in the 15-year follow-ups of the GINIplus and LISA German birth cohort studies were
included (N = 824). SFA intake was estimated by means of a food frequency questionnaire and PA recorded by
accelerometers. Average daily minutes of PA were classified into “sedentary”, “light” and “moderate-to-vigorous” (MVPA),
using Freedson’s cut-offs. HsCRP concentrations were measured in serum and categorized into 3 sex-specific levels (below
detection limit (I), above 75th percentile (III), in between (II)). Sex-stratified cross-sectional associations between SFA and
hsCRP were assessed using multinomial logistic regression, adjusting for potential confounders. Interaction terms were
included between SFA and the different PA levels; and if significant interactions were observed, analyses stratified by
tertiles of the relevant PA levels were performed. Relative risk ratios (RRR) and 95% confidence intervals (95%CI) were
presented for a 1% increase in SFA.

Results: An inverse association was observed between SFA intake and hsCRP (II vs. I) in males (RRR = 0.85 [95%CI = 0.76;
0.96], p = 0.008), whereas no significant association was observed in females. A significant interaction was observed with
“sedentary” and “light” PA but not with MVPA in both sexes (p < 0.05). Stratified analyses indicated a significant inverse
association between SFA and medium hsCRP levels in males in the highest light PA tertile (hsCRP II vs. I: 0.67 [0.517;0.858],
p = 0.002).

Conclusion: Our findings do not support a detrimental role of dietary SFA in low-grade inflammation among adolescents.
In males, higher dietary SFA was associated with lower hsCRP, although this should be interpreted in the context of possibly
correlated nutrients. Children spending the most time in light PA drove the observed inverse association, suggesting a
synergistic effect of SFA and lifestyle PA in the resultant inflammatory response.
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Background
Chronic, low-grade inflammation precedes the onset of
cardiovascular diseases [1], which continue to be among
the leading causes of death and disability worldwide [2].
Ample evidence indicating that cardiovascular disease
(CVD) risk can begin as early as childhood and track
into adulthood [3, 4] has drawn research interests to-
wards early biomarkers expressed in youth that may be
predictive of adult morbidity [5]. The inflammatory
marker high-sensitivity C-reactive protein (hsCRP) is
used to predict the risk of atherosclerosis and CVD in
adults [6] and has been observed in association with
arterial alterations in children [7]. Raised hsCRP levels,
even within the low ranges normally observed in chil-
dren and adolescents [8], are associated with intermedi-
ate risk factors for CVD, including obesity [9, 10],
insulin resistance [11, 12], and metabolic syndrome [13,
14]. Furthermore, childhood hsCRP levels have been
shown to independently predict adult levels [15], as well
as metabolic syndrome in adulthood [16]. HsCRP mea-
sured in adolescents can therefore offer a possible early
indication of future CVD risk. Given that poor diet and
lack of physical activity (PA) are amongst the primary
lifestyle contributors to CVD [17], the specific roles of
both these aspects in low-grade inflammation have be-
come of eminent public health relevance. For decades, a
key nutritional guideline has been to limit consumption
of saturated fatty acids (SFA) [18, 19]. Yet the underlying
evidence for this recommendation has been questioned
in a number of studies [20–22], fuelling an ongoing de-
bate [23–26]. Amidst this discussion, SFA have received
much attention for their ability to promote inflammatory
processes in vitro [27–29]. In large observational studies,
direct associations between serum or plasma SFA status
with markers of low-grade inflammation have been ob-
served in both overweight and lean adults [30–32] as
well as in children [33, 34]. Further, the upregulation of
several genes relating to inflammatory pathways has
been reported in a number of clinical trials in humans
following the consumption of SFA, as summarised in a
recent review [35]. Nevertheless, epidemiological studies
observing longer-term dietary SFA in relation to inflam-
matory markers do not conclusively support a proin-
flammatory role of the nutrient [32, 36, 37]. Processes
following dietary intake, including digestion, absorption,
uptake into tissues, and metabolism, all affect the ensu-
ing fatty acid profile [38], and could partially explain the
conflicting findings relative to dietary SFA.
It has been proposed that the interaction with other

lifestyle factors might be relevant in determining
whether (or to what extent) dietary SFA contributes to
chronic low-grade inflammation [39]. PA is frequently
discussed for its role in promoting a long-term anti-
inflammatory response [40], the mechanisms of which

are not entirely understood [41]. Various studies in
children and adolescents have not confirmed a direct as-
sociation between PA and hsCRP [42–45], although the
benefits on metabolic function and overall health are un-
deniable [46]. Studies reporting significant associations
in adolescents suggest a protective role of PA. In a sam-
ple of adolescents aged 13–16 years, vigorous PA was
shown to be protective of elevated CRP in boys but not
in girls, independent of weight status [47]. Whereas in a
study of adolescents from 10 European cities,
objectively-measured vigorous PA was suggested to play
an indirect beneficial role through improved cardiorespi-
ratory fitness [48]. An indirect role through altered en-
ergy metabolism may also be plausible; for example,
studies have shown that skeletal muscle activity can in-
fluence fat oxidation [49]. This effect can vary based on
the intensity and duration of the activity, as well as by
sex, as differences in substrate metabolism have been de-
scribed, with females oxidising fat more readily than
males during exercise [50]. Hence, a sex-specific modu-
latory role of habitual PA in the relationship between
dietary SFA and chronic low-grade inflammation is
plausible, perhaps through long-term physiological
changes at the cellular level [51]. To our knowledge, no
study has been carried out addressing the integrated role
of SFA and PA in adolescent females and males. There-
fore, this study aims to assess the association of dietary
SFA with hsCRP in a large population of 15-year-olds, as
well as the possible modulatory role of different levels
and duration of objectively-measured PA.

Methods
Participants
The present study used data from the 15-year follow-up
assessments of the GINIplus (German Infant Nutritional
Intervention plus environmental and genetic influences
on allergy development) and LISA (Influence of Life-
style related factors on the development of the Immune
System and Allergies in East and West Germany) birth
cohort studies. Details on the cohorts’ recruitment and
follow-up strategies have been described previously and
can be found elsewhere [52, 53]. Briefly, healthy full-
term new-borns were recruited from selected obstetric
clinics in Germany. The GINIplus cohort (n = 5991) was
recruited in Munich and Wesel between 1995 and 1998,
and consists of two study arms: an observation arm and
an intervention arm. New-borns with a family history of
allergy were invited for the intervention arm, in which
children were randomised to receive one of three hydro-
lysed formulas or cow’s milk. The aim was to compare
the effect of the different formulae vs. cow’s milk on al-
lergy development in a double-blind controlled trial.
Participants with a negative family history of allergy, and
those who declined to take part in the intervention trial,
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were included in the observation arm. The LISA cohort
(n = 3094 - originally 3097 but three removed consent) is a
true population-based cohort, recruited in Munich, Wesel,
Leipzig and Bad Honnef, between 1997 and 1999. In both
studies, information on selected exposures and health out-
comes were obtained by means of questionnaires and med-
ical examinations carried out at various follow-up
assessments. Exposures and outcomes relevant to the
present analyses are described in detail below. Both cohort
studies have been approved by their local ethics committees
(Bavarian Board of Physicians, University of Leipzig, Board
of Physicians of North-Rhine-Westphalia) and written con-
sent was obtained from all participants’ families.

Dietary SFA
Habitual dietary intake was assessed at the 15-year follow-
up using a self-administered food frequency questionnaire
(FFQ). The applied FFQ was designed at the 10-year
follow-up for the estimation of food and nutrient intake in
school-aged children over the past year. A detailed de-
scription of the FFQ development and its validation can
be found elsewhere [54]. Briefly, a list of commonly con-
sumed foods contributing to total energy and especially
fatty acid intake, was compiled from food intake data
obtained by 3-day weighed dietary records of German
children from the DONALD (Dortmund Nutritional and
Anthropometric Longitudinally Designed) study [55]; por-
tion sizes and frequency categories were included in the
style of the EPIC (European Prospective Investigation into
Cancer and Nutrition) FFQ [56]. A pilot study was con-
ducted to evaluate the comprehensibility and applicability
of the resulting FFQ, which was then validated against a
24-h dietary recall (at a food group level and at a nutrient
level) [54]. The final version of the FFQ was used in the
current study, and is available from the corresponding au-
thor upon reasonable request. The FFQ was delivered to
participants by post and included detailed instructions for
its completion. Participants were asked to report their es-
timated usual frequency (nine categories: ‘never’, ‘once a
month’, ‘2-3 times a month’, ‘once a week’, ‘2-3 times a week’,
‘4-6 times a week’, ‘once a day’, ‘2-3 times a day’ and ‘four
times a day or more’) and portion sizes (common house-
hold measures or coloured photographs of different por-
tion sizes) of the intakes of the 80 listed food items over
the past twelve months [57]. Additionally, several ques-
tions were included on preferred fat and energy contents,
preparation methods, diets and food preferences, buying
habits and dietary supplement use. Participants were
asked to complete the FFQ themselves with the support of
whoever cooked at home, if needed. The study technical
assistant could be contacted if any further clarification
was required. A quality control procedure was applied
based on recommendations by Willett et al. [58] for data
cleaning in nutritional epidemiology described thoroughly

in an earlier publication [57]. Total daily energy and nutri-
ent intakes were calculated (in kcal/day) based on the Ger-
man Food Code and Nutrient Database (BLS) version
II.3.1 [59]. The relative contribution of SFA to the overall
diet was calculated and expressed as a percentage of total
daily energy intake (%EI).

Physical activity
PA was measured at age 15 years using triaxial accelerom-
eters (ActiGraph GT3X, Pensacola, Florida), worn on the
dominant hip for seven consecutive days. The accelerom-
eter has been validated for use in adolescents [60], and it
has been shown that measurements on opposing hips are
not significantly different from each other [61, 62]. Partici-
pants for accelerometry were recruited from the study
centers Munich and Wesel. This includes all of the GINI-
plus cohort and 64% of the LISA cohort taking part in the
15-year follow-up. The accelerometry protocol, data man-
agement and quality control have been described previ-
ously in detail [63, 64]. Briefly, participants were asked to
keep an activity diary during the days the accelerometer
was worn, where they recorded all their activities over the
course of the day using a detailed schedule. This was done
in order to control for non-wear time as well as the plausi-
bility of the recorded accelerometer data. Since the goal
was to capture a representative measure of usual daily PA,
participants were asked to do the measurement during a
“normal” week, i.e. no holidays, travelling, sickness. The
activity diary information was also used to exclude re-
corded days which were not representative of typical rou-
tine, as described in Pfitzner et al. [64]. After passing
quality control, at least 10 h of recorded time (or 7 if sub-
jects were awake for less than 10 h) were necessary for a
recorded day to be considered valid. Subjects were re-
quired to have at least 3 valid recorded weekdays and one
valid weekend day. Measured accelerations were con-
verted into activity counts and stored at 1 Hz (resampled
from 30Hz). Activity counts were then classified into one
of four intensity levels (“sedentary”, “light”, “moderate”,
and “vigorous” PA) on a minute-by-minute basis, esti-
mated according to the uniaxial cut-offs published by
Freedson et al. [65]. For the current analyses, three levels
of PA were evaluated: “sedentary”, “light” (representing
lifestyle PA), and “MVPA” (the sum of “moderate” and
“vigorous” PA). Average minutes per day spent on the dif-
ferent PA levels were calculated for each individual by div-
iding total recorded minutes by the number of valid
recorded days.

Chronic low-grade inflammation
Serum concentrations of hsCRP were measured in sam-
ples collected during the 15-year follow-up medical ex-
aminations, using the Roche (Mannheim, Germany)
Tina-quant CRP (latex) high-sensitive assay, according
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to manufacturer instructions. Measured hsCRP concen-
trations were highly skewed, with many observations
below detection limit (hsCRP 0.016 mg/dl). Given this
non-normal distribution, data categorisation was re-
quired for analyses. The variable was hence categorised
into three levels separately for girls and boys, consider-
ing all children with available hsCRP measurements: all
adolescents with hsCRP levels below the detection limit
(hsCRP < 0.016 mg/dl) were grouped in the lowest cat-
egory (I); amongst those remaining, sex-specific 75th
percentiles were determined (0.085mg/dl in girls; 0.092
mg/dl in boys), and those below the 75th percentile, i.e.
girls with hsCRP < 0.085 and boys with hsCRP < 0.092
mg/dl, were assigned to the middle category (II); those
above the 75th percentile, i.e. girls with hsCRP ⩾0.085
and boys with hsCRP ⩾0.092 mg/dl, were assigned to the
upper category (III). While hsCRP values between 0.3
and 1mg/dl are usually deemed indicative of elevated
low-grade inflammation and of higher risk of CVD in
adults [66], these levels are rarely met in children [8].
Unlike in adults, the cut-offs applied in the present study
do not enable the identification of specific values on
which to define high CVD risk. Rather, they allow the
comparison between different hsCRP levels in young,
healthy adolescents, amongst whom disease risk markers
may manifest only in subclinical form. This is relevant
given that hsCRP has been associated with early CVD
risk factors like obesity [9, 10] and insulin resistance [11,
12] in children; also in the present study population,
hsCRP was significantly positively associated with body
mass index in both sexes (data not shown). This indi-
cates that even young individuals with higher hsCRP
levels with respect to their peers may be at greater CVD
risk later in life, especially since hsCRP levels track into
adulthood [15]. General consensus suggests that hsCRP
> 1mg/dl likely reflects acute infection or trauma [66].
Values > 1 mg/dl were therefore not considered for the
present analyses in order to avoid assessing acute
inflammation.

Statistical analyses
Participants from the 15-year follow-up of GINIplus and
LISA studies, with complete data on SFA intake,
accelerometer-measured physical activity, and hsCRP, were
included in the statistical analyses. Since PA was measured
only in Munich and Wesel, the study sample was limited to
participants from these two study centres. Sex-stratified as-
sociations between SFA intake and hsCRP were assessed
using multinomial logistic regression, adjusting for potential
confounders: study (GINI intervention arm; GINI observa-
tion arm; LISA), region (Munich; Wesel), parental educa-
tion (based on highest level achieved - low: ≤10th grade;
high: >10th grade), pubertal stage (based on a self-rating
Pubertal Development Scale (PDS), which has been

validated in adolescents and includes ratings on body hair
growth, voice change and facial hair growth for boys, and
body hair growth, breast development and menarche for
girls [67, 68]. For each item (except menarche which had a
yes/no response) there were four response options ranging
from “not yet started” to “seems complete”, which were
used to create pubertal stage categories: early-; mid-; late-;
post-pubertal), fasted blood sampling (yes; no), exact age at
blood sampling (years), body mass index (BMI, in kg/m2

calculated from height and weight measurements obtained
during physical examination, unless unavailable (n = 65), in
which case obtained from the 15-year follow-up question-
naire), and total daily energy intake (kcal/day).
In three additional models, separate adjustment for

the different PA levels (“sedentary”, “light” and “MVPA”)
was carried out. Interaction terms were then included
between SFA and the different PA levels. Where a sig-
nificant interaction was observed, additional analyses
were performed, stratified by tertiles of the relevant PA
level. Here, we corrected for multiple testing using Bon-
ferroni correction: the α-level was divided by three (the
number of subgroups assessed for each sex in stratified
analyses). This yielded a corrected two-sided α-level of
0.017 (0.05/3 = 0.017). Relative risk ratios (RRR) and 95%
confidence intervals (95%CI) are presented for a 1% in-
crease in SFA. The RRR indicates the risk of being in
one of the comparison groups relative to the risk of be-
ing in the reference group given a 1% change in SFA. All
analyses were conducted using R, version 3.3.2 (https://
www.R-project.org/) [69]. Multinomial logistic regres-
sion was calculated using the “multinom” function in the
R package “nnet” [70].

Results
Study population
A total of 824 participants (469 females, 355 males) were
included in the analyses (see Additional file 1: Figure S1).
Complete data on SFA intake, accelerometer-measured
PA, and hsCRP, was available for 1011 children. Partici-
pants were excluded who were lacking data for adjustment
variables (171 subjects), as well as those who reported an
illness affecting diet or inflammatory status (8 subjects, 3
with diabetes, 2 with coeliac disease, 2 with cancer, 1 with
Crohn’s disease). Children were also excluded if they pre-
sented clear outliers in SFA intakes (none) or in PA levels
(2 subjects, 1 female with MVPA = 257min/day, 1 male
with MVPA = 220min/day), as identified by visual inspec-
tion of descriptive plots. Finally, children with hsCRP
values > 1mg/dl (likely reflecting acute inflammation)
were further excluded (6 subjects with hsCRP levels ran-
ging from 1.12mg/dl to 3.86mg/dl). Basic characteristics
of the study population are displayed in Table 1. Girls and
boys presented no significant differences in hsCRP levels
(mg/dl) or in SFA intakes (%EI). In contrast, girls spent
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significantly more time in “sedentary” activities than boys,
whereas boys spent more time in “light” PA and “MVPA”,
and consumed higher amounts of daily calories.

Dietary SFA and hsCRP
Results from the multinomial logistic regression asses-
sing the association between SFA and hsCRP, including
individual adjustment for different PA levels, “sedentary”,
“light” and “MVPA”, and their interactions, are displayed
in Table 2. No statistically significant association was ob-
served between SFA and hsCRP in females, whereas
males presented an inverse association (hsCRP II vs I:
RRR = 0.873 (95%CI = 0.78; 0.98), p = 0.021), which
remained significant following further adjustment for PA

variables. A dose-response relationship was however not
indicated, as this association was observed at the middle
hsCRP (II) level but not the upper (III) level.

Effect modification by PA
While adjustment for PA levels did not influence the as-
sociation between SFA and hsCRP, significant interac-
tions with time spent “sedentary” and in “light” PA were
observed in females and males. Further analyses were
hence carried out stratified by both these PA levels. Re-
sults from the stratified analyses are displayed in Fig. 1
(exact values can be found in Additional file 2: Table S1)
. Analyses stratified by tertiles of “sedentary” time indi-
cated no association between SFA and hsCRP in either
females or males in any of the tertiles. On the other
hand, analyses stratified by tertiles of time spent in
“light” PA indicated an inverse association between SFA
and hsCRP only for male subjects in the highest “light”
PA tertile (hsCRP II vs I: 0.714 (0.57;0.89), p = 0.003).

Discussion
The present study assessed the association between diet-
ary SFA and low-grade inflammation, measured by the
inflammatory marker hsCRP, in 15-year-old German ad-
olescents. Two aspects stand out among the analyses
findings: 1) dietary SFA appears to have no association
with hsCRP levels in adolescent females and to be in-
versely associated with hsCRP in males, albeit only for
the middle hsCRP level with respect to the lowest, thus
showing no clear exposure-response relationship; 2) a
significant interaction between SFA intake and “light”
PA likely plays a relevant role, given that the inverse as-
sociation observed in males was only present among
those spending the most time in “light” PA, as indicated
by stratified analyses. Although average daily minutes of
MVPA were comparable to reports in other adolescent
populations [71, 72], it should be kept in mind that the
majority of adolescents in this study do not meet the
WHO recommendation of 60 min of MVPA per day
[73]. This is not uncommon for adolescents; according
to the WHO, over 80% of 15-year-olds in European pop-
ulations do not reach PA recommendations [74]. The
present findings are therefore relevant to underscore the
positive role of “light” PA in modifying potential inflam-
matory effects of diet in adolescents, who clearly strug-
gle to reach adequate levels of MVPA. Nevertheless,
different results might be expected in more active indi-
viduals, especially regarding interactions between MVPA
and SFA, as levels may be too low in this population to
detect significant effects.

Dietary SFA and hsCRP
The results of our analyses in females are in line with a
number of studies in adults, in which no significant

Table 1 Descriptive characteristics of the study population

Females (n = 469) Males (n = 355) P-value

hsCRP [mg/dl] 0.04 (0.02; 0.07) 0.03 (0.02; 0.07) 0.438

hsCRP catergories

I 64 (13.6) 59 (16.6) 0.492

II 312 (66.5) 227 (63.9)

III 93 (19.8) 69 (19.4)

SFA [%EI] 12.8 (3.0) 13 (2.9) 0.265

Sedentary [min/day] 602 (561; 645) 585 (531; 631) <0.01

Light PA [min/day] 241 (209; 276) 258 (224; 291) <0.01

MVPA [min/day] 34 (24; 46) 43 (30; 57) <0.01

Study

GINIplus intervention 173 (36.9) 112 (31.5) 0.057

GINIplus observation 182 (38.8) 131 (36.9)

LISA 114 (24.3) 112 (31.5)

Region [Munich] 279 (59.5) 251 (70.7) 0.001

Parental education [High] 340 (72.5) 265 (74.6) 0.540

Pubertal stage

Early 0 (0) 21 (5.9) <0.01

Mid 20 (4.3) 133 (37.5)

Late 378 (80.6) 199 (56.1)

Post 71 (15.1) 2 (0.6)

Fasting Blood [Yes] 199 (42.4) 179 (50.4) 0.027

Age [years] 15.2 (0.3) 15.2 (0.3) 0.870

BMI [kg/m2] 20.3 (18.7; 22.1) 19.9 (18.5; 22.1) 0.141

Daily calories [kcal] 1846 (563) 2406 (680) <0.01

Values are mean (sd) or median (25th percentile; 75th percentile) for
continuous variables with normal and non-normal distribution, respectively,
and n (%) for categorical variables. (I) hsCRP < 0.016 mg/dl; (II) hsCRP ⩾0.016
mg/dl and < 75th sex-specific percentile of those with hsCRP ⩾0.016 mg/dl (<
0.085 mg/dl in girls; < 0.092 mg/dl in boys); and (III) hsCRP ⩾75th sex-specific
percentile of those with hsCRP ⩾0.016 mg/dl (⩾0.085 mg/dl in girls; ⩾0.092
mg/dl in boys). Differences between females and males were tested by
Student’s t-test (means) or Wilcoxon’s rank-sum test (medians) for continuous
variables, and by Pearson’s Χ2-test for categorical variables. Significant p-values
are marked in bold (p < 0.05)
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Table 2 Associations between SFA and hsCRP categories adjusting for different PA levels (Sedentary, Light, MVPA)

hsCRP II vs I hsCRP III vs I

RRR 95%CI p-value p-int RRR 95%CI p-value p-int

Females

SFAa 0.970 0.88;1.07 0.543 0.966 0.861;1.09 0.563

+Sedentaryb 0.970 0.88;1.07 0.543 <0.01 0.967 0.861;1.09 0.565 <0.01

+Lightc 0.969 0.88;1.07 0.538 0.007 0.965 0.859;1.08 0.546 <0.01

+MVPAd 0.970 0.88;1.07 0.546 0.519 0.968 0.862;1.09 0.577 0.658

Males

SFAa 0.873 0.78;0.98 0.021 0.922 0.81;1.06 0.241

+Sedentaryb 0.879 0.78;0.99 0.027 <0.01 0.927 0.81;1.06 0.273 0.753

+Lightc 0.873 0.78;0.98 0.021 0.026 0.922 0.81;1.06 0.241 0.627

+MVPAd 0.881 0.78;0.99 0.034 0.615 0.927 0.81;1.06 0.280 0.413
aModels adjusted for study, region, parental education, pubertal stage, fasted blood sampling, exact age at blood sampling, BMI, total daily energy intake; b SFA
model further adjusted for Sedentary PA; c SFA model further adjusted for Light PA; d SFA model further adjusted for MVPA. Significant associations are marked in
bold (p-value <0.05). p-int = p-value for interaction term between SFA and each PA variable, indicated as significant (bold) when <0.05

Fig. 1 Associations between SFA and hsCRP stratified by tertiles of time spent in Sedentary activity (top plots) and in Light PA (bottom plots) in
females and males (left and right, respectively)
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association has been observed between dietary SFA and
hsCRP [32, 36, 75]. Others have reported positive associa-
tions, supporting arguments to limit SFA intake in order to
reduce cardiovascular risk [76–78]. Existing studies ad-
dressing children and adolescents are equally inconclusive.
In a sample of 79 Swiss children aged 6–14 years, total diet-
ary fat, but not one specific type of fat (mono- or poly-
unsaturated fatty acids or SFA), was directly associated with
subclinical inflammation [79]. Another study in a random
sample of 12–17-year-old girls in the Balearic Islands (n =
219), reported no association between dietary SFA and
hsCRP [80]. On the other hand, a population-based study
including 602 children aged 5–13 years in a Brazilian city,
showed a direct association between dietary SFA and high
hsCRP, defined as CRP levels > 0.1mg/dl [81]; while a study
in 359 urban Asian Indian adolescents and young adults
(87% males) observed twice the odds of having raised CRP
levels (> 0.3mg/dl) in subjects with intakes of SFA > 10%EI
[82]. The inconsistency among the various study findings
might be related to study location, which could influence
habitual dietary behaviours and patterns, sources of dietary
SFA, or even baseline hsCRP levels. With respect to this
last point, the median hsCRP levels in our study population
were 0.04mg/dl in females and 0.03mg/dl in males. Al-
though no hsCRP reference values are yet available for ado-
lescents, these levels are comparable to pre-pubertal
reference values in Europe [8]. Intakes of SFA in our study
population (around 13%EI) were also similar to intakes re-
ported in other German adolescent populations [83]. Com-
pared to the study in Asian Indians, who presented higher
average CRP values (0.13mg/dl), our results and those of
the Spanish study might suggest that dietary SFA is not sig-
nificantly relevant in females, within the ranges of hsCRP
and SFA here reported. Nevertheless, this was not sup-
ported by results from the Brazilian study, which applied a
much lower cut-off to define upper hsCRP levels (> 0.1mg/
dl) and still observed a direct association with SFA.
It is also possible that contradicting results in terms of

SFA may reflect true differences between SFA intake and
status. While the assessment of SFA intake considers the
amount of the nutrient consumed, SFA status likely re-
flects circulating SFA following additional processes
such as digestion, absorption, uptake into tissues, and
metabolism [38]. In the present analyses, we observed
an inverse association between SFA intake and middle
hsCRP levels in males. Such an association between diet-
ary SFA and hsCRP was also observed by Fredrikson et
al. in adult females [84], a finding which the authors de-
scribed as surprising. It has been proposed that the spar-
ing of SFA and endogenous de novo SFA synthesis both
contribute to SFA status and are promoted by high-
carbohydrate diets [85]. Reduced SFA intakes have been
shown to be compensated by a concomitant increase in
carbohydrate (CHO) intakes [86]. Indeed, our dietary

data presented strong negative correlations between SFA
and CHO (r = − 0.76 and r = − 0.80 in females and males,
respectively). Due to the strong correlations, adjustment
for CHO in our statistical models was not possible as
this would have led to problems of multicollinearity. We
hence emphasize that these results should be interpreted
in the context of other, possibly correlated nutrients.
High glycaemic index CHO has been reported to induce
inflammation through postprandial hyperglycaemia even
in lean, glucose-tolerant subjects [87], and several inter-
vention studies seem to support this notion [88]. A pre-
vious study including a subset of the present study
population showed that the highest contribution towards
total energy intake at age 15 years came from “refined
grains” and “sugar-sweetened foods” [57]. We therefore
speculate that increasing SFA intake likely has no direct
role in reducing low-grade inflammation per se, but
might promote a reduced inflammatory profile indirectly
through a simultaneous reduction in CHO intake. This
finding would hence support statements advocating that
it is not simply the dietary SFA content, but the entire
dietary composition, and especially the relative CHO in-
take, that determines whether SFA intake is ultimately
associated with detrimental outcomes [89].

Effect modification by PA
The inverse association between SFA and the middle
category of hsCRP, apparent in male adolescents of the
current study, was driven mainly by a specific subgroup
with high levels of daily “light” PA. To our knowledge,
this is the first study to evaluate the interaction of PA in
the association of SFA and low-grade inflammation in
adolescents, and hence comparison with other studies is
limited. Anti-inflammatory effects of habitual PA in chil-
dren have been observed [90], although a study assessing
accelerometer-measured PA in 9-year-old children re-
ported no association between PA and hsCRP [44]. None
of the different PA levels assessed were significant con-
founders in our analyses, and therefore did not alter the
inverse relationship between SFA and middle category
levels of hsCRP when included in the statistical models
as covariates. It could be suggested from the current
findings that PA exerts part of its anti-inflammatory ef-
fects through its modifying role in SFA metabolism, with
“light” PA being most relevant in this context. For a 1%
increase in energy intake from SFA in males in the high-
est tertile of “light” PA, the relative risk of being in the
middle hsCRP category vs. the lowest was reduced by a
factor of 0.714. It is possible that MVPA was too low in
our study population to induce significant synergistic ef-
fects with diet. In previous analyses of PA in the present
birth cohorts, only about 1% of the subjects achieved the
WHO recommended 60min of MVPA per day [63]. On
the other hand, it is known that the intensity of PA is
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the main factor determining the degree of CHO or fat
oxidation for fuel, and that low-intensity exercise de-
pends almost entirely on fatty acids [91]. This might ex-
plain why only “light” PA presented a significant
interaction with SFA in our analyses. It seems plausible,
that an increased capacity to metabolize lipids through-
out the day (> 4.6 h of “light” PA were undergone on
average daily in males in the highest tertile) could reduce
the levels of circulating SFA, thereby limiting a possible
pro-inflammatory response to higher SFA intakes com-
pared to less active subjects. The inverse association was
not significant in children with the highest hsCRP levels,
although a near-significant trend was present (p < 0.05).
It is possible that due to the smaller sample size and
greater variance in the highest hsCRP category, there
was insufficient power to detect a significant association.
Why the inverse association was only observed in males
is unclear, but it is possible that sex-specific physio-
logical factors might play a significant role, leading to
differences in fat metabolism and the resulting inflam-
matory profile. For example, testosterone has been
shown to enhance lipid oxidation whereas oestrogen en-
hances fat storage [92], aspects which may be relevant in
the context of the present study, especially considering
that most of the females in the sample were in late- or
post-pubertal stages. On the other hand, males were sig-
nificantly more active than females and it is possible that
females were not sufficiently active for a significant anti-
inflammatory response with higher SFA intakes in syn-
ergy with “light” PA.

Strengths and limitations
The present study benefits from a large, homogeneous
study sample, and adds to the limited literature on the asso-
ciation between dietary SFA and low-grade inflammation in
adolescents, in a time of heightened discussion concerning
SFA and cardiovascular health. Our study includes data
from over 800 individuals, greatly exceeding the size of the
few observational studies carried out thus far. Our analyses
also include the assessment of different levels of
accelerometer-measured physical activity, a method not
often available in large cohort studies. Accelerometers were
worn by participants on the hip, reported to be the best sin-
gle location to record data for activity detection [93]. Fur-
thermore, to our knowledge, the role of SFA with regards
to inflammation has not been previously assessed in the
context of different PA levels and their possible interac-
tions. The current analyses hint towards potential synergis-
tic effects of important modifiable lifestyle factors in
relation to health aspects, particularly in males. Their inter-
action may differ substantially from their individual effects
and this can be highly relevant when interpreting findings
on a topic such as SFA, on which contradicting results are
often discussed. This study focusses on a population of

healthy adolescents aged 15-years, which is not a high-risk
population. Given the low levels of hsCRP being addressed,
results are not necessarily indicative of damage nor directly
translatable to CVD risk, and hence the clinical relevance
of the present findings may seem limited. However, given
the increasing evidence for the progression of risk factors
from childhood to adulthood, preventive measures might
already consider this age group and hence associations ob-
served could provide valuable insight.
A main limitation when assessing dietary intake is the

reliance on subjective measures, which are prone to
reporting bias. In the present study the FFQ used to meas-
ure dietary SFA was designed to estimate fatty acids and
antioxidants in school-aged children [54]. Given the thor-
ough quality control of the dietary data (with plausible
values observed in terms of total energy intake), misre-
porting was likely detected and excluded from the ana-
lysis. A further drawback is the high inter-correlation
amongst different nutrients, which is often come across in
nutritional epidemiology, and if ignored could lead to in-
appropriate conclusions. Adjustment for these nutrients
within the statistical models could result in multicollinear-
ity, generating further misleading associations [94]. With
this in mind, and considering that the inclusion of an
interaction term with PA would further complicate inter-
pretation, we could not adjust for other nutrients and
hence the ability to disentangle the individual effects of
SFA is somewhat limited. Nonetheless, we are aware of
the importance of accounting for possible intercorrela-
tions and have hence considered these in the interpret-
ation of our results. A further limitation in the present
study was the underrepresentation of children from lower
social-classes. As often occurs in longitudinal cohort stud-
ies, this non-random loss-to-follow-up meant that the
current findings may not be entirely representative of the
study area. The assessment of other inflammatory markers
might have been useful to strengthen our conclusions, but
unfortunately these were not available for the studied co-
horts. Our findings are based on cross-sectional analyses,
meaning that the observed associations between dietary
SFA and hsCRP do not necessarily infer causality. Further-
more, blood-withdrawal for CRP measurements was car-
ried out at a slightly different time to dietary assessment
and accelerometry. Thus, the present analysis is based on
the assumption that dietary intake, as well as PA and CRP,
are persistent during this interval, which may not be en-
tirely the case. Nevertheless, for PA, activity measured on
non-typical days (e.g. including trips or sickness) were ex-
cluded to ensure usual activity was recorded, which more
likely represents chronic PA. In terms of dietary intake, it
was not possible to check if intakes of SFA directly prior
to hsCRP measurement were indeed the same as those re-
corded in the dietary assessment; however, our focus was
on chronic SFA intake and the FFQ was designed to
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estimate intakes over the past 12months, which includes
the time of blood withdrawal for most participants. We
assume that any drastic changes in diet between FFQ
completion and blood withdrawal are unlikely, although it
cannot be entirely excluded. Nevertheless, changes occur-
ring in either lifestyle behaviour would have occurred at
the individual level, and hence any bias due to such
changes are expected to be random, not affecting the gen-
eral trend observed. Furthermore, the analyses were
adjusted for age, which partially accounts for season, as
participants were invited to follow-up assessments 2–4
weeks before their birth month, with the aim of limiting
systematic bias.

Conclusion
From the present analyses, it can be concluded that a
higher SFA intake during adolescence, within the ranges
observed in the current study, is not detrimental in
terms of inflammatory processes in adolescents; al-
though we highlight that this may well depend on the
nutrient it replaces. Furthermore, the inflammatory role
of SFA might be modulated by the amount of daily
“light” PA. Adolescent males with higher SFA intakes,
who also participated in greater amounts of “light” PA,
presented lower levels of hsCRP than their less active
peers. We propose that when evaluating the role of SFA
in chronic inflammation, it is essential to differentiate
between findings involving SFA status (in serum or
plasma) and those assessing dietary SFA, as the latter is
likely influenced by important modifiable factors such as
PA, which may determine whether an inflammatory
response arises.
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