THE UNITED NATIONS: AN UNCONSTRAINED BUREAUCRACY

JAMAL MUNSHI

ABSTRACT: The United Nations is financed mostly by taxpayers from a few donor countries but the large and growing bureaucracy is too far removed from those taxpayers to be directly accountable to them. It is run by unelected, unaccountable, undisciplined, and incompetent bureaucrats. The organization’s size, budget, and scope are unconstrained. The budget funding process provides perverse incentives for these bureaucrats to increase the size and scope of their organization simply by creating multitudes of agencies and programs, and by inventing problems and environmental crises set on a global scale.1

1. INTRODUCTION

Conventional corruption is either a form of bribery in which funds are voluntarily paid to receive better than fair treatment; or a form of extortion in which funds must be paid to receive fair treatment under the threat of worse than fair treatment (Munshi, 2000). However, the greater problem at the UN goes well beyond this narrow definition. It involves a structural weakness that allows it to grow at will by creating new agencies and programs and thereby to amass and abuse ever increasing amounts of taxpayer funds without constraints (Schaefer, 2012). Funding is approved by the UN General Assembly where the vast majority of members are not donor countries. The General Assembly does not represent the taxpayers whose taxes it has the power to spend. Such structural weaknesses in a public sector enterprise are easily exploited (Oates, 1985) (Alper) (Munshi, 2000). In this short note we examine the abuse of taxpayer funding by UN agencies in a case study format (Eisenhardt, 1989) (Longenecker, 1996) (Munshi, 1990). The case study takes a close look at the United Nations Environment Program (UNEP) by tracing its history from its humble and noble beginnings to the phenomenal growth in size, wealth, reach, and power of this taxpayer funded public sector bureaucracy.

1 Date: June 2016
Author affiliation: Professor Emeritus, Sonoma State University, Rohnert Park, CA, 94928, munshi@sonoma.edu
Keywords: corruption, United Nations, UN, UNEP, IPCC, UNFCCC, bureaucracy, accountability, ozone depletion, Montreal Protocol, global warming, AGW, climate change, Kyoto Protocol
2. THE UNITED NATIONS ENVIRONMENT PROGRAM (UNEP): A CASE STUDY

2.1 Background Information

The United Nations was conceived in 1941 by Franklin Roosevelt and Winston Churchill and after further meetings among the allies in the next four years it was formalized with a charter in 1945 at the United Nations Conference on International Organization (UNCIO) into a 51-nation organization in the context of a post-war world polarized both by World War II and by an emerging Cold War tension among the victors of the war just concluded. Initially, the UN consisted of just three components – the General Assembly, the Secretariat, and the Security Council. Within a few years the membership grew to 192 members. New agencies and special programs began to form, and independent international bodies were brought into the family of United Nations agencies. Also, all UN agencies were given the power to form their own specialized agencies and programs. This organizational structure gave rise to a large and complex hierarchy of UN entities. The rapid growth in the size, complexity, and reach of the UN was funded by a corresponding growth in the regular budget of the growing bureaucracy (Schaefer, 2012). The growth in the UN budget is compared to the growth in the US budget in Figure 1. The graph shows budget amounts in constant 2005 dollars for two-year periods from 1946-1947 to 2010-2011 as multiples of the budget in 1946-1947. It is clear to see that growth in the UN budget outstripped growth in the US budget. The UN budget for 2010-2011 was 12.6 times its budget for 1946-1947 in constant dollars corrected for inflation. The corresponding figure for the US budget is 8.8 times. The UN data were derived by Brett Schaefer from the US Budget (GPO, 2012) (Schaefer, 2012) and the US data are taken from the historical budget record published by the US government (BUDGET.GOV, 2015). All data and computational details used in this paper are available for download from an online data archive (Munshi, 2016).

Figure 1: The growth of the inflation adjusted UN and US budgets compared 1946-2010

2 Moscow, Tehran, Washington, Yalta, San Francisco
3 they gained a permanent home in New York by 1951
4 Except for the World Trade Organization which remains independent
5 The regular budget does not include peacekeeping operations and contributions earmarked for special agencies
6 Two-year periods are used to be consistent with UN data from 1974 to 2011.
The number of agencies and programs and their bureaucratic acronyms, mostly along the lines of national governmental structures, began to multiply almost immediately after the conclusion of the UNCIO. They included the International Court of Justice (ICJ), the World Bank (WBG), the International Monetary Fund (IMF), the International Atomic Energy Agency (IAEA), the United Nations Educational, Scientific and Cultural Organization (UNESCO), the United Nations International Children’s Emergency Fund (UNICEF), the Inter-American Treaty of Reciprocal Assistance (IACHR), the World Health Organization (WHO), the United Nations Commission on Human Rights (UNCHR), the Convention on the Prevention and Punishment of the Crime of Genocide (CPPCG), the UN Relief and Works Agency (UNRWA), the World Meteorological Organization (WMO), the UN High Commissioner for Refugees (UNHCR)\(^7\), the World Food Program (WFP), the United Nations Conference on Trade and Development (UNCTAD), the Industrial Development Organization (UNIDO), the United Nations Population Fund (UNFPA)\(^8\), the UN Statistical Division (UNSD), the International Comparison Program (ICP)\(^9\), Convention on the Means of Prohibiting and Preventing the Illicit Import, Export and Transfer of Ownership of Cultural Property (by UNESCO), the Convention Concerning the Protection of the World Cultural and Natural Heritage (by UNESCO), the International Maritime Organization (IMO), Convention on the Dumping of Wastes at Sea (of the IMO), the Food and Agriculture Organization (FAO), UN World Food Conference (of the FAO), the United Nations Development Program (UNDP), International Women's Day (IWD), the International Bill of Human Rights and the Universal Declaration of Human Rights (UNUDHR), United Nations Office of the High Commissioner of Human Rights (OHCHR), International Covenants on Civil and Political Rights and Economic, Social and Cultural Rights (operated OHCHR), World Heritage Centre (by UNESCO), International Year of the Child (by UNESCO), UN Convention on Elimination of All Forms of Discrimination Against Women (CEDAW), UN Convention on Certain Conventional Weapons (CCW), United Nations Day, International Day of Peace, The UN Law of the Sea (UNCLOS), Convention Against Torture (of the OHCHR), the UN Convention on Int’l. Trade in Endangered Species (CITES), the UN Convention on the Rights of the Child (UNCRC), Change for Good operation to help support the Children’s Fund, Rio Earth Summit and the UN Convention on Biological Diversity dedicated to promoting sustainable development, World Day for Water, The Association of Cambodian Local Economic Development Agencies (ACLEDA), Memory of the World Program (by UNESCO), the Hague International War Crimes Tribunal, the Int’l. Criminal Tribunal for Rwanda (ICTR), the Nuclear Non Proliferation Treaty (NNPT), The Beijing Platform of 1995, UNAIDS, a joint United Nations Program on HIV/AIDS, the Organization for the Prohibition of Chemical Weapons (OPCW), UN Int’l. Covenant on Economic, Social and Cultural Rights, the UN Office for the Coordination of Humanitarian Affairs (OCHA), the United Nations Convention against Corruption or UNCAC, the United Nations Environment Program (UNEP), the Montreal Protocol, UNEP Ozone Secretariat, the Kyoto Protocol on global warming, the Renewable Energy Policy Network (RENEW21), the United Nations Framework Convention on Climate Change (UNFCCC), the Conference of Parties (COP), the Intergovernmental Panel on Climate Change (IPCC), Sustainable development goals (SDG), Agenda 21, United Nations Environment Assembly (UNEA), UNEP Climate Action, and a few others.

\(^7\) Not to be confused with the UNCHR
\(^8\) To limit population growth (Ehrlich, 1971)
\(^9\) A subsidiary of the UNSP
2.2 The Birth of the UNEP Family

The rapid industrial and economic growth in the post-war era progressed mostly without adequate safeguards against environmental degradation. This situation became sensationalized through a series of high profile events that captured public attention. The wanton use of pesticides such as DDT was blamed for killing butterflies and birds (Carson, 1962). The explosive growth in automobile ownership shrouded large cities like Los Angeles and New York in smog (Gardner, 2014) (Haagen-Smit, 1952) (Hanst, 1967). The widespread dumping of industrial waste into lakes and rivers was highlighted by events such as the fire in the Cuyahoga River (Marris, 2011) (Goldberg, 1979).

The hippie counter-culture movement of the 1960s rejected many conventional values and in particular, the assumed primacy of technological advancement and industrial growth. It opposed the unrestricted use of pesticides, herbicides, preservatives, food additives, fertilizers, and other synthetic chemicals. It fought against the release of industrial waste into the atmosphere and into waterways, the harvesting of old growth forests for the wood and paper industries, and the inadequacy of public transit that could limit the number of automobiles in big cities and the air pollution they cause (Rome, 2003) (Zelko, 2013). This environmental movement led to the formation of the Environmental Protection Agency (EPA) in the USA which was given the laws, the ways, the means, and the power to act quickly and decisively to clean up the air and water (Ruckelshaus, 1984). In Canada, a Ministry of Environment was created with the same mandate. It has since been renamed as the Ministry of Environment and Climate Change.

The EPA cleaned up the air and the water in the USA with strictly enforced new laws and procedures that limited the concentration of harmful chemicals in all industrial effluents and also required all new enterprises to obtain the approval of the EPA of their environmental impact before they could proceed. The remarkable success of the EPA made it a model for environmental law and environmental protection in counties around the world (Ruckelshaus, 1984) (Andreen, 2004) (Dolin, 2008).

It was in this context that renowned Canadian environmentalist and visionary Maurice Strong saw the need for a global version of the EPA that could work at a planetary level with a global reach unhindered by national boundaries (Ward, 1972). He convened the UN meeting on the environment in Stockholm in 1972. The United Nations Environment Program (UNEP) was conceived in Stockholm and soon thereafter approved by the UN General Assembly with Maurice Strong as its first Executive Director (Bodansky, 2001) (Ball, 2015). The UNEP quickly became the nucleus of a large and growing cluster of United Nations agencies, secretariats, programs, frameworks, conventions, protocols, and conferences. As of this writing they include the Montreal Protocol, the Ozone Secretariat, the Kyoto Protocol, the United Nations Framework Convention on Climate Change (UNFCCC), the Intergovernmental Panel on Climate Change (IPCC), Sustainable Development Goals (SDG), Agenda 21, United Nations Environment Assembly (UNEA), UNEP Climate Action, and long sequence of Conference of Parties (COP) annual meetings starting with COP1 in 1995 to COP21 in 2015.
2.3 Planetary Environmentalism: Ozone Depletion

For the UNEP to achieve its ambition of being the EPA for the world it needed a global catastrophic pollution problem which it could tackle and clean up just as the EPA had cleaned up the air and water in the USA. A series of events that began in the 1970s and culminated in 1985 provided them with just such an opportunity.

In the 1970s, environmentalist James Lovelock, the man who had invented the idea of environmentalism on a planetary scale in terms of the Gaia hypothesis (Lovelock, 1972) was concerned about the atmospheric release of halogenated hydrocarbons (HHC) that were used as refrigerants, as propellants for household liquids such as hairspray, and as fumigants in agriculture. His concern was that these man-made chemicals did not otherwise occur in nature and that they were chemically inert. The latter property implied that their release into the atmosphere, even at modest rates, could cause dangerous accumulation. This idea was empirically verified when Lovelock found these chemicals in air samples taken in the middle of the North Atlantic.

Nobel Laureates Frank Rowland and Mario Molina working at the University of California at Irvine were intrigued by Lovelock’s findings and described a mechanism in which the long life in the atmosphere of chemically inert HHC could transport them by way of atmospheric circulations to the stratosphere where the spectrum of solar irradiance can cause them to become catalytic agents of ozone destruction for up to 150 years after their release into the atmosphere (Molina, 1974). The catalytic mechanism involves an intermediate step in which chlorine released from HHC causes ozone to dissociate.

Stratospheric ozone is formed and destroyed by solar irradiance above the tropics in what is known as the Chapman Cycle (Chapman, 1930) (Fisk, 1934) (Dütsch, 1979). High energy UVC radiation causes oxygen to dissociate into charged free radicals and their chance collision with oxygen forms ozone. Their chance collision with ozone causes ozone destruction; but the much higher probability of collisions with oxygen creates an equilibrium inventory of ozone in the stratosphere. The equilibrium inventory is lowered somewhat by UVB radiation which destroys ozone. In that process UVB becomes completely absorbed in the stratosphere thereby saving life on the surface of the earth from the harmful effects of UVB radiation (Beder, 1993) (Caldwell, 1986) (DeGrujil, 1999) (Armstrong, 2001) (Cullen, 1994) (Allen, 1998) (Tevini, 1989). It is in this context that we can understand the fear of ozone depletion by anthropogenic air pollution as described by Rowland and Molina in terms of the Lovelock data. If HHC emissions cause ozone depletion in the stratospheric ozone layer, the equilibrium inventory of ozone will decline and compromise the ability of the ozone layer to protect us from UVB radiation.

10 Methyl bromide was a widely used agricultural fumigant
11 Catalytic agents are not consumed in the chemical reactions in which they participate
12 And only above the tropics
13 100-280 nm
14 280-315 nm
HHC emissions can thus be seen as a kind of air pollution on a planetary scale. This kind of planetary air pollution together with its adverse effects on the biosphere on a global scale was just the kind of thing that the UNEP needed not only to justify its existence but to grow in size, importance, and funding. In 1977 the UNEP initiated a new program called the World Plan of Action on the Ozone Layer. However, they would have to wait for empirical evidence that stratospheric ozone was indeed being depleted before they could get funded for carrying out such a plan.

They did not have to wait long. In 1985, the British Antarctic Survey (BAS) published a landmark paper that showed that total column ozone (TCO) measured near the South Pole during the southern spring months of October and November were dramatically lower in the period 1980-1984 than they were in the period 1957-1973 (Farman, 1985). The difference was ascribed to the Rowland-Molina mechanism of ozone depletion and thereby to global emissions of HHC. The UNEP seized this opportunity to assume the role of the environmental protection agency for the planet that could save the world from ozone depletion, dangerous UVB radiation, and skin cancer epidemics (Beder, 1993) (Litfin, 1994).

The UNEP responded to the Farman paper almost immediately by convening the Vienna Convention for the Protection of the Ozone Layer in 1985 which established the idea of an international cooperative effort against ozone destruction by anthropogenic air pollution. As expected, the Vienna Convention appointed the UNEP as the United Nations agency in charge of the program. The Montreal Protocol of 1987, the Helsinki Declaration of 1989, and the London Meeting of the Parties to the Montreal Protocol of 1990 followed in the heels of the Vienna meeting to coordinate and fund a UNEP program to ban the production, sale, and atmospheric release of man-made chemicals identified by the UNEP as ozone depleting substances (ODS) (Rowlands, 1993) (Morrisette, 1989).

In 1991 a Multilateral Fund was set up for this effort and an Ozone Secretariat was established to carry out the plan. The fund greatly enhanced UNEP’s financial and political power and the size of its bureaucracy. The funding pattern is depicted graphically in Figure 2 with the amounts inflation adjusted and converted to constant 2005 dollars. In addition to the direct funding of more than $5 billion in constant 2005 dollars given to the UNEP to save the ozone layer from ODS, society bore many billions more in the socio-economic cost of the ban.

The rush to action, justified by the UNEP using the precautionary action principle, came at the expense of scientific rigor. The flaws in the conclusions drawn from the BAS data (Farman, 1985) were presented in prior works on the subject of ozone depletion (Munshi, Latitudinally Weighted Mean Global Ozone, 2016) (Munshi, Mean Global Total Ozone from Ground Station Data, 2016). The entirety of the Chapman ozone chemistry including the proposed Rowland-Molina theory of ozone destruction by chlorine takes place above the tropics and not at the greater latitudes. For evidence of changes in the kinetics and equilibria in these reactions one should look at the tropics or at global means and not rely exclusively on data from the South Pole (Munshi, An Empirical Test of the Chemical Theory of Ozone Depletion, 2016).

15 TCO is about 90% stratospheric ozone and 10% tropospheric ozone and trends in TCO may be interpreted in terms of trends in stratospheric ozone (Ziemke, 1998)
16 The precautionary principle is explained by William Colglazier in a climate change context (Colglazier, 1991)
Yet, the ozone depletion crisis was sold purely on the basis of the size of the ozone hole above the South Pole possibly because the data for the tropical region do not show any evidence of ozone depletion (Munshi, An Empirical Test of the Chemical Theory of Ozone Depletion, 2016).

The ozone hole is a region above Antarctica where TCO is less than 200 DU\(^{17}\). It should be mentioned that the ozone hole is not a “hole” but a region where ozone levels are considered to be low based on an arbitrary criterion\(^{18}\). The size of the ozone hole contains both a seasonal cycle and apparent decadal or multi-decadal cycles without a clear long term trend that can be interpreted either in terms of ozone depletion or in terms of the success of the Montreal Protocol in arresting ozone depletion. Yet the UNEP along with NASA and the NOAA have used these data to declare that the Montreal Protocol was successful in solving the ozone depletion crisis many decades ahead of the time frame needed for such a success in terms of the “long life” of HHC that serves as the foundational concept in the Rowland-Molina theory of ozone depletion (Parry, 2011) (UNEP, 2007) (NOAA, 2010).

Ozone is formed only above the tropics where solar irradiance is direct. The reason that we find ozone at mid and polar latitudes is that it is taken there from the tropic by atmospheric circulations such as the Brewer-Dobson Circulation (Brewer, 1949). Seasonal and inter-annual changes in these circulation patterns are well known and well documented (Rabbe, 1992) (Kozubek, 2012) (Tegtmeier, 2008). Under these conditions it is not possible to interpret changes in TCO in Antarctica in terms of only the Rowland-Molina mechanism of ozone depletion. Changes in TCO due to the changes in the efficiency and extent of distribution of ozone from the tropics to these latitudes must also be considered particularly so in the polar latitudes. The evidence shows that the distributional efficiency of the Brewer-Dobson Circulation declines beyond the 60\(^{th}\) parallel particularly in the Southern Hemisphere. This meridional pattern is depicted graphically in Figure 3. The three panels in Figure 3 show the seasonal maximum and minimum values, the seasonal range, and the deseasonalized means across latitudes from 90\(^{o}\)S to 70\(^{o}\)N.

\(^{17}\) Dobson Units

\(^{18}\) The threshold of 200 DU is only 50 DU less than the average TCO of 250 above the tropics
In view of the dynamic nature of the global distribution of TCO and the spherical shape\(^{19}\) of the planet the appropriate metric for an empirical test of the Rowland-Molina theory of ozone depletion is the latitudinally weighted mean global ozone because it can serve as a measure of the total TCO inventory of the world (Gleisner, 2011). The Rowland-Molina theory implies a declining trend in this measure. In prior studies two attempts were made to detect this declining trend – one with satellite data and one with ground station data for TCO. No evidence of ozone depletion was found in either study (Munshi, Latitudinally Weighted Mean Global Ozone, 2016) (Munshi, Mean Global Total Ozone from Ground Station Data, 2016). In view of these findings, a possible explanation of the apparent early success of the Montreal Protocol is that it is a solution to a non-existent problem.

In view of the data presented here and in the prior studies we would like to think that the theory of ozone depletion by HHC and the ban on HHC to save the ozone layer are derived from bad science by good people who felt that they had to act quickly in accordance with the precautionary principle. However, because of the enormous gains made by the UNEP in implementing a program to solve a non-existent problem and in view of a history of corrupt practices at the UN (Zaruk, 2014) (Ball, 2015) (Lynch, 2006) (Schaefer, 2012) (Dewar, 1995) (Rossett, 2006) (Rossett, 2008), intentional fraud and corruption for financial and bureaucratic gains by the United Nations cannot be ruled out.

\(^{19}\) It is acknowledged that the earth is not a perfect sphere
2.4 Planetary Environmentalism: Climate Change

Fossil fuels are hydrocarbons taken from deep under the ground where they had been sequestered from the surface-atmosphere carbon cycle for millions of years. Their combustion introduces \textit{new extraneous carbon} into the delicately balanced surface-atmosphere carbon cycle and climate system. A perturbation of the surface-atmosphere system that can be ascribed to fossil fuel emissions is therefore an anthropogenic effect on climate that is unnatural, unprecedented, and possibly catastrophic. This observation has concerned scientists ever since the Industrial Revolution started a steep and exponential increase20 in fossil fuel emissions (Callendar, 1938) (Revelle, 1956) (NAS, 1977) (Hansen, 1981) (Hansen, 1988) (IPCC, 2007) (IPCC, 2014) (Hansen, 2016).

The proposed mechanism of this perturbation is that fossil fuel emissions increase the CO\textsubscript{2} concentration of the atmosphere and that the change in atmospheric composition increases its greenhouse effect. This mechanism implies that fossil fuel emissions should cause global warming (Lacis, 2010). However, faced with a 30-year cooling trend in the 1940s to the 1970s, NASA scientists Rasool and Schneider suggested that the aerosol effect of fossil fuel combustion overcomes the greenhouse effect and predicted global cooling instead of global warming (Rasool, 1971). The warming mechanism gained the upper hand and emerged as the climate science orthodoxy when the 30-year cooling trend ended and a warming trend began in 1976 (NAS, 1977) (Hansen, 1981). It became sensationalized in terms of melting polar ice caps, rising seas, extreme weather, social unrest, and mass extinctions in a New York Times article after the 1988 Congressional Testimony of James Hansen (Shabecoff, 1988) (Hansen, 1988). This event in 1988 marks the beginning of the modern era of the climate change narrative with the warming orthodoxy having survived the so called hiatus period since 1998 (Karl, 2015) (Nieves, 2015).

\textbf{Figure 4: The cooling, warming, and hiatus multi-decadal temperature trends (HADCRUT, 2016)}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{cooling_warming_hiatus.png}
\end{figure}

20 Fossil fuels were used for heating prior to the Industrial Revolution in relatively insignificant amounts.
For the UNEP the frightening new global warming and climate change narrative served as yet another planetary air pollution crisis in which it could seize global leadership and grow in terms of size, funding, and power at the expense of taxpayers in donor countries. In this case, the global “air pollutant” was identified as the unnatural and extraneous new carbon dioxide from the combustion of fossil fuels. The UNEP responded to the events of 1988 almost immediately. It saw its opportunity and seized it having tasted great success in this kind of situation in the case of HHC pollution and ozone depletion. In that case it had set up the Montreal Protocol to ban the production, sale, and atmospheric release of HHC at great cost to taxpayers and to society at large and was given credit or having solved a problem that they had invented (Munshi, Latitudinally Weighted Mean Global Ozone, 2016). Emboldened by that success it would now attempt to apply the same strategy to ban fossil fuel emissions (VanDyke, 2010). The essential formula is that taxpayers can be scared into funding new programs. The Montreal Protocol serves as a business model for the fear mongering business in which it is necessary only to convince taxpayers that (1) the planet needs to be saved from an imminent crisis and (2) the UNEP can do that job given sufficient funding, bureaucratic growth, and bureaucratic power. The credibility of this business model is underwritten by the success of the Montreal Protocol (VanDyke, 2010).

The UNEP began by creating a new United Nations agency to be called the Intergovernmental Panel on Climate Change (IPCC). It was formed and approved by the General Assembly in 1988, the same year that the Hansen testimony and the New York Times story had raised public awareness and fear of catastrophic anthropogenic global warming and climate change (CAGW). The UNEP cooperated with the WMO in this venture since climate was an important part of this global air pollution crisis. The IPCC was established with an initial cash outlay of 74.6 million CHF\(^{21}\) for the period 1988-2004 with additional annual funds of five to eight million CHF thereafter in nominal terms (IPCC, 2016). Millions more were made available as “in kind” contributions mostly in the form of facilities and personnel. Of note is the “in-kind” contribution of the WMO in providing office space to the IPCC at their headquarters in Geneva, Switzerland\(^{22}\)

\(^{21}\) About $55 million USD in nominal terms in 1988

\(^{22}\) The UNFCCC secretariat was later moved to Bonn, Germany
The purpose of the IPCC is to provide a functional link between climate scientists and governments so that government policy around the world to tackle climate change will be coherent, cooperative, and consistent with the current state of climate science (IPCC, 2016). The IPCC carries out this function in two highly visible ways. First, they are required to publish a report every five or seven years to “synthesize” the current state of climate science into an “assessment report” (AR). About four thousand people (experts, contributing authors, and lead authors) are involved in writing these reports. They are divided into three parts prepared by three different groups of authors known as Working Groups (WG). WG1 synthesizes the current state of climate science from hundreds of peer reviewed publications. WG2 develops scenarios and long term forecasts in terms of the possible consequences of climate change that are consistent with the synthesis by WG1. Lastly, WG3 develops the policy implications of the impact assessments by WG2 in terms of both mitigation and adaptation (IPCC, 2016).

This information chain connects climate science to policy making at all levels of government around the world. The chain may be described as climate science → WG1 → WG2 → WG3 → governments. As of this writing five voluminous reports have been published by the IPCC. They are AR1 in 1990, AR2 in 1996, AR3 in 2001, AR4 in 2007, and AR5 2014 (IPCC, 2016). Each of these releases has been given a great deal of media coverage but the system has mostly failed to change the course of government policy (Manne, 2013) (The Scientific Alliance, 2010) (Jamieson, 2014) (Climate Science Policy, 2014).

The second major visible activity of the IPCC has been a series of high profile annual meetings with intense media coverage. These meetings are called Conference of Parties (COP). They are held at different venues around world to enforce the WG3 policy recommendations upon national governments in the form of an international treaty as a way of replicating their success in the Montreal Protocol meetings (VanDyke, 2010). About 30,000 to 40,000 delegates from more than 190 countries attend these week-long meetings at taxpayer expense. Most of the delegates are from countries that are irrelevant in terms of mitigation (McSweeny, 2015). The intensity of media coverage of these meetings is depicted graphically in Figure 6 which shows the number of climate change stories in newspapers worldwide before, during, and after COP15.

Figure 6: Media coverage of IPCC COP15 in Copenhagen, 2009

![Graph showing media coverage of IPCC COP15](image-url)
The first such meeting was held in Geneva in 1990 immediately after the release of AR1 (UNFCCC, 1993). The meeting concluded that fossil fuel emissions are increasing the atmospheric concentrations of greenhouse gases and called for worldwide restrictions on such emissions along the lines of the ban on ozone depleting substances in the Montreal Protocol. However, no mechanism existed for the IPCC to make such a demand. The primary outcome of this meeting was therefore the need for a United Nations “Framework Convention on Climate Change” (UNFCCC) to serve as a basis for a global treaty to reduce fossil fuel emissions. This framework convention was formulated by a committee of delegates from 150 nations immediately following the 1993 meeting. The emission reduction formula contained in the UNFCCC recognizes "common but differentiated" responsibilities of developed and developing countries.

Two years later in 1992 the “Rio Earth Summit” was held in the seaside resort city of Rio de Janeiro, Brazil where delegates from all UN member nations convened to sign the UNFCCC into force. Two additional “framework conventions were tagged on to the UNFCCC and these too came into force at the Rio Earth Summit23. The UNFCCC entered into force along the lines of an international treaty in 1994. The 196 United Nations member countries that signed the treaty, known as Parties24 agreed to meet annually at “Conferences of the Parties” or COP to implement a coordinated plan for cutting fossil fuel emissions. The stage now appeared to be set for an attack on fossil fuel emissions along the lines of the success of the Montreal Protocol in banning ozone depleting substances (VanDyke, 2010). This was probably the most optimistic and self-serving moment for the UNEP and the IPCC.

The third of the COP meetings (COP3) under the framework of the UNFCCC was held at Kyoto, Japan in 1997. It appeared to be a major breakthrough for the UNEP’s attempt to duplicate their apparent ozone success in the new arena of climate change. The Kyoto Protocol signed by 192 countries harkened back to the Montreal Protocol signed ten years earlier. Like the Montreal Protocol, the Kyoto Protocol was a treaty that enforced concrete obligations on signatories. In the case of the Montreal Protocol the obligation involved phased elimination of the production, sale, and atmospheric release of chemicals identified as ozone depleting substances by all Parties25. In the case of the Kyoto Protocol the obligation was a phased reduction in fossil fuel emissions but it did not apply equally to all Parties.

In accordance with the “common but differentiated responsibilities” principle of the UNFCCC, the Parties26 were segregated into three groups defined as Annex 1 (developed and industrialized countries including the transition economics of the former Soviet Union), Annex 2 (Annex 1 minus the transition economies), and Non-Annex-1 (developing countries) (UNFCCC, 2014). The Annex 1 and Annex 2 Parties committed to defined emissions reduction by 2012 as a percent of emissions in 1990. The Annex 2 Parties further committed to providing undefined financial and technological assistance to the Non-Annex-1 Parties to pursue undefined activities having to do with mitigation and adaptation.

23 the UN Convention on Biological Diversity (UNCBD) and the Convention to Combat Desertification (UNCCD)
24 A party to the UNFCCC agreement
25 signatories
26 countries
To complicate matters further, the Non-Annex-1 Parties were further divided into three sub-groups. They are (1) Non-Annex-1 but not vulnerable to the effects of climate change, (2) Non-Annex-1 and vulnerable, and (3) Least Developed Countries (LDC). The three sub-groups differed with respect to obligations towards the global effort to tackle climate change and with respect to claims for financial and technological assistance from the Annex-2 Parties (UNFCCC, 2014). Yet another classification exists for Small Island Developing States or SIDS (UNEP, 2004) which was created as a special program of the UNEP to address issues specific to SIDS (Zaruk, 2014). The complexity of the classification of Parties and their role in the Kyoto Protocol is a hindrance to reaching meaningful agreements that can be implemented but it may serve other needs of a bureaucracy with little accountability or oversight (Zaruk, 2010).

The Montreal Protocol and the Kyoto Protocol are superficially similar and the intent of the UNEP was that the Kyoto Protocol would duplicate the much heralded success story of the Montreal Protocol and apply it to the job of tackling climate change in terms of both mitigation and adaptation. However, this expectation is unrealistic because of a fundamental difference between the two Protocols. While the Montreal Protocol imposed well defined and phased compliance targets by all Parties, the Kyoto Protocol does not. The complex and ill-defined segregation of parties and their obligations has turned into a giant bewildering bureaucratic puzzle. The Kyoto Protocol is a treaty that cannot be implemented because of complexities put into it by incompetent bureaucrats.

The complexity worsened when rapid economic growth in certain Non-Annex-1 Parties particularly China, India, and Indonesia, made them together the largest single source of fossil fuel emissions in the world (EPA, 2016). Since then 18 annual UNFCCC COP meetings have been held in Buenos Aires, Bonn, The Hague, Marrakesh, New Delhi, Milan, Montreal, Bali, Poznan, Copenhagen, Cancun, Durban, Doha, Warsaw, Lima, and Paris at a huge cost to taxpayers particularly in the donor countries – but they failed to solve the bureaucratic Gordian Knot that they had themselves created. The very costly effort by the UNEP/UNFCCC/IPCC bureaucracy to address the climate change crisis attributed to fossil fuel emissions has failed (Manne, 2013) (The Scientific Alliance, 2010) (Jamieson, 2014) (Climate Science Policy, 2014).

The failure implies that climate change is not an issue that can be addressed by United Nations agencies such as the UNEP and the IPCC. These agencies can safely be disbanded without any harm to the environment or to society at large (Zaruk, 2014) (Zaruk, 2010). The primary task of dealing with climate issues should reside with national governments. All national governments possess appropriate mechanisms to assist policymakers with the implications of climate science. International issues in climate change may be brought to the United Nations General Assembly or to existing and well-functioning international organizations such as the G7, G20, OECD, and the EU. Technical issues may be addressed at regional and global scientific conferences. Bilateral and multilateral agreements and treaties may be used to address specific issues (Baxter, 1965) (Zawahri, 2011) (Pauwelyn, 2003). That a UN agency can act as an international policeman to mitigate climate change has been tried. It failed.

27 But false
28 As of this writing
2.5 A Critical Evaluation of the IPCC Assessment Reports

Although the IPCC was set up as an independent and neutral scientific body to objectively synthesize the current state of climate science purely on its merits and to translate that information into possible impacts and their policy implications, no UN oversight mechanism existed to ensure its objectivity or to audit the scientific credibility of its work. Possibly due to outside influences, the organization quickly turned into an advocacy group for CAGW with their AR documents closely following the Hansen narrative describing the catastrophic consequences of fossil fuel emissions (Hansen, 1988) (Hansen, 2016) (IPCC, 2007) (IPCC, 2014). There is no mention of opposing views or of alternative interpretations of the data in these documents. Large uncertainties in natural flows and in the various estimates of the so-called “climate sensitivity” parameter were downplayed. The range of values of uncertain variables are reported as 90% Confidence Intervals (CI) even after the National Academy of Sciences published “Revised standards for statistical evidence” that implied that the appropriate CI should be greater than 99% (Johnson, 2013). Errors in past forecasts were ignored and successive AR reports continued to increase the extent of climate catastrophe in their forecasts.

The IPCC AR reports are biased. They are primarily concerned with selling the idea of climate change calamity and its mitigation by emission reduction. Their use of science is limited to its utility in supporting that primary purpose. The bias in IPCC AR documents is documented in a 2010 commentary by the Netherlands Environmental Assessment Agency which took it upon itself to audit the IPCC AR4 WG2 forecasts and concluded that “The IPCC systematically favors adverse outcomes in a way that goes beyond serving the needs of policymakers.” (PBL, 2010). Some points from the PBL audit are summarized below.

1. Exaggeration: The area in the Netherlands that the IPCC said was at risk of flooding by the sea was exaggerated.
2. A systemic tendency by the IPCC to stress negative effects of climate change and to ignore positive effects to the point of a built in misleading bias in the IPCC reports.
3. A systemic tendency to make generalized statements that actually refer to localized data:
 Example 1. The statement that “by 2020 in some countries yields from rain fed agriculture could be reduced to 50%” was based on a paper that was specific to Morocco. Also the paper said that the 50% reduction in yields would occur only in drought years and not in other years. This information was left out of the IPCC report and the yield reduction was generalized to all years.
4. A systemic tendency to make generalized statements that actually refer to localized data:
 Example 2. A statement in a source document about lower yields of millet, groundnuts, and cowpeas in Niger was generalized by the IPCC to the entire Sahel region and to all crops.
5. A systemic tendency to make generalized statements that actually refer to localized data:
 Example 3. A statement in the source document specific to cattle in Argentina was generalized by the IPCC to all livestock in all of South America.

29 The relationship between atmospheric CO2 concentration and surface temperature
6. Statements are made without any supporting data or references: Example 1. The claim by the IPCC that fresh water availability in southern and eastern Asia will decline is not supported by data or by a citation.

7. Statements are made without any supporting data or references: Example 2. The claim by the IPCC that in balance the net health effect of global warming in Europe will be negative is not supported by data or by a citation.

8. Bad news bias: Where an alarmist statement is supported by a citation, the IPCC interpretation is more alarmist than the text in the citation.

9. Bad news bias: The IPCC report tends to be unremittingly about the harmful impacts of climate change. There is a complete absence of beneficial impacts.

10. Vulnerability bias: Countries classified by the IPCC as vulnerable are asked to make a self-assessment of their vulnerability. These self-assessments are included in the AR without modification. It is known that vulnerability is directly proportional to adaptation funding from Annex-2 countries. The opportunity and motivation for bias in these self-assessments are ignored by the IPCC.

11. The alarming and negative impression of IPCC reports on their readers would not exist if the IPCC presented the source material without bias and with a more narrow and objective interpretation without injecting the authors’ judgment.

12. Statistical fraud: A rise in heat related deaths in Australia is presented by the IPCC as due to rising temperatures. This rise disappears if we look at heat related deaths as a percent of population. This means that the IPCC misrepresented a population effect as a global warming effect. However, it must be said that it has not been determined whether this error is the product of fraud or of incompetence.

Yet another independent audit of the IPCC AR4 was carried out in 2011 by the Inter Academy Council (IAC), an international scientific body. The IAC audit found as follows (IAC, 2011).

1. The IPCC does not address genuine controversies.
2. Probabilities of events are reported without sufficient evidence and without providing a basis for how the probability was evaluated.
3. IPCC communication and selection procedures emphasize secrecy and not transparency,
4. A sufficiently wide range of scientific viewpoints is not considered and due consideration is not given to properly documented alternative views.

Not mentioned in either of these audits are the following deficiencies in the IPCC AR5 WG1 (and all previous WG1 assessments)30.

1. In the IPCC AR5 carbon budget, uncertainties in carbon flows are stated but they are not taken into account in the carbon budget accounting. The actual uncertainties are likely much larger than the ones stated by the IPCC and perhaps even unquantifiable because measurement of these flows and of changes in the mass of the biota are limited and their generalization just a guess. Even so, we find that when the uncertainties stated by the IPCC are inserted into the carbon budget accounting, it is not possible to detect the effect of fossil fuel emissions. In other words, we don’t know natural flows well enough to determine the role of fossil fuel emissions in the carbon budget (Munshi, Uncertain Flow Accounting and the IPCC Carbon Budget, 2015).

2. Since the Industrial Revolution the use of fossil fuels accelerated and fossil fuel emissions began to increase exponentially rising from less than 10 megatons per year in 1800 to more than 10 gigatons per year in 2015 (EPA, 2016). Over the same period, atmospheric CO2 levels have risen from 280 ppm to 400 ppm also at an accelerated rate (NASA-GISS, 2016). Because of the positive second derivative that these two curves have in common, they do indeed show a positive correlation between fossil fuel emissions and changes in atmospheric CO2. This relationship is taken by the IPCC as evidence that increases in atmospheric CO2 since the Industrial Revolution can be attributed to fossil fuel emissions. Such attribution can be spurious in the case of field data but the attribution argument can be made stronger if detrended fluctuation analysis shows a correlation net of the common and perhaps coincidental rising trend but it must be discarded if detrended analysis does not show a statistically significant correlation (Prodobnik, 2008). In this case, detrended correlation analysis shows no correlation at all. We conclude from that finding that there is no empirical evidence to support the hypothesis that changes in atmospheric CO2 since the Industrial Revolution can be attributed to fossil fuel emissions (Munshi, Responsiveness of Atmospheric CO2 to Anthropogenic Emissions, 2015). The same procedure also shows the absence of empirical evidence for the attribution of ocean acidification to fossil fuel emissions (Munshi, Fossil Fuel Emissions and Ocean Acidification, 2015).

3. A second line of argument for the attribution of changes in atmospheric CO2 to fossil fuel emissions is that the attribution is consistent with observed changes in 14C and 13C carbon isotope proportions in atmospheric CO2. These arguments are not convincing and the data presented do not constitute empirical evidence that changes in atmospheric CO2 can be attributed to fossil fuel emissions (Munshi, Changes in the 13C/12C Ratio of Atmospheric CO2, 2016) (Munshi, Dilution of Atmospheric Radiocarbon CO2 by Fossil Fuel Emissions, 2016).

4. “Climate Sensitivity” is an important topic in the WG1 section of the IPCC AR. It is a logarithmic relationship between atmospheric CO2 concentration and surface temperature. Specifically it refers to the change in surface temperature in degrees Celsius for each doubling of atmospheric CO2 levels. The IPCC uses their estimate of climate sensitivity to make temperature trend predictions. All such predictions since AR1 in 1990 have been wrong possibly because the uncertainty in climate sensitivity is too large for it to be a useful forecasting tool (Roe, 2007) (Roe, 2011) (Hallegatte, 2009). Yet, if what we want to derive from all of this is a WG3 target for
emission reduction, *climate sensitivity is irrelevant until it can be shown that changes in atmospheric CO2 can be attributed to fossil fuel emissions* (Munshi, Responsiveness of Atmospheric CO2 to Anthropogenic Emissions, 2015).

5. In fact, WG1 does provide a direct causal link between fossil fuel emissions and surface temperature in terms of a very high correlation between cumulative emissions and cumulative warming (Matthews H., 2009) (Solomon, 2009) (Zickfeld, 2009) (IPCC, 2014). However, *no conclusions can be drawn from such a correlation because correlations between cumulative values are spurious*. The spuriousness of correlations between cumulative values can be demonstrated with a simple Monte Carlo procedure that shows that cumulative values of random numbers tend to be correlated (Munshi, The Spuriousness of Correlations between Cumulative Values, 2016). If fossil fuel emissions cause warming then a correlation must exist at the time scale at which this causation acts. The time scale for this causation is estimated to be one decade (Ricke, 2014). Although this decadal correlation exists in CMIP5 no such correlation can be found in the data (Munshi, Decadal Fossil Fuel Emissions and Decadal Warming, 2015).

3. CONCLUSIONS

It is well known that public sector bureaucracies without adequate constraint, oversight, audit, and accountability can devolve into self-serving organisms (Rose-Ackerman, 2008) (Gorodnichenko, 2007) (Romzek, 1987). The United Nations and its many agencies and programs are ultimately funded by taxpayers but they are too far removed from those taxpayers to be directly accountable to them. But who will discipline the UN? Agency theory ensures that no single country will venture to absorb the cost of disciplining the UN while gaining only pro-rata benefits (Jensen, 1976) (Eisenhardt, 1989). United Nations agencies and programs like the UNEP, IPCC, UNFCCC, the Montreal Protocol, the Kyoto Protocol and their related frameworks, conventions and other bureaucratic artifacts are therefore allowed to operate under insufficient constraint, transparency, oversight, or discipline. Under these conditions they can morph into bureaucratic organisms that operate for their own needs and no longer serve the public interest (Bolton, 1994) (Halper, 1996) (Zaruk, 2014) (Zaruk, 2010).

A case study of the UNEP and its related agencies, programs, framework conventions, and protocols exposes structural weaknesses that allowed the bureaucracy to extract rents and grow by selling environmental fear and assigning themselves the high office of saving the planet. This sequence was played out in two different episodes. In the first episode a fear of ozone depletion was sold and after successfully implementing a worldwide ban on alleged ozone depleting substances, the UN declared victory even though no evidence exists of long term trends in latitudinally averaged global mean total column ozone (Munshi, Latitudinally Weighted Mean Global Ozone, 2016) (Munshi, Mean Global Total Ozone from Ground Station Data, 2016). The absence of trends indicates that the problem that was solved never existed in the first place.
In the second episode, they sold fear of catastrophic global warming and climate change allegedly caused by fossil fuel emissions but failed to duplicate their success in the first episode because of methodological flaws (IAC, 2011) (PBL, 2010) (McIntyre, 2007) (Zaruk, 2010) (Munshi, The Spuriousness of Correlations between Cumulative Values, 2016) (Laframboise, 2011) (Morano, 2013) (Ball, 2015) and also because their own bureaucratic incompetence created an emissions reduction plan that was too complicated to implement. The complication ensures an endless series of annual meetings of thousands of delegates at exotic locations with the only concrete achievement of each meeting being that of setting the date and place for the next meeting.

These episodes serve as evidence that unconstrained and undisciplined public sector bureaucracies do not serve the interest of the public. We conclude that such UN bureaucracies can safely be dismantled without any harm to the public interest.

4. REFERENCES

Alper, E. (n.d.). The Turkish banking system, financial crises and the IMF. In The age of capital account liberalization: a political economy perspective, new Perspectives on Turkey (pp. 30 (2004): 25-54.).

Ball, T. (2015). Maurice Strong is dead but the damage he did will carry on. Retrieved 2016, from The Rebel: http://www.therebel.media/maurice_strong_is_dead

Cheney, K. (1995, November). It’s the UN’s 50th birthday but its employees get the gifts. Money, p. 27.

IPCC. (2007). *AR4 WG1 Chapter 7: Couplings between changes in the climate system and biogeochemistry*. Geneva: IPCC.

Revelle, R. (1956). *Carbon dioxide exchange between atmosphere and ocean and the question of an increase in atmospheric CO2 during the past decades*. UC La Jolla, CA: Scripps Institution of Oceanography.

