Page 125

Welding Journal | January 2013

9. Siedel, T. U., and Reynolds, A. P. 2003. Twodimensional friction stir welding process model based on fluid mechanics. Sci. & Tech. Welding & Joining 8: 175–183. 10. Goetz, R. L., and Jata, K. V. 2001. Modeling friction stir welding of titanium and aluminum alloys. Friction Stir Welding & Processing. ed. K. V. Jata, M. W. Mahoney, R. S. Mishra, S. L. Semiatin, and D. P. Field, pp. 35–41, TMS Pub. 11. Nunes, A. C. Jr., 2012. The evolution of friction stir welding theory at Marshall Space Flight Center. Proceedings of 9th Int’l Symp. FSWing, Huntsville, Ala., TWI pub. 12. Jata, K. V., and Semiatin, S. L. 2000. Continuous dynamic recrystallization during friction stir welding. Scripta Mater. 43: 743–748. 13. Gerlich, A., Su, P., Yamamoto, M., and North, T. H. 2007. Effect of welding parameters on the strain rate and microstructure of friction stir spot welded 2024 aluminum alloy. J. Mater. Sci. 42: 5589–5601. 14. Subramanian, P. R., Nirmalan, N. V., Young, L. M., Sudkamp, P., Mika, D. P., Larsen, M., Othon, M. A., Dupree, P. L., Walker, S. O., and Catlin, G. M. 2003. Fundamental studies of microstructure evolution during stir welding of aluminum alloys. USAF/AFRL Final Report Grant F49620-01-1-0300. 15. Arora, K. S., Pandey, S., Schaper, M., and Kumar, R. 2010. Microstructure evolution during friction stir welding of aluminum alloy AA2219. J. Mater. Sci. Technol. 26: 747–753. 16. Chao, Y. J., Qi, X., and Tang, W. 2003. Heat transfer in friction stir welding — Experimental and numerical studies. Trans. ASME 125: 138–145. 17. Heurtier, P., Jones, M. J., Desrayaud, C., Driver, J. H., Montheillet, F., and Allehaux, D. 2006. Mechanical and thermal modeling of friction stir welding. J. Mat. Proc. Tech. 171: 348–357. 18. Vilaca, P., Quintino, L., dos Santos, J. F., Zettler, R., and Sheikhi, S. 2007. Quality assessment of friction stir welding joints via an analytical thermal model, iSTIR. Mat. Sci. & Engr. A445-446: 501–508. 19. Genevois, C., Fabregue, D., Deschamps, A., and Poole, W. J. 2006. On the coupling between precipitation and plastic deformation in relation with friction stir welding of AA2024-T3 aluminium alloy. Mat. Sci. & Engr. 441A: 39–48. 20. Chen, Y. C., Feng, J. C., and Liu, H. J. 2009. Precipitate evolution in friction stir welding of 2219-T6 aluminum alloys. Mat. Charact. 60: 476–481. 21. Colegrove, P. A., and Shercliff, H. R. 2004. Two-dimensional CFD modeling of flow round profiled FSW tooling. Sci. & Tech. Welding & Joining 9: 483–492. 22. Colegrove, P. A., and Shercliff, H. R. 2005. 3-Dimensional CFD modeling of flow round a threaded friction stir welding tool profile. J. Matl. Proc. Tech. 169: 320–327. 23. Khandkar, M. Z. H., Khan, J. A., and Reynolds, A. P. 2003. Prediction of temperature distribution and thermal history during friction stir welding: input torque based model. Sci. & Tech. Welding & Joining 8: 165–174. 24. El-Domiaty, A., and El-hafez, H. A. 2007. An energy model for friction stir welding. Materials Science and Technology (MS&T) Conf. Proc., Detroit, Mich., pp. 435–447. 25. Pew, J. W., Nelson, T. W., and Sorensen, C. D. 2007. Development of a torque-based weld power model for friction stir welding. Friction Stir Welding & Processing IV. ed. R. S. Mishra, M. W. Mahoney, T. J. Lienert, and K. V. Jata, pp. 73–81, TMS Pub. 26. Arora, A., Nandan, R., Reynolds, A. P., and DebRoy, T. 2009. Torque, power requirement and stir zone geometry in friction stir welding through modeling and experiments. Scripta Mater. 60: 13–16. 27. Querin, J. A., and Schneider, J. A. 2012. Developing an alternative heat indexing equation for FSW. Welding Journal 91: 76-s to 82-s. 28. Frigaard, O., Grong, O., and Midling, O. T. 2001. A process model for friction stir welding of age hardenable aluminum alloys. Met. Trans. 32A: 1189–1200. 29. Strangwood, M., Berry, J. E., Cleugh, D. P., Leonard, A. J., and Threadgill, P. L. 1999. Characterization of the thermomechanical effects on microstructural development in friction stir welded age hardening aluminum-based alloys. 1st Int'l Symp. FSW, Thousand Oaks, Calif., TWI Pub. 30. Murr, L. E., Li, Y., Trillo, E. A., Nowak, B. M., and McClure, J. C. 1999. A comparative study of friction stir welding of aluminum alloys. Al. Trans. 1(1): 141–154. 31. Li, Z. X., Arbegast, W. J., Hartley, P. J., and Meletis, E. I. 1999. Microstructure characterization and stress corrosion evaluation of friction stir welded Al 2195 and Al 2219 alloys. Proc. 5th Intl. Conf. on Trends in Welding Res. pp. 568–573, AWS pub. 32. Litynska, L., Braun, R., Staniek, G., Dalle Donne, C., and Dutkiewica, J. 2003. TEM study of the microstructure evolution in a friction stir welded AlCuMgAg alloy. Mat. Chem. & Physics 81:293–295. 33. Genevois, C., Deschamps, A., Denquin, A., and Doisneau-Cottignies, B. 2005. Quantitative investigation of precipitation and mechanical behavior for AA2024 friction stir welds. Acta Mater. 53: 2447–2458. 34. Jones, M. J., Heurtier, P., Desrayaud, C., Montheillet, F., Allehaux, D., and Driver, J. H. 2005. Correlation between microstructure and microhardness in a friction stir welded 2024 aluminium alloy. Scripta Mater. 52: 693–697. 35. Barcellona, A., Buffa, G., Fratini, L., and Palmeri, D. 2006. On microstructural phenomena occurring in friction stir welding of aluminium alloys. J. Mat. Proc. Tech. 177: 340–343. 36. Chen, Y., Liu, H., and Feng, J. 2006. Friction stir welding characteristics of different heat treated state 2219 aluminum alloy plates. Mat. Sci. & Engr. A. 420: 21–25. 37. Paglia, C. S., and Buchheit, R. G. 2006. Microstructure, microchemistry and environmental cracking susceptibility of friction stir welded 2219-T87. Mat. Sci. & Engr. 429A: 107–114. 38. Li, B., and Shen, Y. 2011. The investigation of abnormal particle-coarsening phenomena in friction stir repair weld of 2219-T6 aluminum alloy. Mat. & Design 32: 3796–3802. 39. Fonda, R. W., Knipling, K. E., and Bingert, and J. F. 2007. Microstructural evolution ahead of the tool in aluminum friction stir welds. Scripta Mater. 58: 343–348. 40. Cao, G., and Kou, S. 2005. Friction stir welding of 2219 aluminum: Behavior of (Al2Cu) particles. Welding Journal 84(1): 1-s to 8-s. 41. Sutton, M. A., Yang, B., Reynolds, A. P., and Taylor, R. 2002. Microstructural studies of friction stir welds in 2024-T3 aluminum. Mat. Sci. & Engr. A323: 160–166. 42. Yang, B., Yan, J., Sutton, M. A., and Reynolds, A. P. 2004. Banded microstructure in AA2024-T351 and AA2524-T351 aluminum friction stir welds: Part I Metallurgical studies. Mat. Sci. & Engr. A364: 55–65. 43. Van Drunen, G., and Cecco, V. S. 1984. Recognizing limitations in eddy current testing. NDT Int’l 17: 9–17. 44. Blitz, J. 1987. Eddy current testing of metals. Matls. & Design 8: 340–345. 45. Lee, E. W., Oppenheim, T., Robinson, K., Aridkahari, B., Neylan, N., Gebreyesus, D., Richardson, M., Arzate, M., Bove, C., Iskandar, M., Sanchez, C., Toss, E., Martinez, I., Arenas, D., Ogren, J., McLennan, J., Clark, R., Frazier, W. E., and Es-Said, O. S. 2007. The effect of thermal exposure on the electrical conductivity and static mechanical behavior of several age hardenable aluminum alloys. Engr. Failure Analysis 14: 1538–1549. 46. Davis, A. M. 2010. Interaction of the friction stir welding tool and workpiece as influenced by process parameters in friction stir welding. MS Thesis, Mississippi State University. 47. IACS standard, 1914. International Standard of Resistance for Copper, International Electrotechnical Commission, Publication 28. 48. ASTM E8/E8M-09, Standard Test Methods for Tension Testing of Metallic Materials. 2003. ASTM Int’l, West Conshohocken, Pa. DOI:10.1520/E0008_E0008M-09, www.astm.org. 49. Nunes, A. C. Jr. 2001. Wiping metal transfer in friction stir welding. Aluminum 2001, Proc. TMS Annual Mtg, pp. 235–248. 50. Metals Handbook. 1990. Vol. 2: Properties and Selection: Nonferrous Alloys and Special- Purpose Materials, 10th ed., pp. 81. ASM Pub., Materials Park, Ohio. 51. Metals Handbook. 1973. Vol. 8: Metallography, Structures, and Phase Diagrams, 8th ed., pp. 259. ASM pub., Materials Park, Ohio. 52. Metals Handbook. 1991. Vol. 4: Heat Treating, pp. 845–845. ASM pub., Materials Park, Ohio. 53. Wang, S. C., and Starink, M. J. 2005. Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg-(Li) based alloys. Int. Mater. Rev. 50: 193–215. 54. Huang, C., and Kou, S. 2004. Liquation cracking in full penetration Al-Cu welds. Welding Journal 82(2): 50-s to 58-s. 55. Su, J-Q., Nelson, T. W., and Sterling, C. J. 2005. Microstructural evolution during FSW/FSP of high-strength aluminum alloys. Mat. Sci. & Engr. 405A: 277–286. 56. Schneider, J. A., Nunes, A. C. Jr., Chen, P. S., and Steele, G. 2005. TEM study of the FSW nugget in AA2195-T81. J. Matl. Sci. 40: 4341–4345. 57. Schneider, J. A., and Nunes, A. C. Jr., 2004. Characterization of plastic flow and resulting micro textures in a friction stir weld. Met. Trans. B35: 777–783. 58. Rosen, M., Horowitz, E., Swartzendruber, L., Fick, S., and Mehrabian, R. 1982. The aging process in aluminum alloy 2024 studies by means of eddy currents. Mat. Sci. & Engr. 53: 191–198. 59. International Center for Diffraction Data (ICDD) Powder diffraction file (PDF) file # 015-1372 for Al2Cu (θ phase). 60. Attallah, M. M., and Salem, H. G. 2005. Friction stir welding parameters: a tool for controlling abnormal grain growth during subsequent heat treatment. Mat. Sci. & Engr. A391: 51–59. 61. Fonda, R. W., and Lambrakos, S. G. 2002. Analysis of friction stir welds using an inverse problem approach. Sci. & Tech. Weld & Joining 7: 177–181. WELDING JOURNAL 19-s WELDING RESEARCH


Welding Journal | January 2013
To see the actual publication please follow the link above