October 2009

• Brazing and Soldering Today

• Welding Aluminum
Select-Arc, Inc. has earned an outstanding reputation in the industry as a manufacturer of premium quality tubular welding electrodes for carbon and low alloy steel welding.

Now Select-Arc has expanded its range of exceptional products with the introduction of a complete line of austenitic, martensitic and ferritic stainless steel electrodes. Both the new SelectAlloy and Select stainless steel wires deliver the superior feedability, superb welding characteristics, consistent deposit chemistry and excellent overall performance you have come to expect from Select-Arc.

The chart below shows that SelectAlloy flux cored electrodes' higher deposition rates improve productivity and reduce welding costs.

SelectAlloy's smooth bead contour, easy peeling slag, minimal spatter, closely controlled weld deposit compositions and metal soundness deliver additional savings.

The Select 400-Series metal cored electrodes offer the same advantages as SelectAlloy and are ideally suited for difficult-to-weld applications, such as auto exhaust systems.

Discover for yourself the many benefits of specifying Select-Arc's new premium stainless steel electrodes. Call us today at 1-800-341-5215 or you can visit our website at www.select-arc.com for more information.
PHASED ARRAY FOR WELD INSPECTION

Phased Array imaging provides many benefits for weld inspectors: fast, easy, reproducible, and cost-effective. Olympus offers manual, semi-automated, and automated solutions for all your nondestructive weld inspection and code compliance needs.

OmniScan MXU-M-2.2 Software

- Single-axis encoded or time-based C-scan
- Higher A-scan refresh rate
- Simplified user interface
- DAC/TCG, ASME, JIS, and DGS sizing curves
- AWS and API code wizards
- Weld Package option with RayTracing™ and Weld Overlay features

See us at Fabtech Show, booth 38043

For worldwide representation visit www.olympus-ims.com • info@olympusNDT.com

For Info go to www.aws.org/ad-index
KISWEL
WELDING PRODUCTS

Our world class manufacturing plant in Florence, Kentucky is a showplace for producing the highest quality welding materials in North America.

Visit our website at:
www.kiswelweldingproducts.com

Mild Steel Covered Electrodes
Mild Steel & Low Alloy Flux Cored Wires
Mild Steel & Low Alloy TIG & MIG Wires

Stainless Steel Covered Electrodes
Stainless Steel Flux Cored Wires
Stainless Steel TIG & MIG Wires

7950 Dixie Highway Florence KY 41042 USA
General Office Phone: 859.371.0070 Fax: 859.371.5210 Email: kiswel@kiswelusa.com

For Info go to www.aws.org/ad-index
Features

26 Aluminum’s Role in Welded Fabrications
Since the end of the 19th century, aluminum has been a light-weight competitor to steel and its applications have grown to even greater heights today
T. Anderson

31 Evaluating Margins of Safety in Brazed Joints
Load-bearing capabilities of brazed joints are evaluated to determine margins of safety in the design criteria
Y. Flom et al.

39 Solving the Problems Inherent to Torch Brazing Aluminum
The inherent problems with flux, filler metal, and techniques when brazing aluminum are addressed
K. Allen

43 Soldering Silver to Aluminum and Copper for Cryogenic Applications
A new approach to soldering cryogenic evaporators may be a solution to microprocessor cooling
L. A. Shapiro

48 Testing Sinter Braze Integrity Using Resonant Inspection
The resonant acoustic method of nondestructive testing proves reliable in determining the integrity of sinter brazed powder metal parts
R. W. Bono

Brazing & Soldering Today

Welding Research Supplement

193-s Transient High-Frequency Welding Simulations of Dual-Phase Steels
Numerical and experimental simulations were used to improve the end joining of continuous-fed steel strip
R. Baumer and Y. Adonyi

202-s Near Weld Interface Compositional Variations in Low-Alloy Steel Weldments
This work models concentration gradients adjacent to the weld interface based on mass transport processes during solidification and cooling of the weld
D. B. Knorr and J. J. McGee

On the cover: Three metal calibration cup assemblies designed and assembled at the NASA Goddard Space Flight Center, Greenbelt, Md., that will be used in the Sample Analysis at Mars (SAM) experiment on the Mars Science Laboratory (MSL) rover. Each cup is about 3 in. long and comprised of Ti-6Al-4V, Ni 200, Inconel 693, and Cu components joined together using vacuum brazing and electron beam welding. More than 300 vacuum brazed joints were required to build the SAM instrument. (Photo courtesy of Goddard Space Flight Center.)
A Letter to Those Who Support the Welding Profession

As the new chair of the American Welding Society Foundation, I’ll share some of the initiatives we have under way. Our major focus is addressing the shortage of skilled welders and our Welder Workforce Development fund-raising efforts.

Market research conducted with funds from the National Science Foundation and updated in 2009 with help from the U.S. Department of Labor shows that despite the current economic downturn the anticipated skilled welder shortage will exceed 200,000 persons in the near future.

The AWS Foundation has a two-pronged approach to help with the skilled welder shortage. First, we manage our traditional scholarship programs to assist students in gaining a welding education. Since its inception in 1991, we have awarded more than 3000 scholarships in an amount of more than $3.8 million. The other effort, the AWS Welder Workforce Development Program, has generated a great deal of enthusiasm and excitement. Its focus is addressing the industry shortage of welders by helping with recruitment, training for specific industry needs, assisting with curriculum development where needed, and working with training institutions to accomplish the training. We have established the Solutions Opportunity Squad (SOS) to implement the coordination of these efforts and others that arise. These initial initiatives have created an enormous amount of interest and involvement by our many industry partners.

Our major funding support to date has been welding equipment and filler metals manufacturers, distributors, and individuals. Although we have received some donations from fabricators and construction companies who employ welders — and these are much appreciated — we feel there is an opportunity to speak with more of them as well as others who understand our business and know the efforts we have under way will strengthen the welding profession.

During these tough economic times we are reaching out to a broader base of supporters so we may continue our efforts. We have a significant need for qualified skilled welders to build the massive wind towers, nuclear power plants, and alternative fuel facilities like ethanol production, as well as to rebuild our bridges and other transportation products, etc.

We need everyone’s help if we are to be successful in sustaining our welder workforce and the efforts to recruit and retain them. While we, the American Welding Society and the AWS Foundation, are extremely excited about the current evolution and position of our campaign, and more importantly, the impact our efforts have made on the welding workforce and profession, there is a great deal more to be done.

In your discussions about end of life planning, perhaps some of you “old-timers,” like me, could consider putting the AWS Foundation in your estate plan. Request information; we can help make it an easy item on your to-do list.

Please review the card next to this editorial and
• Define what you can do to help directly,
• Request information you can present to fabricators who can provide support for their future welders,
• Supply names of others you know who understand and support our profession and who might wish to contribute to our efforts.

If you’ve been a supporter of the AWS Foundation in the past, let me express my appreciation of your efforts. If you are just now joining the ranks of those who support the welding profession through the Foundation’s activities, thanks for your help.

Gerald D. Utrachti
Chair, AWS Foundation
Quality aluminum welding starts with a quality filler metal – material with the consistency, feedability, surface finish and cleanliness required to produce welds with aesthetic appeal and the strength to hold up under the rigors of the marine industry. Shipbuilders around the world find their solution for quality in AlcoTec aluminum wire, the choice of experts and the number one provider of aluminum wire worldwide. With AlcoTec, in addition to top-quality wire, you receive continued support after the sale. The experienced AlcoTec staff is always ready to assist with welding problems, help improve your manufacturing techniques or develop new welding procedures.

For your next aluminum welding job, ask for quality. Ask for AlcoTec by name.
White House May Create New Manufacturing Position

It has been widely reported that the White House plans to create a new position within the National Economic Council, which is part of the Executive Office of the President, that would be charged with developing policies relevant to U.S. manufacturing. It is not clear how the new position will interact with the Assistant Secretary for Manufacturing and Services within the U.S. Department of Commerce, an office that was created in 2003.

Federal Government to Review Export Control Regulations

In a development that most in the U.S. business community view as long overdue, both the White House and Congress have announced separate reviews of the U.S. export control system, including the dual-use and defense trade processes. The aim of both efforts is to consider and recommend reforms that maintain security but also promote economic growth. Much of the current system is rooted in the Cold War era of more than 50 years ago, and many believe that outdated rules are hindering U.S. competitiveness.

Hearing on National Manufacturing Policy

“The U.S. as Global Competitor: What Are the Elements of a National Manufacturing Strategy?” is the title of a hearing recently held by Congress before the Senate Banking Subcommittee on Economic Policy. It is the second Congressional hearing this year on the challenges and opportunities facing U.S. manufacturing.

The committee chairman offered the following five areas as possible components of such a national manufacturing strategy:

1. Innovation — creating a predictable climate for investment in research and development, including establishment of an Innovation Research Fund for work in clean energy, information technology, defense, and aerospace.

2. Supply Chains — giving supply manufacturers the tools to transition from contracting industries, like autos, to growing industries, like clean energy, including by investing in Manufacturing Extension Partnerships.

3. Skills — developing sector-based systems that link highly skilled workers with emerging industries to promote long-term competitiveness.

4. Coordination — creating a strategy and resources to rapidly assist workers, businesses, and communities when there is a massive disruption in the economy due to layoffs.

5. Fair Trade — strong enforcement of U.S. trade laws.

Federal Contracting Facing Reductions, Oversight

In 2008, the federal government awarded more than $500 billion in contracts to more than 160,000 contractors. The Administration is seeking to reduce that by $40 billion annually through better agency acquisition and acquisition-related program practices. The White House plans to meet this goal in large part by mandating that all agencies 1) review their existing contracts and acquisition practices and develop a plan to save 7% of baseline contract spending by the end of FY 2011, and 2) reduce by at least 10% the combined share of dollars obligation through new contracts in FY 2010 that are awarded noncompetitively or on a cost-reimbursement or time-and-materials basis.

Legislation Seeks to Expand Worker Verification

The Secure America through Verification and Enforcement Act (S. 1505) would expand the E-Verify system, which presently is limited to federal contractors, to cover all employers, phased-in over four years. E-Verify is a Web-based system that allows employers to check the Social Security and visa numbers submitted by workers against government databases to confirm that their employees are eligible to work in the United States. Effective in September, all federal contractors (and most subcontractors) became subject to the E-Verify system.

OSHA Establishes Training Program ‘Watch List’

The U.S. Occupational Safety and Health Administration (OSHA) has announced the establishment of an “Outreach Trainer Watch List” that will identify those who have had their OSHA trainer authorizations either revoked or suspended. Trainers are authorized by OSHA by completing a one-week trainer course through an OSHA Training Institute Education Center. The trainers are then eligible to teach 10-h programs that provide basic information to workers and employers about workplace hazards and OSHA, and 30-h courses in construction, maritime, and general industry safety and health hazards. There are presently more than 16,000 independent, OSHA-approved trainers.

The Watch List can be viewed at www.osha.gov/dte/outreach/construction_generalindustry/watchlist.html.

New OSHA Administrator Named

David Michaels has been nominated by President Obama to serve as Assistant Secretary of Labor for Occupational Safety and Health. Michaels, an epidemiologist, is a professor at The George Washington University School of Public Health and Health Services. He previously worked in the Clinton administration as the Assistant Secretary of Energy for Environment, Safety and Health, overseeing worker health and safety issues in nuclear weapons facilities.
If you’re a steel fabricator looking to automate your one-off and small batch welding production, you most likely found out from other robotic solution providers that it wasn’t economically viable due to the lengthy robot programming needed or the varied fit of your work parts.

Yet, you may be experiencing the effects of the ever growing welder shortage as well as shrinking profit margins; making welding automation critical to your company’s prosperity in our highly competitive world.

... Fortunately, there’s SmartTCP.

SmartTCP
The robotic welding solution for small batch production

Call 248-994-1041 or visit us at FABTECH 2009 www.smarttcp.com

For info go to www.aws.org/ad-index
Final Rule Issued on Continuous Welded Rail Inspection

The Department of Transportation and Federal Railroad Administration’s (FRA) Track Safety Standards; Continuous Welded Rail (CWR); Final Rule, 49 CFR Part 213, became effective August 25.

Its summary reads, “FRA is amending the Federal Track Safety Standards to promote the safety of railroad operations over continuous welded rail (CWR). In particular, FRA is promulgating specific requirements for the qualification of persons designated to inspect CWR track, or supervise the installation, adjustment, or maintenance of CWR track. FRA is also clarifying the procedures associated with the submission of CWR plans to FRA by track owners. The final rule specifies that these plans should add focus on inspecting CWR for pull-apart prone conditions, and on CWR joint installation and maintenance procedures. This final rule will also make other changes to the requirements governing CWR.”

The compliance dates are October 9 for Class I railroads, November 23 for Class II railroads, and February 22, 2010, for Class III railroads. The ruling also defined that currently CWR is rail that has been welded together into lengths exceeding 400 ft.

GE and Fanuc Dissolve Joint Venture

GE and FANUC have recently agreed to dissolve the GE Fanuc Automation Corp. joint venture. This transaction is expected to be completed by the end of 2009, subject to satisfactory customary closing conditions.

“Our joint venture has achieved great success toward its original mission, which was to cooperate on the global growth and technical development of the PLC and CNC business. Over this time period, markets and opportunities also have changed dramatically, and both companies further expanded into adjacent segments,” said FANUC Honorary Chairman Dr. Seiuemon Inaba.

The terms are as follows: GE retains the software, services, embedded systems, and control systems businesses globally; the company will be known as GE Intelligent Platforms and led by Maryrose Sylvester; and FANUC retains the global CNC business.

SME and Purdue Unveil New Green Certificate Program

The Society of Manufacturing Engineers (SME), Dearborn, Mich., is collaborating with Purdue University’s Technical Assistance Program (TAP) to develop the Green Manufacturing Specialist Certificate. This partnership includes SME developing an accompanying exam or outcome-based assessment that will be tested by participants in the Purdue TAP green workforce training program.

“The exam will be able to easily adapt to any green curriculum anywhere in the country. And once students pass it, they’ll walk away with a certificate of completion of in-demand, green job skills,” said Kris Nasiatka, manager, certification, books, and video at SME.

Beyond a broad study course, the certificate also offers varying levels of learning intensity. “The generalist level is intended to provide awareness, while the specialist level is intended to create project champions who have a more comprehensive body of knowledge. Upon completion of the six specialist modules, they are ready to sit for the SME exam and earn an SME certificate,” said Ethan Rogers, manager, energy efficiency services, Purdue University TAP. He expects enrollment to grow to “a couple hundred people sitting for SME’s certificate exam” by as early as 2010.

Superior Products Acquires West Coast Business

Superior Products, Inc., Cleveland, Ohio, has purchased Macro Technologies, Inc., Kirkland, Wash., a manufacturer of quick connects, relief valves, stainless hoses, and shutoff valves for compressed and cryogenic gases used in industrial, transportation, and home medical markets. It is also active in the emerging LNG and CNG markets.

“Our strategic acquisition of this fast-growing, innovative company broadens Superior’s product lines and enhances our design capabilities for unique cryogenic and compressed gas products,” said CEO Donald L. Mottinger.

Additionally, Superior Products has signed a Strategic Alliance with IBG-Cologne. “Working together in manufacturing and sales, we will be better able to service the welding and gas industries throughout the United States and the world,” added Mottinger.
STICK ELECTRODES

WELDING WIRES

WELDING MACHINES
MIG/MAG & RECTIFIERS, INVERTER, TIG, AC/DC TIG, DC TIG, Pulsed MIG/MAG, Synergic MIG/MAG, AC/MIG-MAG and air plasma cutting

GeKa®
For High Quality Welding...

GEDIK WELDING
Ankara Caddesi No: 306 Seyhli 34913 Pendik - ISTANBUL / TURKEY
Phone: +90 216 378 50 00 (Pbx) Fax: +90 216 378 79 36 - 378 20 44
Web: www.gedikwelding.com E-mail: gedik@gedik.com.tr

GEDIK US OFFICE
Phone: 800 - 468 - 0855

GEDIK EUROPE B.V.
Staalindustrieweg 15 2952 AT Alblasserdam THE NETHERLANDS
Phone: +31 (0)78 750 38 80 (Benelux countries) Phone: +31 (0)78 691 36 05 (Europe, excluding Benelux)
Web: www.gedikeurope.com E-mail: gedik@gedikeurope.com

For Info go to www.aws.org/ad-Index
International Construction Industry Competition Honors Winners in Welder, Pipefitter Disciplines

A group of apprentices from the United Association of Journeymen and Apprenticeships of the Plumbing and Pipefitting Industry of the United States and Canada (UA) recently took part in the organization’s annual international apprentice competition in early August. They made their way through preliminary levels — local, state, regional — and competed in this final champion phase in Ann Arbor, Mich.

“Contractors should be standing right there recruiting these guys because they’re the best of the best,” said Andy Kireta Sr., president and CEO of Copper Development Association, Inc.

The 2009 winners in each division are as follows: Pipefitter, Nick Unfried, Local Union (LU) 136, Evansville, Ind.; Service Technician, David Fruehauf, LU 22, Buffalo, N.Y.; Welder, Peter LaRou, LU 597, Chicago, Ill.; Plumber, Jarrad Taylor, LU 5, Washington, D.C.; and Sprinklerfitter, Josh Coale, LU 669, Taylorsville, Ky.

“Reaching the final round was no easy task for any of these apprentices,” said Mike Arndt, training director of the UA, “since all those competing have received the UA’s high level of training in five required disciplines.”

In addition, the winners and runners-up are recipients of awards such as gold rings, tool boxes outfitted for their specific craft, welding machines, jackets, and helmets. The best copper project in each craft receives $1000.

“This is a tough competition,” said Pete Marzec, a retired special representative from the UA’s international training department and current chairman of the UA contest committee. “The contestants are challenged each year with the latest in industry technology, and they have to meet that challenge. The judges are all industry people, suppliers, and contractors, so they know what they’re looking for — and once again, they got it.”

Contestants can compete each year in the local and regional contests but can only take part once in the international competition. This year’s event was made up of 30 participants from six geographic regions, five in the U.S. and one in Canada.
Nuclear Energy Institute Video Highlights Robotic Inspection Systems

Entergy Nuclear partnered with AREVA NP Inc. to develop this rail-and-trolley system that inspects the outer diameter of the boiling water reactor steam dryer at Vermont Yankee’s nuclear energy station. The device’s advantages include improved safety and reduced radiation exposure. (Photo courtesy of AREVA NP)

The Nuclear Energy Institute (NEI), Washington, D.C., has produced its fourth video, “Robotic Inspectors,” highlighting new inspection devices developed at the Vermont Yankee nuclear energy station to closely analyze the facility’s steam dryer. It is available at the following link: www.nei.org/resourcesandstats/documentlibrary/how_it_works/video/robotic-inspectors.

Also, Entergy Nuclear employees at this station are recipients of the Maintenance Process Award for developing tooling to inspect a boiling water reactor steam dryer, which is located in the top of the reactor.

Entergy Nuclear partnered with AREVA NP Inc. to develop two remotely operated inspection systems. The outer diameter innovation uses a rail-and-trolley system with a telescoping mast and camera to inspect all 213 welds and components. The inner diameter method uses an underwater crawler with a telescoping mast and camera to inspect all 253 welds and components.

An annual reduction of 3.6 person-rem of radiation exposure is expected along with a minimum $500,000 cost reduction per outage. The tooling is transferable, too, as it was developed for use on all makes and sizes of dryers regardless of the rail configuration on the refuel floor, and can be used for dryer inspections at all boiling water reactors.

South Dakota’s Labor Department Invests in Center’s Welding, CNC Programs

The South Dakota Department of Labor (DOL) has partnered with the Regional Technical Education Center (RTEC) at Yankton, S.Dak., to expand programs for shielded metal arc welding (SMAW) as well as upgrade computer numerical control (CNC) machining. It provided RTEC $11,000 to purchase five more SMAW machines and $77,668 for the CNC machining program to purchase seven computers, more advanced software, two lathes, and a three-dimensional printer.

Introduction to Stick Welding is a 40-h course that will now have room for up to 13 students. New classes start monthly, and upon completion, students can take the American Welding Society qualification test. Plus, the CNC machining class began June 30 and is 210-h long. It has incorporated new technology and

Do your part for the future of resistance welding. Give this ad to a college student.

A $2,500 annual scholarship was established in 2005 by the Resistance Welder Manufacturers’ Association for a college junior who wishes to become involved in the resistance welding industry. The hope is that the scholarship recipients will learn to appreciate the simple elegance and robustness of the process, so that they can carry the message forward to the next generation. The scholarship is awarded based on an essay, academics and recommendations.

The deadline for the 2010 fall award is January 15

For details, visit www.aws.org/foundation/scholarships/rwma.html

http://www.aws.org/rwma/
A student at the Regional Technical Education Center (RTEC) in Yankton, S.Dak., takes advantage of new welding equipment purchased with stimulus funds awarded by the South Dakota Department of Labor. (Photo courtesy of RTEC.)

green concepts used in advanced manufacturing. The next class begins in January and will take up to 23 students.

“Laid-off workers may each be eligible for up to $5200 in tuition assistance from DOL,” said State Labor Secretary Pam Roberts. “Our staff is available to help workers identify and enroll in workforce training opportunities leading to new careers.”

Individuals interested in learning more about this training and tuition assistance should visit their local DOL office. Information on other training opportunities and a directory of DOL offices can be found at www.sdjobs.org.

The Hobart Brothers Co. Scholarship supports area students interested in pursuing welding skills at the Hobart Institute of Welding Technology. Five $2000 scholarships are awarded annually. Standing (from left) are Grant Harvey, vice president/general manager, Hobart Brothers; scholarship winners Brandon Livingston and Treg Hutchinson; Stephen Lucas, director of human resources, ITW Welding Products Group; Andre Odermatt, president/chairman of the board, HIWT; Sundaram Nagarajan, president, welding international, ITW; and Brenda Scott, director of compliance and student services, HIWT.

The Hobart Institute of Welding Technology (HIWT), Troy, Ohio, recently announced five area high school students as winners of the Hobart Brothers Co. Scholarship. Offered in conjunction with the Troy Foundation, this scholarship provides the stu-
dents with $2000 in funds that can be applied toward their tuition at HIWT during the upcoming academic year.

This year’s winners are as follows: Brandon Livingston of New Weston; Treg Hutchinson of Versailles; Fred Noe Jr. of Dayton; Zachary Cox of Troy; and Jerry Strain of Union, Ohio.

To be eligible for the scholarship, applying students must hold a high school diploma, submit letters of recommendation, and provide a statement of how and why they are pursuing a welding career, along with what goals they wish to achieve at the HIWT. Priority for winners is given to children or grandchildren of employees at one of the ITW welding companies, then to a graduate of one of the local high schools, and finally to all other scholarship applicants.

Toyotetsu Manufacturing Plant Achieves Utility Savings with New Air-Filtration Units

At Toyotetsu America’s plant in Somerset, Ky., a point-of-source, closed air-filtration system has been installed for its 330 welding stations at the same time as a 2500-ton heating and air conditioning system. By filtering welding-generated smoke in a closed system that returns treated air back to the plant, management cut its usage of natural gas by up to 85% for a savings of close to $60,000 in one month alone. The company is a division of Toyota whose business involves automotive stampings and the manufacture of motor vehicle parts, accessories, and hardware.

The project started in the spring of 2008 and involved extensive use of a helicopter to install both the A/C and filtration units on the roof. By May, 17 air-filtration units from Clean Air America, Inc., Rome, Ga., were placed into service, each possessing 48 cartridge filters within each collector, for a total filtering capacity of 340,000 ft³/min.

Installation of the air-filtration project was completed at the same time as installation of 40, 50-ton A/C units. Both systems were tied together through a single building automation system from Trane®, allowing facilities management to run everything from a centralized computer.

Taking into account electric utility savings when running the A/C system during the summer of 2009, annual utility-cost savings are projected to approach $700,000.

— continued on page 91
I am 76 years old this year (see photo). I love welding and am always up for a challenge. I can’t thank the American Welding Society enough for all the books and technical info I always relied on throughout my career in welding.

We sure need trained welders and real quality in all the training centers across the United States. Instructors in all these nice, new, real good shops sure need to offer students courses on what the outside jobs require, including lots of metallurgy and all aspects of power plant welding, tube welding, oilfield and refinery qualifications, military contracts, and even what’s needed in fab plants, heavy mining equipment, and offshore platforms.

The AWS Welding Journal is a wonderful educational and technical journal. It expands our knowledge.

The editorial by AWS Vice President Bruskotter in the July issue (page 6, titled “Do You Have What It Takes to Weld Offshore?”) really hits the nail on the head. A great article.

Wayne G. Potter, Pinole, Calif.

The very paramount article on “Who Chooses a Welding Career?” (page 29, July 2009) is a great tool to reach the young welding students in all of the colleges or even high school vocational classes. This also alerts the adult welders and others out there to take an interest in AWS courses. Whoever picks up this July 2009 Journal makes the trades, construction welder, pipefitter welder, or many fab shop welders say, “I’m going to look into one of the AWS certification courses.” Great job putting this together.

(My advice is) keep pursuing other areas of welding if one job is not fulfilling.

Wayne G. Potter

Dear Readers:

The Welding Journal encourages an exchange of ideas through letters to the editor. Please send your letters to the Welding Journal Dept., 550 NW LeJeune Rd., Miami, FL 33126. You can also reach us by FAX at (305) 443-7404 or by sending an e-mail to Kristin Campbell at kcampbell@aws.org.

Wayne G. Potter

Pinole, Calif.

We make companies, small or large, Stand Out.

About AWS Corporate Memberships:
The American Welding Society (AWS), understands that one size does not fit all. For that reason, we’ve created FOUR different levels of corporate membership, starting for as little as $150 per year, allowing you to select a program that best fits with the way your company operates. With an 88-year history in the welding industry, and 50,000+ members worldwide, AWS Corporate Membership offers your company the ability to INCREASE ITS EXPOSURE and IMPROVE ITS COMPETITIVE POSITION.

American Welding Society

Contact Us: CALL US FOR MORE INFORMATION, OR TO JOIN AT: (800) 443-9353, EXT. 480, OR (305) 443-9353, EXT. 480. OR VISIT US ON-LINE AT WWW.AWS.ORG MEMBERSHIP.

OCTOBER 2009
CONVERGE to
EMERGE

WHERE MORE THAN 1,000 HANDS-ON EXHIBITS, INDUSTRY INNOVATORS AND CUTTING-EDGE METALWORKING TECHNOLOGY CONVERGE.

EMERGE WITH THE LATEST METAL FABRICATING SOLUTIONS, IDEAS TO IMPROVE PRODUCTION, NEW BUSINESS CONNECTIONS AND MORE.

November 15-18, 2009
McCormick Place
Chicago, Illinois

REGISTER NOW at www.fabtechexpo.com
The AWS Foundation is pleased to announce additional scholarship for the 2009-2010 school year

National Scholarship Recipients

Congratulations to Dale David, the 2009-2010 recipient of the D. Fred and Marian L. Bovie Technical Scholarship

“I am very thankful for being selected as the recipient of the D. Fred and Marian L. Bovie Technical Scholarship. I appreciated and thank Mr. and Ms. Bovie as well as the AWS Foundation for awarding me this scholarship. I am also very thankful for their support and faith they have in me as I pursue my education as a welder.”

North Dakota State College of Science – Welding Technology

Section Named Scholarship Program

Scholarships sponsored by AWS Sections to support students in their communities.

Congratulations to Thomas E. Bartolomucci III, the 2009-2010 recipient of the Amos and Marilyn Winsand – Detroit Section Named Scholarship.

“I very much appreciate the financial assistance provided by Mr. and Mrs. Winsand and the AWS Detroit Section. The AWS has helped further my education in welding greatly throughout my college years. I look forward to being an active professional member of the AWS when I start my career in the welding industry after my senior year at Ferris State.”

Ferris State University
Welding Engineering Technology

Congratulations to Paul Layman, the 2009-2010 recipient of the Ronald S. Theiss – Houston Section Named Scholarship.

“I am lucky to have such a supportive organization behind me. AWS has made me feel like there are other people that want me to succeed as much as I do. Without the support of AWS I may not have been able to continue, but now I will not only continue but am looking forward to continuing my education in the BAS program for metallurgy. Thank you, AWS, for your support and knowledge. I look forward to being a lifetime member of AWS.”

Lone Star College
Cyfair – Welding Technology

Congratulations to Tawnya Hermanson, the 2009-2010 recipient of the Paul O’Leary Memorial – Idaho/Montana Section Named Scholarship.

“I greatly appreciate being fortunate enough to receive the Paul O’Leary Memorial – Idaho/Montana Section Named Scholarship. I want to thank the Idaho/Montana Section and the O’Leary family for their contributions to the AWS scholarship program, as well as their support in helping me pursue my education in the engineering field.”

Montana Tech of the University of Montana
General Engineering – Welding Engineering Option

Congratulations to Rick Kocher, Jr., 2009-2010 recipient of the Lehigh Valley Professor Robert D. Stout Named Scholarship.

“I am truly honored to be awarded the Professor Robert D. Stout Scholarship. This scholarship will help me further my education and goals to become a more skilled welder and soon become a welding instructor to help further the education for the future generation of welders. I’d like to thank all involved in the selection process and all that contribute to the award.”

Northampton Area Community College
Career Technical Training – Welding Technology

Congratulations to Meredith Johnson, the 2009-2010 recipient of the Ronald S. Theiss – Houston Section Named Scholarship.

“I have been around welding for as long as I can remember, whether it was repairing miles of fences and cattle gates, building a house, or making a pit for our church’s bar-b-q team. While I may not aspire to these feats of metal, I look forward to welding “artistic creations” that will surely last. I am honored to receive the 2009-2010 Ronald S. Theiss – Houston Section Scholarship. I know it will have positive effects on my education.”

Lone Star College – Cyfair – Welding

Congratulations to Kelly Wilson, the 2009-2010 recipient of the Ronald C. and Joyce Pierce – Mobile Section Named Scholarship.

“I am honored to receive the Ronald C. and Joyce Pierce – Mobile Section Named Scholarship and would like to thank the members of the AWS Foundation and Mr. and Mrs. Pierce for their outstanding generosity inspiring, educating, and supporting the youth in preparation for their careers is one of the most honorable services an organization like AWS Foundation can perform. It actively insures a brighter, more successful future for society, and I feel privileged to be a part of it.”

University of Alabama
Materials and Metallurgical Engineering
2009-2010 Tri-Tool, Inc. – Sacramento Section Named Scholarship
This award is sponsored by Tri-Tool and the Sacramento Section, and was awarded to students in District 22 as part of their District Scholarships.

2009-2010 Louis DeFreitas – Santa Clara Valley Section Named Scholarship
This award is sponsored the Santa Clara Valley Section in recognition of Lou DeFreitas, and was awarded to students in District 22 as part of their District Scholarships.

Congratulations to Alex Schryvers, the 2009-2010 recipient of the Donald and Jean Cleveland – Willamette Valley Section Named Scholarship. Alex is attending Lane Community College in the Welding Technology program.

District Named Scholarship Program
Scholarships sponsored by AWS Districts and local companies to support students in their communities.

Congratulations to William J. Ebert, the 2009-2010 recipient of the Ed Cable-BUG-O District 7 Named Scholarship.

"I am honored to receive the Ed Cable-BUG-O District 3 Named Scholarship. I thank those who have funded this award and thank them for helping me further my education. I would also like to thank the AWS for this award, and promoting education in the welding field."
Pennsylvania College of Technology
Welding and Fabrication Engineering Technology

Congratulations to Bryan L. DeCorte, the 2009-2010 recipient of the Detroit Resistance Welding – District 11 Named Scholarship.

"I am very thankful for the scholarship and recognition for my work in the Resistance Welding field. I have spent some time on RW experiments/projects both at school (Ferris State University) and further for the last two summers in Detroit at the RES Labs. I have also been blessed with input from my father who has 29 years in the RW industry. It is a special process that while not nearly as popular as others still has a prominent place in many industrial applications."
Ferris State University
Welding Engineering Technology

Congratulations to Bradley Feight, the 2009-2010 recipient of the Ed Cable-BUG-O District 7 Named Scholarship.

"I would just like to say that it is a privilege to be awarded the Ed Cable-BUG-O District 7 Named Scholarship. I would like to thank everyone who provided funding to make this scholarship possible, and to thank my family, friends, and professors for pushing me to do my best."
Pennsylvania College of Technology
Welding and Fabrication Engineering Technology

Congratulations to Corey T. Simone, the 2009-2010 recipient of the Detroit Arc Welding – District 11 Named Scholarship.

"I would like to thank the AWS Foundation for supporting my future career in the welding industry. I have come to know the AWS Foundation is an important part of the Ferris State College of Technology. The District 11 Scholarship will be a great help as I finish my welding education and pursue a career as a welding engineer."
Ferris State University
Welding Engineering Technology

For specific information on the Scholarship Programs, please visit our website at www.aws.org/foundation.
Q: After reading your Aluminum Q&A column in the June 2009 Welding Journal about design considerations of welded aluminum structures, I have a question related to the section on the reduction in strength of the base material after welding. It is apparent from the table in your article that the loss of strength in the heat-affected zone (HAZ) after arc welding, particularly in the heat-treatable alloys, can be significant. What I would like to know is what, if anything, can be done after welding to regain this lost strength and return the material to its original condition?

A: You are correct that the reduction in strength after arc welding can be significant in both the heat-treatable and nonheat-treatable alloys depending on the particular alloy and its original temper condition prior to welding.

In order to consider the possibility of returning a welded base alloy to its original condition, we need to evaluate both the effect of arc welding on the various tempers and the options available for postweld treatment.

The Effect of Arc Welding on Material Temper

The amount of heat developed in a base material during arc welding is generally sufficient to reduce the strength of the temper condition of the base alloy. The only exception to this is that no reduction in strength will be experienced in either a heat-treatable or nonheat-treatable aluminum alloy when welded in the “O” temper. The “O” temper is the annealed condition and is sometimes referred to as dead soft. Unfortunately, this fact is of little practical consequence because owing to its low strength “O” temper material is seldom chosen for structural applications. The effect of welding on the various tempers is different when considering the heat-treatable and nonheat-treatable alloys, so we will evaluate them independently. Figure 1 shows the effects of arc welding on both the heat-treatable and nonheat-treatable alloys.

Nonheat-Treatable Alloys

The strength of nonheat-treatable alloys is initially produced by alloying the aluminum with additions of other elements. These alloys consist of the pure aluminum alloys (1xxx series), magnesium alloys (3xxx series), silicon alloys (4xxx series), and magnesium alloys (5xxx series). A further increase in the strength of these alloys is obtained through various degrees of cold working or strain hardening. Strain hardening is a process used to increase the strength of aluminum alloys that cannot be strengthened by heat treatment. Strain hardening is accomplished through change of shape by the application of mechanical energy. As this physical deformation progresses (typically through rolling or drawing), it produces an elongation of the material’s grain structure in the direction of working that provides a preferred grain orientation, high level of internal stress, and resultant increase in strength.

When these strain-hardened alloys are heated during arc welding, recrystallization takes place in the HAZ, work hardened and deformed crystals are replaced by new strain-free crystals, and the base material within the HAZ is transformed into the annealed (dead soft) condition. This transformation is unavoidable in the nonheat-treatable alloys; regardless of the original prewelded temper, the postweld condition of the HAZ will always be annealed.

Heat-Treatable Alloys

The initial strength of heat-treatable alloys is also produced by the addition of alloying elements to pure aluminum. These elements include copper (2xxx series), magnesium and silicon, which are able to form the compound magnesium silicide (6xxx series), and zinc (7xxx series). When present in a given alloy, singly or in various combinations, these elements exhibit increasing solid solubility in aluminum as the temperature increases. Because of this reaction, it is possible to produce significant additional strengthening to the heat-treatable alloys by subjecting them to an elevated thermal treatment, quenching, and, when applicable, precipitation heat-treatment known also as artificial aging.

In solution heat treatment, the material is heated to temperatures around 900° to 1000°F, depending upon the alloy. This causes the alloying elements within the material to go into solid solution. Immediately following this heating process, the material is rapidly quenched, usually in water; this freezes or traps the alloying elements in so-
A material in this finished condition is said to be “solution heat treated and naturally aged” and given the –T4 designation.

Precipitation heat treatment, also known as artificial aging, is often used after solution heat treatment. This involves heating the material for a controlled time (8 to 18 h) at a lower temperature (around 250° to 500°F) depending upon the alloy. This process, used after solution heat treatment, both increases strength and stabilizes the material. A material in this finished condition is said to be “solution heat treated and artificially aged” and given the –T6 designation.

When these heat-treatable alloys are heated during arc welding, they are typically not heated for a sufficient period of time to fully anneal their structure. However, they are usually subjected to sufficient heating to reduce their strength considerably.

While the duration of the heating from the arc welding process is normally insufficient to fully anneal the base material in the HAZ, it is sufficient to partially precipitate alloying elements out of solution. This will typically result in the base alloy HAZ becoming overaged and the appropriate loss of strength associated with this process. An example of this reduction in ultimate tensile strength can be appreciated when considering the 6061-T6 base alloy in the prewelded (45 ksi), postweld (24 ksi), and annealed (18 ksi) conditions.

Options Available for Postweld Treatment

Nonheat-Treatable Alloys

Unfortunately, in the case of the nonheat-treatable aluminum alloys, there is no practical way to rework the annealed HAZ to its original strain-hardened condition. It is customary, therefore, when using these alloys to design around the as-welded strength.

Heat-Treatable Alloys

In the case of the heat-treatable alloys, there are procedures that can be used to return the prewelded strength to the HAZ.

The –T6 Temper

In order to fully recover the original prewelded strength of a material that was in a –T6 temper prior to welding, a postweld heat treatment similar to that described above for solution heat treatment and artificial aging is required. It can be appreciated that in many situations, heating a welded structure to around 1000°F followed by quenching in water and reheating to around 350°F for extended periods may not be entirely practical. This type of postweld heat treatment is not suited to localized application; the entire structure is typically required to be subjected to the procedure. When we consider the cost of conducting such postweld heat treatment, size limitations, and the possibility of producing residual stress and/or distortion into the structure, it is not surprising that we do not see this type of heat treatment conducted extensively in the aluminum welding fabrication industry.

However, this type of postweld heat treatment is conducted for some specialized applications. If full solution heat treatment and artificial aging is to be performed on a welded structure, it is advisable to consider the use of a heat-treatable filler metal. In the case of 6061-T6, a suitable heat-treatable filler metal would be Alloy 4643. A small addition of magnesium to this silicon-based alloy allows it to produce magnesium silicide and respond to this form of heat treatment. Using the correct filler metal and conducting the appropriate postweld heat treatment can return an arc welded component that was originally in the –T6 condition prior to welding to its original strength.

The –T4 Temper

One other option that is sometimes seen as a more practical method of postweld heat treatment for the heat-treatable aluminum alloys is to choose a base alloy in the –T4 temper. In the –T4 temper, the base material has been solution heat treated and naturally aged; no artificial aging has been performed on this material. The typical ultimate tensile strength of 6061-T4 is 35 ksi as compared with 45 ksi of 6061-T6. After arc welding on the 6061-T4 material, a considerable loss in strength is seen in the HAZ. However, the postweld heat treatment required in order for the 6061-T4 material to regain substantial strength in the HAZ (as well as the entire structure) can be far less complex than that required for 6061-T6.

Figure 2 shows the following three examples of strength levels: 6061-T4 and 6061-T6 in the as-welded conditions, and 6061-T4 in the postweld aged condition. As can be seen, the 6061-T4 postweld aged condition exhibits excellent recovery of strength within the HAZ along with typical –T6 properties throughout the structure. The benefits associated with this processing are related to the fact that no high temperature solution heat treatment and quenching are required, only more moderate lower temperature artificial aging. This method of postweld processing is carried out by some manufacturers as a successful alternative to full solution heat treatment and artificial aging.

Conclusion

So in answer to the question: What, if anything, can be done after arc welding to regain lost strength and return aluminum alloys to their original unwelded condition?

For the nonheat-treatable alloys, no practical method of postweld processing is available. For the heat-treatable alloys, variations of postweld heat treatment are available for consideration. However, after explaining these methods, I feel it is reasonable to say that in reality the majority of the heat-treatable alloys used for structural welding applications are used in the same way as the nonheat-treatable alloys in the as-welded condition.

TONY ANDERSON is corporate technical training manager for ESAB North America and coordinates specialized training in aluminum welding technology for AlcoTec Wire Corporation. He is a Registered Chartered Engineer and holds numerous positions on AWS technical committees. He is chairman of the Aluminum Association Technical Advisory Committee for Welding and author of the book Welding Aluminum. Questions and Answers currently available from the AWS. Questions may be sent to Tony Anderson c/o Welding Journal, 550 NW Leesene Rd., Miami, FL 33126, or via e-mail at tanderson@esab.com.
Optimizing Welding and Brazing Processes with New Electrode Materials

Bercoweld® S2, a new alloy for welding electrodes, is based on the key qualities of a widely used copper-based alloy for joining zinc-coated steel sheets. This copper brazing wire provides optimized flowing properties, better ability to bridge root openings, and higher processing speed.

Initially, automotive manufacturers and their suppliers applied a copper-plated steel wire to join zinc-coated steel sheets, but it was soon replaced by a copper-based wire of the SG-CuSi3Mn type. The reasons for switching were that the copper-based alloy preserves the zinc coating of the sheets, minimizes reworking on the car body, and saves time as well as costs.

The Previous Copper-Based Alloy Electrode

The SG-CuSi3Mn electrode designated bercoweld® S3 from Berkenhoff GmbH, Germany, is a copper-based alloy for joining zinc-coated sheets. It is optimized to automotive engineering standards and has a controlled silicon content. This means that the electrode material and, subsequently, the joint is more ductile and has a lower tendency to embrittle. A Si content below 3% also improves the phosphate and paint adhesion.

The alloy is used for all joining processes from standard gas metal arc welding to laser and plasma brazing. Electrodes with 0.8- to 1.6-mm-diameter wire are available. Typical applications in car body construction are joining roof/side body parts, tailgates, sealing strips, crash boxes, and plug, slot, and lap welds — Fig. 1A–C.

New Trends in Car Body Construction

High-temperature brazing with the S3 electrodes has proved successful for many years. However, there is always the user’s request for improvement. Because joining zinc-coated steel sheets is an essential step in car body construction, it seems reasonable to tailor developments coinciding with modern technical and economical trends.

First, there is competitive pressure among the different material groups to be noted: It is no longer a given that a car body is made of steel. The steel producers are working to develop new materials such as higher-strength steels with improved crash properties. Current production processes such as hot forming are used to match properties of the respective components perfectly to requirements. At the same time, demands on quality and visual appearance are constantly increasing. The vehicle body must have a perfect finish, while at the same time, the pressure on manufacturers to reduce costs is steadily mounting.

Objective: Improved Joining

In relation to the joining processes, this means the filler metal must be able to bridge wide root openings when, for example, components of differing dimensional accuracy have to be joined. Furthermore, it is important parts can be joined at a high process speed for cost and time savings.

Bearing this in mind, Berkenhoff’s research and development team has worked to make improvements to the electrodes. This new alloy composition of the brazing wire electrode, bercoweld® S2, also known as COMAS, achieves better joining results.

The benefits include optimized flow properties, good bridging/adhesion of root openings, and a high processing speed along with corrosion resistance — Fig. 2A, B.

Thanks to its improved flowing properties, the alloy produces material closure joints even when bridging wide root openings, and offers improved corrosion resistance and adhesion to the zinc-coated steel.

Suitable for All Joining Methods

The electrode material is suitable for all standard brazing processes, even for joining high-strength steels, which has become more frequently utilized in crash box
Fig. 3 — Cross-section comparison of gas metal arc brazed, T-joint microstructures with a 25-x magnification for bercoweld® S3 (A) vs. S2 (B), and a brazed tailgate surface combination featuring S3 (C) vs. S2 (D) using 500-x magnification.

and side member applications. In addition, the new alloy can be applied wherever Cu-based wire electrodes have been used. Users need only to insert the wire and make minimal changes to the welding inverter parameters.

Presently, bercoweld® S2 is being used by an automotive manufacturer and a car body contract manufacturer. Their experiences have shown the key qualities of the previous alloy are maintained.

UWE BERGER (u.berger@bedra.com) is product manager and ROMAN MEINHARDT (r.meinhardt@bedra.com) is in marketing for Berkenhoff GmbH, respectively, in Heuchelheim and Herborn, Germany.
Aluminum Brazing Alloys Handle the Tough Jobs

The company’s new aluminum brazing alloys, AL-822 and AL-802, feature low-temperature melting ranges with processing windows wider than the 110°F melt window of the typical AL-718 (88Al-12Si) alloy and most aluminum base metals. They offer an easier to control process for joining components such as thin aluminum heat exchangers and other aluminum base metals, and also meet strength, corrosion, and production line requirements. The AL-822 (22Al-78Zn) melt range is 900°F–1190°F, and the AL-802 (2Al-98Zn) range is 725°F–1190°F. Listed as Handy One® LT alloys, the products are available in a variety of forms including spooled flux cored wire, flux cored rods, and flux cored preforms.

Lucas-Milhaupt, Inc.
www.hicasmilhaupt.com
(800) 558-3856

GMAW Machine Includes Infinite Voltage Control

The Millermatic® 212 Auto-Set™ GMAW machine simplifies weld setup by automatically selecting wire feed speed and voltage after the operator inputs wire diameter and material thickness. It is also equipped with infinite voltage control for better manual fine-tuning of weld parameters for all materials. The product features the company’s Line Voltage Compensation (LVC™) to keep output constant. The machine (160 A @ 60% duty cycle) can weld up to %2 in. mild steel in a single pass, and is compatible with the Spoolmatic® 15A/30A spool guns for aluminum welding. In addition, it offers the Fan-On-Demand™ cooling system, a built-in solid-state contactor circuit, and an angled dual-gear drive system that addresses the gun cable’s tendency to angle downward under gravity. The drive system is equipped with a spring-loaded drive roll assembly for easy wire changes, toolless drive roll changeover, and convenient drive roll storage.

Miller Electric Mfg. Co.
www.MillerWelds.com
(800) 426-4553

Wave Soldering Machine Conserves Space, Solder

The ECO-300 small-footprint lead-free wave solder machine features a 220-lb titanium solder pot. It also consumes less energy with a fast heating time and low thermal requirements. The approximately 8-ft-long machine offers a transducer-controlled pump motor for precise solder wave uniformity and height control, an automatically recirculating adjustable titanium finger conveyor for board widths to 11.8 in., along with an 800-mm preheat zone with stainless steel sheath-type IR heaters.

Mannacorp
www.mannacorp.com
(800) 745-6266

Gel Protects Surfaces While Soldering, Brazing

LA-CO® Cool Gel® heat barrier spray is a clear, nontoxic, and nonstaining gel that protects rubber, plastic, painted, and finished surfaces from distortion during soldering, brazing, or welding by acting as a barrier between the surfaces being worked upon and the heat from a torch. A few tips for using this product are as follows: Shake the bottle thoroughly, spray the gel liberally on all surfaces to be protected, and completely cover the surface with no air pockets; for piping, coat the gel around the diameter of the pipe not leaving any root openings.

LA-CO Industries, Inc./Markal
www.laco.com
(800) 621-4025
Mitre Saw Precisely
Dry Cuts Aluminum

The Model KM14SC mitre saw uses a 14-in. carbide-tipped blade to produce clean cuts without burrs or heat generation. This enables precise dry cutting of thin-wall mild steel and aluminum, as well as ½-in. angle, pipe, and structural steel. Plus, it features heavy cast iron construction, a 1300 rev/min spindle speed, 1-in. arbor, sealed ball bearings, dual V-belt drive, dual camlock vises, and a safety guard that retracts when cutting. Capacities are 4½ in. at 90 deg and 4 x 3.5 in. at 45 deg.

Kalamazoo Industries, Inc.
www.kalamazooindustries.com
(269) 382-2050

Microtorch’s Ergonomic Handle Useful for Soldering

The Model MT-70 butane-powered microtorch contains a fuel adjustment wheel to provide a 2500°F pinpoint or broad blue torch flame. A self-igniting piezoelectric ignition makes it simple to start. The self-contained, refillable butane fuel tank provides up to 60 min of use on a full charge. Additionally, this microtorch incorporates a trigger switch with pull-down lock; a slide-lock control allows for hands-free use and instant-off operation; and a wide removable base/stand makes it easy to use the torch hand-held in compact spaces or in a hands-free mode. The...
ergonomic handle design ensures a non-slip grip making it useful for soldering and desoldering as well as other applications. Optional tips allow this product to be used as a soldering iron or flameless heat tool.

Master Appliance Corp.
www.masterappliance.com
(800) 558-9413

Surface Conditioning Discs Feature Three Grits

Megabrite™ surface conditioning quick change discs are designed for general-purpose light grinding, blending, cleaning, and finishing applications using a portable right-angle grinder. With non-woven construction in coarse, medium, and very fine aluminum oxide grits, these flexible 2- and 3-in. discs are suitable for use on aluminum, stainless steel, and sheet metal. They come with standard Type “R” connectors. They are recommended for removing scale, weld spatter, pits, scratches, rust, corrosion, and for light deburring to leave a smooth, clean finish.

Rex-Cut Products, Inc.
www.rexcut.com
(800) 225-8182

Locking Pliers Feature Self-Adjusting Technology

The Crescent RapidVise® line of self-adjusting locking pliers automatically lock onto objects of different thicknesses at a preset pressure without any user adjustment. They have strong jaws, and the angled tooth pattern provides a good grip. A nickel-plated finish protects against damaging rust and corrosion as well. This line currently includes a 10-in. “curved jaw with wire cutter” model and an 11-in. C
clamp in swivel pad and regular tip versions. By later this year, the line will expand to include 5- and 7-in. curved jaw styles and 6- and 9-in. C clamps with swivel pads or regular tips. These pliers are useful in welding, metal fabrication, and HVAC applications.

Cooper Tools
www.coopertools.com
(919) 387-0099

System Eliminates Oxide Deposits during Brazing

The HVAC “VN” Series utilizes nitrogen for purging oxygen from AC line sets to eliminate oxide deposits during the brazing process. It consists of a regulator with an integrated cylinder valve and a lightweight aluminum cylinder. Plus, the system features an ergonomic, built-in carrying handle with a high-impact protective shroud to shield the gauges. It is available with a 22 or 44 ft\(^3\) aluminum cylinder.

Western Enterprises
www.westernenterprises.com
(800) 783-7890

Ventilated Safety Helmet Keeps Workers Cool

The Serpent™ ventilated safety helmet helps offset the effects of working in hot weather. Its CoolSense™ six-vent air flow system lets heat escape. A soft, cushioned brow pad absorbs perspiration. This 13.1-oz helmet features a snake-head shell design. A six-point nylon suspension and durable but lightweight high-density polyethylene material provide comfort and impact absorption. It is available with a pinlock or ratchet suspension, which adjusts to fit 6\(\frac{1}{4}\) to 8\(\frac{3}{4}\) head sizes. A rain trough helps divert water from worker’s face. The safety helmet complies with the ANSI 89.1 standard for Type I, Class C helmets only; it should not be used by electricians or people who work around highly conductive equipment.

Gateway Safety, Inc.
www.GatewaySafety.com
(800) 822-5347

Pipe and Tubing Notcher Ideal for 90-Deg Notching

Model WFN4 uses a power-driven gear box to produce 90-deg notches in pipe or tubing for weld fitup saddles. The photo shows this product with required guard. It can notch from \(\frac{3}{8}\) up to 2\(\frac{1}{2}\) in. In addition, notches can be made at 38 hits/min for production notching jobs. It weighs 215 lb.

Heck Industries
www.heckind.net
(810) 632-5400

Fume Extractor Offered in Four Models

Place-A-Vent removes smoke, fumes, and heat at the source produced by welding, brazing, soldering, laser cutting, plasma... — continued on page 90

For info go to www.aws.org/ad-index
Aluminum became an economically viable competitor to steel within the engineering environment as recently as the end of the 19th century. The electrolytic reduction of alumina (Al2O3) dissolved in molten cryolite was independently developed by Charles Hall in Ohio and Paul Heroult in France in 1886.

Perhaps the three most important events to drive the development of this new material were the introduction of the first internal combustion engine-powered vehicles, electrification that required immense quantities of lightweight conductive material for long distance transmission of electricity, and the emergence of the aircraft industry.

The first commercial applications for aluminum were items such as kitchen utensils — serving trays, pots, pans, ladles, and teapots. In time, aluminum grew in diversity of applications to the extent that virtually every aspect of modern life was directly or indirectly affected by its use.

Today, aluminum’s unique characteristics of light weight, high strength, high toughness, extreme temperature capability, versatility of extruding, excellent corrosion resistance, and recycling capabilities make it a popular material choice by engineers and designers for a variety of welding fabrication applications.

Automotive Industry

Perhaps the most dynamic advancement of aluminum welding fabrication today is within the automotive industry. Promoted primarily through environmental issues such as increased fuel efficiency, corrosion resistance, and recycling, we are seeing more and more components manufactured from aluminum appearing within the average automobile.

The development of the aluminum automobile frame (Fig. 1) and major structural components fabricated entirely from aluminum such as engine cradles, front and rear suspension frames, drive shafts, and wheels are complementing the more traditional nonstructural components such as heat exchangers, radiators, and air-conditioning units. Many of these welded structural components are manufactured using 6xxx series base alloys, making use of this material’s ability to economically produce complex extruded shapes that are joined with the gas metal arc welding (GMAW) process.

Another issue — besides the fuel efficiency associated with the use of aluminum within this industry — is safety. Aluminum’s basic physical characteristics lend themselves to creating automobiles that not only perform better in a collision, but can actually help to prevent crashes. Aluminum’s strength-to-weight ratio allows engineers to construct larger vehicle crash zones for better energy absorption — Fig. 2. Aluminum structures can be designed to absorb the same energy as steel at only 55% of the weight. This weight saving relates to less kinetic energy being absorbed in a collision. Aluminum-intensive vehicles provide better handling and braking capability, improving their ability to avoid crashes. A vehicle made of conventional materials weighing 3300 lb traveling at 60 mph requires 213 ft to stop. Given the same drivetrain, an equally sized aluminum-intensive vehicle would weigh 2000 lb and could stop in 135 ft. Similar improvements are seen in acceleration abilities, when a little extra speed could make the difference in avoiding a collision. Welding procedures used within the auto industry will vary, but typically makes use of robotics wherever possible. Fabrication of thin-wall heat exchangers make use of 4047 filler metal, which contains 11 to 13% silicon and provides exceptional fluidity. This helps to reduce leakage rates and improve productivity. The thicker material structural applications within this industry are often able to make use of filler Alloy 5356 for its improved strength and impact properties.

Shipbuilding

Fast ferry projects have advanced the use of aluminum in shipbuilding through development of a new concept in marine transportation. Shipping companies are looking at high-speed aluminum ferries as a means of fast, efficient, low-maintenance transport. The term “fast ferries”
Fig. 2 — During a car crash, aluminum structures fold like an accordion to absorb energy and protect the vehicle passengers from destructive crash forces. Pound for pound, aluminum can be up to two-and-a-half times stronger than steel, and it can absorb twice as much energy. Structures can be designed to fold during a crash in a predictable manner. (Photo courtesy of Aluminum Association.)

applies to hydrofoils, wave-piercing catamarans, and both mono-hulled and multi-hulled vessels built to carry large payloads of passengers and cargo at high speeds. Typically, these vessels are around 100–130 ft in length and travel at 20–35 knots (35–40 mph). Aluminum-intensive mega-ferries are massive vessels measuring approximately 300 ft in length and carry up to 700 passengers and 150 cars.

Quadrimarans are among the newest marine transportation innovations. Measuring 180 ft in length, newer versions are designed to carry 600 passengers. These fast ferries can regularly travel at 60 knots (69 mph), but they could achieve speeds of up to 110 knots (126.5 mph). The concept of extremely light and fast marine transportation has been recognized by the military. A number of these types of vessels are being utilized by the U.S. Army — Fig. 3. For these applications, the shipbuilding industry has made use of the high-strength magnesium base metals such as 5083 and 5383 welded with 5183 and 5556 filler metals in order to obtain the minimum tensile strength requirements as specified in the appropriate welding codes. Often argon/helium shielding gas mixes are used when gas metal arc welding to reduce porosity and obtain broader and deeper penetration for these high-quality welds. Aluminum’s unique combination of lightweight, high-strength and corrosion-resistance characteristics make these high-speed developing marine applications possible.

Recreation and Sporting Equipment

The advancement of high-tech sporting equipment and the increased use of high-strength heat-treatable aluminum alloys such as the 7xxx series have revolutionized this industry. Many of the latest designs have incorporated this lightweight, high-performance aluminum material. Bicycle frames, baseball bats, golf clubs, sleds, and snowmobiles are some of the many products within this industry dependent on aluminum alloys today — Fig. 4. This industry, with its thin wall joining and complex heat treatment, has promoted the development and use of specialized filler alloys designed to respond to thermal treatment and welding techniques and equipment designed to meet their strength and cosmetic requirements.
Liquefied natural gas (LNG) tanker with four large welded aluminum spheres (tanks). Many materials when subjected to these very low temperatures undergo changes in their physical structure that severely limit their usefulness in cryogenic applications. Some metals, for example many steels, become extremely brittle. Aluminum alloys, however, have been demonstrated to have an unusual ability to maintain their ductility and resistance to shock loading at extremely low temperatures approaching absolute zero –459°F (–273°C). As temperature decreases below room temperature, aluminum’s tensile and yield strengths actually increase as the temperature decreases, and the ductility and toughness of most alloys increase as well. Even at the lowest test temperatures available, in liquid helium at –452°F (–273°C), strength remains high and ductility and toughness remain well above values for most alloys at room temperature.

The advanced amphibious assault vehicle (AAAV) uses welded aluminum to produce a lightweight, high-speed vehicle that is effective on land and water. For similar reasons as the automotive industry, transportation vehicles are adopting more aluminum. Heated rail cars with line heaters and steam lines make use of aluminum base Alloy 5454, welded with filler metal 5554 for their strength and high-temperature characteristics. Cryogenic tanks are manufactured from base metal 5083, welded with filler metal 5183 for their high strength at low temperature characteristics — Fig. 5. Truck bodies and panels are manufactured from 5052, 5086, 5083, and 6061 and often welded with filler metals 5356, 5183, and 5556 for their strength characteristics.

Defense and Aerospace

These industries use high-strength 5xxx series (Al-Mg) nonheat-treatable base alloys for some applications, but also make use of some of the more specialized heat-treatable aluminum alloys with superior mechanical properties. Aluminum base alloys are used for their impact strength and strength-to-weight ratio — Fig. 6. Alloy 5083 and 7039 base materials are welded with 5356 filler. Missiles are constructed of 2019 base metal welded with 4145 and 2219 base metal welded with 2319 filler.

Perhaps the most exotic aluminum alloys, with exceptional strength over a wide range of operating temperatures, are used in the aerospace industry. Some of these alloys are 2219, 2014, 2090, 2024, and 7075. These base materials are typically used in specialized high-performance applications and have their own welding characteristics and associated problems, which may require special considerations when joining.

The relatively recent introduction and development of friction stir welding (FSW) has helped to remove restrictions associated with the arc welding of some of the aluminum alloys used within this industry. Various 2xxx and 7xxx series alloys that are recognized as being unsuitable for arc welding are now welded with the FSW process.

The use of aluminum continues to grow within the welding fabrication industry in both size and complexity, and with it the need for aluminum filler metals that will meet these needs, the advancement of welding equipment specifically designed for welding aluminum, and the requirement for resources that can provide industry with technical support.
What defines excellence in welding sales?

The American Welding Society announces the certification program for welding sales representatives

If you are among the best and most successful sales professionals in the welding industry, it’s because you provide value-added expertise to your customers.

You are there for them when they want to try new solutions. You are there when they struggle to improve their welding quality and productivity. You are there to help provide a safe workplace.

You have years of expertise that back up every recommendation and every sale you make. And you never stop soaking up all the knowledge you can – because you strive to be among the best.

For you, there is a new certification stating that you exemplify excellence in sales professionalism.

The AWS Certified Welding Sales Representative program tells the industry that you have what it takes to add value to every sale.

If you meet the program’s requirements, you can take a two-hour exam to establish your credentials. Convenient examination sites are scheduled throughout the country. In addition, AWS offers three-day preparation seminars with the examination on the afternoon of the third day. The seminar can be taken at certain AWS-scheduled sites, or at your workplace for groups of sales personnel.

Examination topics will establish your level of knowledge concerning five arc welding processes, brazing and soldering, cutting, safety in processes and gas cylinder handling, AWS filler metal classifications, shielding gas applications, welding terminology, ventilation, electrical requirements for power sources, and welding procedures and their qualification.

The optional seminar will not only prepare you for the exam, it can also enhance your professional knowledge, especially as you network with your peers in a stimulating, interactive classroom environment. You’ll receive a study guide and valuable reference books that you can keep: Welding Handbook volumes 1 & 2, AWS A5.32 Specification for Welding Shielding Gases, and ANSI Z49.1 Safety in Welding, Cutting, and Allied Processes.

Prerequisites for the AWS Certified Welding Sales Representative program include a high school diploma or equivalent and at least five years’ experience in an occupational function in direct relation to the sales of welding equipment, cutting equipment, and supplies and other related services; OR at least two years’ of the same experience PLUS a training certificate of completion for welding processes.

Completion of the AWS Certified Welding Sales Representative seminar fulfills this training certificate requirement...so by taking the seminar, a sales representative with between two and five years’ relevant experience would be qualified to take the exam.

For more information and application forms, visit www.aws.org/CWSR. For information about applying, call 1-800-443-9353 ext. 273. To learn more about the exam-preparation seminar, call 1-800-443-9353 ext. 455. Or for customized training and examination of a group at your workplace, call 1-800-443-9353 ext. 219.

You are among the elite in welding sales. Now you can prove it, as an AWS Certified Welding Sales Representative.

Take the seminar and exam at FABTECH/AWS or take the exam at any CWI exam site.
The American Welding Society, DVS, and IIW are organizing their first International Electron Beam Welding Conference. This event will be held in conjunction with the Fabtech Int’l & AWS Welding Show, and will include a two-day technical program plus a half-day tutorial sponsored by the Pro-beam Foundation. IEBW will bring together scientists, engineers and technical personnel from around the globe involved in the research, development, and application of electron beam welding processes.

For the latest conference information, visit our website at www.aws.org/conferences or call 800-443-9353, ext. 455

Chicago / Tuesday, Nov. 17 – Wednesday, Nov. 18, 2009
[at the FABTECH INT’L & AWS Welding Show]

AWS Members: $550 / Nonmembers: $685

Hosted by:

American Welding Society

FREE Student Tutorial
Monday, Nov. 16

Earn PDH’s toward your AWS recertification or renewal when you attend the conference!
Evaluating Margins of Safety in Brazed Joints

An approach used to analyze AlBeMet® 162 structure brazed with the AWS BALSi-4 filler metal is provided

BY YURY FLOM, LEN WANG, MOLLIE M. POWELL, MATTHEW A. SOFFA, AND MONICA L. ROMMEL

Evaluation of strength margins in structural components is a normal practice used in the design of metallic and composite structures. Mechanical, welded, or adhesively bonded joints in such structures are routinely assessed for their load-carrying capabilities in accordance with widely accepted engineering analysis techniques and failure criteria (Refs. 1–5). Brazed joints, however, seem to be an exception. Literature searches for analytical methods of the evaluation with the strength or margin of safety (MS) of complex brazed joints produced no satisfactory results. This is particularly true when the brazed joints are subjected to multiaxial loads.

Although this article does not explore the reasons for a lack of books or guides on structural analysis of brazed joints, it would be beneficial to mention several factors commonly identified by designers as stumbling blocks precluding them from a comprehensive analysis of the brazed joints. These factors are as follows:

- Lack of knowledge of the mechanical properties of the brazed joint filler metal interlayer;
- Uncertainty of how to use these properties even if they, somehow, are made available;
- Inadequate attention to the analysis of the brazed joints from the structural professional community and academia as compared with other methods of assembly such as welding, adhesive bonding, or fastening;
- Lack of techniques to account for defects commonly found in brazed joints like incomplete fill or trapped salts; and
- Nonstandard joint configurations that have not been tested to validate analytical models.

It is quite clear that these factors offer challenging problems to metallurgical, materials, and mechanical engineers in terms of understanding the interaction between the filler and the base metals, experimental techniques of measuring mechanical properties of the joints, as well as the appropriate interpretation of the results. This article deals with the issues that fall within the second factor mentioned previously.

Many challenges exist in the analytical modeling of the braze joint. The foremost difficulty is that braze joints are normally very thin (less than a hundred microns thick) compared to their lateral dimension. This disproportionately large aspect ratio not only makes the analytical calculation of the stress and strain incredibly difficult but also, most importantly, changes the fundamentals of the failure mechanism of a ductile material. The
extraordinarily large aspect ratio constrains the braze joint in such a way that only a nearly pure shear loading condition, such as lap shear, can be handled using a standard yielding and failure approach, such as the Tresca (maximum shear) and von Mises criteria. Under nearly pure shear loading, the filler metal will yield, undergo plastic deformation, and reach failure in the normal failure process of most ductile metals and alloys.

However, when loading braze joints in tension or compression, a totally different failure mechanism is involved. Taking the standard butt joint brazed specimens described in AWS C3.2, Standard Method for Evaluating the Strength of Brazed Joints, as an example, when the specimen is loaded in tension, the filler metal, which is the focus of the test, is no longer in the simple tensile loading condition. Large lateral tensile stress develops due to the lateral constraint. The lateral tensile stress can be as high as ~90% of the axial tensile stress, depending on the property differences between the filler and base metals. Often, thermal stress exists due to the mismatch of coefficient of thermal expansion (CTE) between the base and filler metals; the lateral tensile stress can exceed the applied axial tensile stress. Under such a loading condition, the filler metal is actually under triaxial tensile loading. The filler metal will not yield except at the very edges. Often, the failure strength of the notched and smooth samples of such configuration are not much different, as will be shown by test results of the current study. When loading such a specimen in compression, the filler metal will basically be in hydrostatic compression. The filler metal will not undergo macroscopic plastic deformation prior to failure. Apparently, under such conditions, the filler metal fails very differently compared to the homogenous tensile or lap shear specimens. Even for a very ductile filler metal, it fails in a quasibrittle manner. Finite element analysis (FEA) showed when the brazed butt joint is under tensile loading, overall shear and von Mises stresses are small in the filler metal (Ref. 6). The stress peaks at the edges of the joint cannot be reliably used as a failure indicator. Conventional yield and failure criterion, such as von Mises and Tresca criterions, can hardly be applied.

When braze joints are under complicated loading conditions, such as combined axial and lateral shear loads, this problem magnifies itself making the analytical prediction nearly impossible. Consequently, the logical approach in solving this problem is to find a failure criterion that combines the two major driving failure mechanisms and, at the same time, is suitable for practical use.

The purpose of this work is an attempt to develop a simple methodology enabling designers to estimate the safe operational range for the brazed joints under static multiaxial loads. In order to accomplish this task, the following approach was implemented:

- Establish brazed joint allowables by testing the standard test specimens described in the AWS C3.2 specification.
BRAZING & SOLDERING TODAY

Ref. 7 under near-pure shear and tensile loads. As explained above, the tensile test of braze joint measures the dilatational (volume change, see Ref. 8) tensile strength of the filler metal, not the simple tensile properties of the filler metal.

- Develop an interactive equation to account for the combined action of distortional shear and dilatational tensile loads.
- Verify the interactive equation by testing customized specimens subjected to multiaxial loads.

The brazed joints in this study were comprised of Brush Wellman AlBeMet® 162 (62% Be, 38% Al) metal matrix composite dip brazed with AWS BAISi-4 (Al, 12% Si) filler metal. This system was selected because of its importance in aerospace applications.

Procedure

Tensile Allowables

Tensile allowables were determined from the tensile tests of the standard brazed butt joint specimens described in AWS C3.2. In addition to the standard geometry, notched tensile specimens were also tested to determine the notch sensitivity of the AlBeMet® 162/BAISi-4 system. The results of the tests are summarized in Table 1. No significant difference in the failure loads was observed between the smooth and notched specimens. As mentioned above, this is not a surprise. Consequently, all values of failure load were pooled together to improve the statistical interpretation of the results. Forty specimens were tested. Figure 1 depicts the geometrical features of both types of specimens.

The failure loads were divided by the initial cross-sectional areas to obtain the ultimate tensile strength σ_{TUS}. A-basis is a statistical value of σ_{TUS} indicating that at least 99% of the population is expected to be equal or exceed this value with 95% confidence (Ref. 9). It was computed using the procedure described in Ref. 10. Typical stress-strain curves from the tensile tests are shown — Fig. 2.

Shear Allowables

Single lap shear test specimens per the AWS C3.2 standard were pull tested to determine the average shear strength of the brazed joints. The overlap length tested ranged from 1T to 3T, where T was the thickness of the base metal — Fig. 3. Only the 1T specimens failed in the braze. All other specimens failed in the base metal away from the brazed joint.

Consequently, only 1T test results were used for analysis. The ultimate shear strength τ_{sus} of each tested lap joint was determined by dividing the failure load by the area of the loaded surface.

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Min</th>
<th>Max</th>
<th>Avg</th>
<th>A-basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lap shear, 1T</td>
<td>100</td>
<td>122</td>
<td>115</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>(14.5)</td>
<td>(17.7)</td>
<td>(16.7)</td>
<td></td>
</tr>
<tr>
<td>Pin shear</td>
<td>67</td>
<td>112</td>
<td>86</td>
<td>(7.1)</td>
</tr>
<tr>
<td></td>
<td>(9.7)</td>
<td>(16.2)</td>
<td>(12.4)</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3 — Single lap shear (A) and pin shear (B) specimen configurations. The pin shear specimen geometry has been used for a long time as process control and witness samples for dip brazing (Ref. 11). Dimensions are in mm.

Table 2 — Shear Test Results, MPA (ksi)
BRAZING & SOLDERING TODAY

the total area of the overlap. Table 2 contains a summary of the lap shear test results. A total of 16 lap shear J1 specimens were tested. The historical data of testing pin shear specimens (a total of 46 specimens) brazed by the same vendor are also included in this table.

Failure Criteria and Interactive Equation

A number of interactive equations or curves have been developed in the past to predict failure in structures subjected to combined loads (Refs. 1–3). These equations had been used to estimate the conditions of structural failure in homogeneous and ductile materials. Although most interaction equations were obtained empirically, they are based on the ductile behavior of metals and can be traced to the Tresca and von Mises failure theories. Since the brazed joints do not behave as ductile homogeneous materials, with the exception of a “pure” shear condition, the conventional interaction equations do not apply to the highly restrained brazed joints subjected to multiaxial loading conditions. Consequently, highly constrained brazed joints should behave closer to the brittle materials.

It is instructive, therefore, to look at other failure criteria capable of predicting failures in brittle materials. There are at least two well known such criteria. One of them is the Coulomb-Mohr fracture criterion (Refs. 12, 13). According to this criterion, fracture takes place in a given plane in a material when a critical combination of normal \(\sigma \) and shear \(\tau \) stresses has occurred. In its simplest form, this stress combination assumes a linear relationship, as shown below.

\[
\tau + \mu \sigma = c
\] (1)

In this expression, \(\mu \) and \(C \) are material-specific parameters. The other criterion is by Christensen (Ref. 13) who modified the Coulomb-Mohr criterion and offered a more general form of failure condition by considering a combined effect of dilatation/hydrostatic and distortional/von Mises components of stress. His failure theory provides a clearer physical meaning of the failure mechanism and better correlation with the experimental results for homogeneous materials (Ref. 13).

The authors have demonstrated (through unpublished work) that both

Fig. 4 — J1, J2, and Pi configurations of the validation brazed test specimens. Base metal thickness was 6 mm (0.025 in.). The arrows represent various loading conditions. Specimens J1 and J2 were tested in uniaxial loading (solid arrows) and combined, tension + bending (solid + block arrows), conditions. The Pi specimens were tested in compression either along the black arrows or dotted arrows. The distance between the first set of holes and top plate is 25 mm (1 in.), span or offset = 25 mm, and the distance from the top plate to the second set of holes is 50 mm (2 in.), span = 50 mm.
failure criteria can be applied to the analysis of the braze joints to produce satisfactory results. While the Christenson failure criterion requires detailed FEA modeling of the braze joints, the Coulomb-Mohr failure criterion can be approximated by using mechanics of materials under the assumption that the normal stress applied to the brazed joint will result in triaxial tensile/compression stress of the same magnitude. This approach greatly simplified the analysis and made it possible to be readily applied to any braze joint without FEA modeling. The authors also found that while the Christensen failure criterion is likely more accurate, the Coulomb-Mohr failure criterion is more conservative. The following analysis is entirely based on Coulomb-Mohr failure criterion.

If a normal stress is zero, as in the case of pure shear, Equation 1 takes the form of the Tresca (maximum shear) criterion, such as \(\tau = C = \tau_{\text{ult}} \). It is easy to see that the parameter \(C \) is the ultimate shear strength of the material. With respect to the brazed joint, this is the maximum shear stress determined from the lap shear pull tests. Taking Equation 1 and dividing it by \(\tau_{\text{ult}} \) and rearranging the terms, the following is obtained:

\[
\frac{\sigma}{\tau_{\text{ult}}} + \mu = 1
\]

(2)

The fracture condition of the brazed butt joint tensile specimens is achieved when the tensile stress pulling the joint apart equals the maximum dilatation stress that a brazed joint can withstand. To be consistent, it is called ultimate tensile stress \(\sigma_{\text{TUS}} \) of the brazed joint (not to be confused with \(\sigma_{\text{TUS}} \) of the filler metal tested in free form).

\[
\sigma = \frac{\tau_{\text{ult}}}{\mu} = \sigma_{\text{TUS}} \text{ or } \mu = \frac{\tau_{\text{ult}}}{\sigma_{\text{TUS}}}
\]

Recall that during tensile testing of the brazed butt joint specimen, the conditions within the thin braze layer approach those of a triaxial tensile stress state (or hydrostatic tension). Under such conditions, shear stress within the brazed joint approaches 0. If \(\tau = 0 \), Equation 2 becomes

\[
\frac{\sigma}{\tau_{\text{ult}}} = 1 \text{ or } \sigma = \frac{\tau_{\text{ult}}}{\mu}
\]

From this it is seen that the material property \(\mu \), with respect to the brazed
joints, is the ratio of ultimate shear stress to ultimate tensile stress of the brazed joint. Substituting μ with the ratio of the stresses into Equation 2 leads to the following modified Coulomb-Mohr expression:

$$\frac{\sigma}{\sigma_{\text{TUS}}} + \frac{\tau}{\tau_{\text{sus}}} = 1 \text{ or } R_\sigma + R_\tau = 1 \quad (3)$$

Where R_σ and R_τ are the tensile and shear stress ratios, respectively.

Validation

In order to test the validity of Equation 3 in predicting fracture in brazed joints, several types of specimens were fabricated using the same brazing process and vendor that produced the standard test specimens. Figure 4 shows the configurations of the validation test specimens and the directions of the applied test loads.

These specimens were tested under uniaxial and multiaxial loading conditions using specially designed and built loading fixtures. Figure 5 shows some of the test setups used to test the validation specimens. During each test, load vs. displacement records were obtained using load cells and linear variable displacement transducer (LVDT) outputs. Using the maximum failure loads obtained experimentally, each specimen type was analyzed using hand calculations based on beam theory and the principles of stress superposition. From these analyses, the stress ratios R_σ and R_τ were calculated for each tested validation specimen at fracture loads using average and A-basis values for σ_{TUS} and τ_{sus} (Tables 1, 2).

Figures 6 and 7 show the calculated stress ratios compared with the modified Coulomb-Mohr failure criteria. As one can see, all combinations of stress ratios that resulted in failure of all but three specimens lie outside the “safe” region below the A-basis Coulomb-Mohr failure locus.

Discussion

One of the main emphases of the current effort was to be conservative in analysis, testing, and data interpretation. Therefore, A-basis statistical requirements were applied to the test data that resulted in significant knock down of the ultimate tensile and shear stresses used to define the lower bound of the failure region.

This was done to better align the analysis of the brazed joints with the standard practice of using A- or B-basis values in the design of aerospace structures. On the other hand, the Coulomb-Mohr failure locus based on the test average values for σ_{TUS} and τ_{sus} (see Tables 1 and 2) is a better choice for predicting the actual stress ratios at failure obtained experimentally from testing the validation specimens — Fig. 6.

In addition to the expected test data scatter, there is another factor that needs to be taken into account when attempting to define the load-carrying capability of the brazed joints. This factor is related to our ability to detect the internal discontinuities in the brazed joints. Notice the three data points (“Jl combined”) located relatively far from the predicted failure locus as well as lying inside the “safe” zone defined — Fig. 7.

Examination of fracture surfaces of these validation specimens showed that in some cases up to 80% of the brazed joint areas were not brazed. Typically, most of the quality specifications allow lack of braze only up to 20% of the total area of the brazed joints. The quality of the rest of the validation specimens was not as bad, although the lack of braze was still considerably higher than the permissible 20%. However, based on the fact that all but three specimens failed outside the “safe” zone indicates that the conservatism exercised in this work was adequate to account for the presence of internal discontinuities well in excess of the 20% acceptable by most specifications.

Nondestructive examination of complex brazed assemblies is not trivial. Some discontinuities may remain undetected. In order to account for undetected flaws, it is reasonable to further reduce the expected load-carrying capability of the brazed joints in critical brazed structures.

The MS of the brazed joint following the approach described in Ref. 4 can be determined. Ideally, if the sum of stress ratios in Equation 3 is less than 1, the brazed joint is safe. However, various uncertainties must be accounted for such as dimensional errors, heat treatment parameters, assembly stresses, and braze joint discontinuities (as discussed above) during the manufacturing and brazing processes. These uncertainties have a negative impact on the strength of the brazed structure.

For example, if the brazed joint is under the combined action of 15 MPa tensile and 10 MPa shear stresses and using the A-basis ultimate tensile and shear stresses determined in this study (86 and 49 MPa, respectively), and using $FS = 2$, the MS would be

$$MS = \frac{1}{(R_\sigma + R_\tau) \times FS} - 1 = 32\%$$

Graphically, this is represented in Fig. 8.

Conclusions

The following conclusions can be drawn from this study:

1) The modified Coulomb-Mohr failure criterion can be used to predict failures in the brazed joints, especially when they are subjected to multiaxial loading conditions. The procedures developed in this study could be used to verify failure criterion in design and structural analysis of the critical brazed joints in other base/filler metal combinations.

2) The methodology of determining the allowances is based on testing standard brazed specimens, which is relatively simple and inexpensive.
3) It is important to be conservative in determining the ultimate properties of the brazed joints when testing standard specimens. A quantity of test specimens selected for testing should be sufficient to allow for a good statistical interpretation.

4) The quality of brazed joints in the standard and validation specimens should be representative of the quality of production assemblies. An appropriate FS should be used to account for the uncertainties of the brazing process.

5) One of the main advantages of the proposed methodology is that it does not require a specific knowledge of the properties of the filler metal inside the brazed joint. The allowables are determined by testing standard tensile and lap shear specimens and used to construct the modified Coulomb-Mohr fracture line and evaluate MS — Equation 4 and Fig. 8.

Acknowledgments

The authors would like to acknowledge David Puckett (NASA GSFC), Clint Casey (ITT), S. R. Lin (Aerospace Corp.), Ge Wang (NGST), and the other dedicated employees who contributed to this study. They would also like to thank Dr. George Alcorn (GSFC) for his continuous support of this effort.

References

World Class Benefits

Health Insurance
Health Savings Accounts
Dental and Vision
Disability Income Insurance
Accident & Cancer Plans
Life Insurance
Wellness and Prevention
Resources for the Uninsured

For The World Class Members of AWS

There is a crisis in health care and AWS has done something about it. We are proud to introduce an outstanding package of benefits for our members, a single source with more than fifty insurance companies, offering value-priced health, dental, vision, disability, accident, cancer and life insurance.

Simply visit www.worldclassbenefits.com/aws or call 800-955-0418 to learn more.

Managed By:

WorldWide Insurance Services, Inc.

www.worldclassbenefits.com/aws
Solving the Problems Inherent to Torch Brazing Aluminum

Substituting aluminum for copper in thermal-transfer products challenges manufacturers to rethink their brazing techniques, filler metals, and fluxes

BY KENNETH ALLEN

The volatility in the price of copper has removed cost certainty for manufacturers of copper heat-transfer devices. This market instability and the escalating warranty claims associated with formicary corrosion have caused some manufacturers to consider making their thermal-transfer devices out of aluminum. While a change to aluminum offers significant material cost savings, brazing aluminum presents several serious concerns.

Unlike brazing copper-to-copper assemblies using phosphorus-containing filler metals, the brazing of aluminum components requires the use of a flux. This raises several questions: What are the basic requirements of the flux? What fluxes are available? And, how should the flux be applied?

Another major problem is the close thermal proximity between the melting temperatures of the brazing filler metal and base metals. Frequently there is less than a 100°F difference between the liquidus temperature of the braze alloy and the solidus temperature of the aluminum. The opportunity for successful brazing is further complicated when a thermal-transfer device has a dense population of components. This type of design tends to shield some of the braze joints from proper heat exposure — Fig. 1.

The manufacturer considering a change from copper to aluminum must resolve three important factors affecting the brazing operation:

1. Choose the right flux to use for the application.
2. Determine how to apply the flux to the part.
3. Decide how to manage the small thermal window between the melting temperature of the brazing filler metal and thermal damage to the base metals.

Selecting the Correct Flux

The first requirement of an aluminum brazing flux is to be chemically effective. Fluxes are categorized as active (corrosive) and inert (noncorrosive). Active fluxes — generally consisting of potassium chloride with numerous proprietary additives — create sound brazements. The appearance of the part after brazing is bright and shiny. However, the postbraise residues must be properly removed to prevent the occurrence of electrolytic corrosion. Simply rinsing the part in water is not sufficient. These fluxes require a significant exposure to hot water to remove the corrosive flux residue. Attention must be given to chemicals on the outside of the assembly and to any residues that have migrated to the inside of the part. Obviously, a simple water rinse cannot adequately remove flux chemicals that, due to migration, are shielded from contact with the rinse water. If not removed, these chemi-
Brazing & Soldering Today

Fig. 2 — ChannelFlux products contain the noncorrosive flux in a groove formed in the wire.

Fig. 3 — The pictured return bend was delivered preloaded with a flux ring. This enabled the brazing facility to eliminate all labor in the application of flux and braze metal.

cals can cause postbraze corrosion.

Noncorrosive fluxes alleviate any concern regarding postbraze activity. These fluxes include the higher-temperature potassium aluminum fluoride options and the lower activated cesium fluorides. Noncorrosive fluoride fluxes do not require any postbraze cleaning or treatment; however, these fluxes do leave a white, gritty residue on the part. The residue is primarily a cosmetic issue, but it can make subsequent brazing in the region more difficult. If this residue can be tolerated, the use of a noncorrosive flux is highly recommended.

Fluxes must be thermally matched to the melting phase of the braze filler metal. One key to the success of NOCOLOK® flux is its thermal activation proximity to the 4xxx aluminum-silicon filler metals. Cesium fluoride options have been developed that provide the same noncorrosive performance at a substantially lower temperature.

Applying the Flux to the Part

A major component of a successful aluminum brazing project is the convenient application of flux and braze filler metal. While this is accomplished in controlled-atmosphere brazing (CAB) processes with a recirculating flux spray system and clad base metals, this option is not practical for many flame brazing projects.

Listed below are the most common methods of presenting controlled amounts of flux to optimize torch brazing results.

1. Dispensable fluxes utilize standard flux chemicals with an added binder or suspending agent. The mixture remains homogenous and can be automatically applied to the part. Dispensable fluxes can be used in conjunction with wire feed or preforms as a two-step system of material deposition.

2. Paste is a blend of alloy filler metal in powder form, flux, and a neutral suspending agent. Paste enables the flux and the alloy to be dispensed in a single step using pneumatic or positive-displacement devices.

3. Flux/powder metal (PM) fabrication uses PM principles to form solid rings made from powdered metal and flux. Control of powder mesh size dispersion is critical to ensure lot-to-lot consistency.

4. Flux cored wire starts with a flat strip to which noncorrosive flux is applied. The strip is then rolled to create a wire with a flux core. Typically, these wires have flux voids that can reduce their effectiveness.

5. ChannelFlux® is a rectangular wire featuring a groove filled with a noncorrosive flux. This product offers precise placement of both brazing alloy and flux — Figs. 2, 3.

Enlarging the Thermal Processing Window with 78Zn 22Al

Addressing the narrow thermal processing window is perhaps the biggest concern when contemplating an aluminum brazing project. The problem, simply stated, is that the aluminum base metals melt at about the same temperature as the brazing filler metal. Table 1 provides the melting ranges of several of the more common materials used in brazing applications.

Note that the solidus temperature, the

<table>
<thead>
<tr>
<th>Grade</th>
<th>Solidus</th>
<th>Liquidus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100</td>
<td>1190</td>
<td>1215</td>
</tr>
<tr>
<td>3003</td>
<td>1190</td>
<td>1210</td>
</tr>
<tr>
<td>6061</td>
<td>1100</td>
<td>1205</td>
</tr>
<tr>
<td>6063</td>
<td>1140</td>
<td>1205</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade</th>
<th>Solidus</th>
<th>Liquidus</th>
</tr>
</thead>
<tbody>
<tr>
<td>4047</td>
<td>1070</td>
<td>1080</td>
</tr>
<tr>
<td>78 Zn-Al</td>
<td>826</td>
<td>905</td>
</tr>
</tbody>
</table>
last temperature at which the alloy is completely solid, marks the point where damage begins to occur in the base metals. The lowest melting option of the standard BAISi brazing alloys (4047) is 1070°–1080°F.

Table 2 shows a comparison between the melting temperature of the brazing alloy and the point at which the base metal is damaged illustrates the challenge. There is no margin for error.

The availability of cesium fluoride fluxes and their very-low melting range of 788°–842°F have ignited renewed interest in Zn-Al brazing alloys. The 78Zn 22Al is specifically designed for use on thermal-transfer devices. The low melting phase of this alloy (826°–905°F) is perfectly matched to the thermal activity of the Cs fluxes. The lower melting temperature (as compared to 4047) provides a substantial thermal window for most brazing applications. This is especially true for 6xxx series aluminum.

Postbraze residues must be properly removed to prevent the occurrence of electrolytic corrosion.

Tensile strength and burst tests with the 78Zn 22Al consistently show the braze joints demonstrate greater durability than the base metals. Saltwater spray testing to ASTM B117 for 2000 h showed no signs of visible corrosion and no deterioration of mass. While we might expect certain applications where the high-zinc filler metal might be sacrificially offered, independent tests indicate that this process is quickly arrested by the almost immediate formation of aluminum oxide.

Conclusion

This article presents a number of options to enable a manufacturer to conveniently apply aluminum brazing materials. The method selected should utilize a flux that meets the cleanliness and corrosion-resistance requirements of the part and be thermally matched to the filler metals.

The acceptance of cesium-based fluxes has created a developing opportunity to investigate Zn/Al alloys as a low-temperature alternative to the popular aluminum-silicon products.

The use of a flux-containing single-step material application with a low-melting filler metal enables the manufacturer to properly address the most significant challenges found in the torch brazing of aluminum thermal-transfer devices.

Turnkey Brazing and Soldering Automation

All you need from ONE SOURCE!

- **Filler Metals** — Paste form, no separate fluxing
- **Dispensers** — Eliminate filler metal waste
- **Automatic Machines** — Fixed station and Rotary Index, 60 to 2,000 per hour

Fusion Incorporated

1-800-626-9501 or (440) 946-3300
www.fusion-inc.com
info@fusion-inc.com

For info go to www.aws.org/ad-index
Welding Corrosion Resistant Alloys Takes Center Stage.
Find answers to the unknown and discover new processes.

The interest level is extraordinarily high when it comes to the welding of corrosion-resistant alloys. There are many reasons for this. One is the entry of the duplex stainless steels and other high-performance grades. Another is the unstable prices in nickel, molybdenum and titanium. When the price of nickel hit the roof, many fabricators switched from 316 to 201 stainless because of the latter grade’s lower nickel content. Research is feverish throughout the world in the development of new and cheaper methods of producing titanium. Will a lower cost titanium make the metal more popular?

The overall activity is immense. Cladding and strip overlay processes have become more popular means of protecting parts exposed to heavy corrosion. Duplex stainless is now being welded for over-the-road tankage. New processes, like friction stir welding and the more advanced thermal stir welding out of NASA will be discussed as well. Also, improvements in weld properties are being realized by increasing the weld interpass temperatures for conventional austenitic stainless steels.

Keep abreast of this exciting new world in welding where corrosion-resistant alloys have taken center stage. Mark your calendar for November 18, 2009, at the FabTech International and AWS Welding Show in Chicago, Illinois.

For the latest conference information visit our website at www.aws.org/conferences or call 800-443-9353, ext. 455.

Earn PDH’s toward your AWS recertification or renewal when you attend the conference!
Soldering Silver to Aluminum and Copper for Cryogenic Applications

Cryogenic evaporators were manufactured by soldering with silver heat-conductive plate to explore the internal design range of a possible electronics cooling solution

BY LEONID A. SHAPIRO

Microprocessor design has recently turned in another direction relative to the past 30 years. The emphasis is now placed on spreading computational workloads to multiple smaller, separated devices. This change was brought about in part as a solution in electronics cooling (Ref. 1). Consistent miniaturization of transistor parts decreases thermal resistance and power consumption per part, but growing device complexity and part density increase the heat flux at the device’s surface, necessitating more formidable and massive cooling items to prevent heat-induced materials-expansion-related stresses and current leakage (Refs. 2, 3).

Moreover, the future is invariably that of mobile devices. The market is driven by demand from consumers for mobility, and power inefficiency is now a primary concern. Although microprocessor manufacturers presently increase the overall number of processors, while lowering operating clock frequency per processor, and produce dies wherein multiple otherwise self-contained processor cores exist on a single processor die, that methodology is but a successful temporary compromise between increased device performance and its heat output, since increases in the number of processor cores can only provide marginal benefits. It’s the law of decreasing marginal utility. Efficient distribution of software tasks is not possible in many circumstances, and miniaturization of transistor parts cannot continue forever (Ref. 4).

Fig. 1 — Mean temperature and operating clock frequency of last single-core processors (Ref. 12). A — Fan and heat-sink: Celeron D 2.40 GHz; B — pulses of liquid N₂: Celeron D, 2.40 GHz; C — fan and heat sink: Pentium 4 3.60 GHz; D — pulses of liquid N₂: Pentium 4, 3.60 GHz. Operation clock-frequency of device and its voltage increased in BIOS. Heat output of each device increased at a rate greater than operating clock, and the device experienced increased Joule heating and exhibited greater thermal resistance. Control: aluminum heat sink cooler containing six copper heat pipes, primary forced convection part being 120 × 120 × 20 mm fan, Windows® XP run.

LEONID A. SHAPIRO (lshapiro@titanium-brazing.com) is on the technical staff of Titanium Brazing, Inc., Columbus, Ohio.
Dissipating Heat

Heat spreaders subject to free air convection can conduct heat away from a contacted surface. To dissipate greater heat loads, their surface area must either be increased linearly or exposed to greater airflow (Ref. 5). Larger heat-sinks predominantly utilize forced air convection parts, and contain technologies facilitating greater rates of internal heat transfer such as heat-pipes, which are elements wherein heat is transferred between two ends of a sealed chamber by a liquid that is evaporated at one end to condense passively at the other (Ref. 6). Systems utilizing liquid alloys of sodium or gallium pumped by electromagnets are even more favorable in this regard (Refs. 8, 9). Water may be released upon a surface by small jet arrays in quantities such that its boiling removes as much as 1000 W/cm² from the surface. Refrigerants such as chlorodifluoromethane and tetrafluoromethane boil at lower temperatures (Refs. 10, 11). Technologies exist that allow for as much as 100% increases in the operating clock frequency of modern computing devices, or comparatively yielding changes in device complexity — Figs. 1 and 2.

However, producing marketable solutions requiring a relatively high level of capital investment on the part of consumers involves satisfying the related objectives of 1) eliminating hassle and service costs related to minimum maintenance by increasing the life cycle of relevant parts, and 2) increasing the marginal benefits of the technologies over standard fare. The latter function can be achieved either by decreasing net cost through use of less expensive materials, or increase efficiency through use of more expensive materials. To avoid contradiction, designs of many materials are unavoidable.

One component that must necessarily be resolved in this manner is the refrigerant evaporator, which is applied to the cooled surface of the CPU in most low-temperature refrigeration systems. This part experiences significant thermal cycling, and while aluminum is preferable in this respect as a lightweight metal, as well as in material cost relative to copper, its poor thermal conductivity relative to copper and silver make it only suitable as part of the construction. The most cost-efficient configuration of materials to comprise an evaporator suitable for operation at 77K (the boiling point of the most inexpensive refrigerant, liquid nitrogen) is an A3003 body soldered to a sterling silver cold plate, which contacts the device being cooled and is the intermediate surface between heat load and working fluid — Fig. 3.

In previous work, a copper evaporator was used. It was placed at the surface of the central processing unit, while other components are cooled at different local temperatures within specific areas of the sealed subenvironment through automated refrigerant flow in prearranged tubing coils. Air condensation was prevented by enclosing all computer components in a sealed subenvironment wherein
As liquid nitrogen evaporated, it was circulated through this chamber (Ref. 12). Noncryogenic applications can also benefit from similar material combinations (Ref. 13).

Investigating Base Metal/Solder Combinations

The objective of this work was to gather the following data for copper or aluminum base metal/solder combinations: 1) Tensile strength of base materials before and after cryogenic cooling; 2) shear strength of soldered joints after soldering and after cryogenic cooling; and 3) microstructure analysis of soldered joints after soldering and after cryogenic cooling.

Conducting the Experiment

Copper C1010, sterling silver, and aluminum Alloy A3003 in the form of wrought tube and sheet were used as the base materials with the lead-free solder Sn-20 wt-% Zn. Standard single-lap shear test specimens of all these materials were manufactured according to specification AWS C3.2M/C3.2:2008* (Fig. 2 at the overlap 0.24 in. [6 mm]).

Prior to assembly of the joint, faying surfaces were cleaned with fine sandpaper and ethyl alcohol before soldering. Copper-to-silver joints were soldered with the acidic flux No. 71 supplied by Superior Flux Mfg. Co., Cleveland, Ohio. In order to join aluminum to silver, both base metal faying surfaces were pretinned with the Sn-20Zn solder by rubbing with a steel brush on the hot plate. Then, aluminum-to-silver joints were soldered without an additional solder portion but using the organic aluminum soldering flux ASF-40 (Ref. 14) supplied by Titanium Brazing, Inc., Columbus, Ohio.

Soldered joints were subjected to cryogenic cooling by submerging them into liquid nitrogen. Specimens were dipped into liquid nitrogen and held for 6 min to provide full cooling to the temperature ~196°C. Following each cryogenic cooling, the specimens were dipped into water to return them to room temperature. The base materials were subjected to the same cryogenic treatments as joined specimens.

The specimens were subjected to tensile testing to determine ultimate shear strength of joints and tensile strength of base materials.

![Fig. 4 — Structure of copper-silver soldered joints. A — Macrostructure after soldering, 2x; B — microstructure after soldering, 100x; C — after cryogenic treatment, 100x.](image)

Results of the Investigation

Mechanical Properties

The results of the mechanical testing of base metals and soldered joints are presented in Table 1. The data in Table 1 are comprised of averages from the performance of 4–7 specimens tested for each combination of base metals.

The repeated cryogenic cooling does not affect tensile strength of copper and A3003 alloy unless another thermal treatment was done before contacting liquid nitrogen. After soldering, base metals that were subjected to cryogenic thermal cycling had a significant decrease in tensile strength by approximately 15% for
both aluminum and copper. This means that short-term heating during soldering to 270°-300°C (520°-570°F) affects the base metal strength more adversely than short-term thermal cycling at cryogenic temperatures.

The cryogenic thermal cycling decreased shear strength of aluminum-silver soldered joints by 14%, whereas the strength of copper-silver soldered joints was changed insignificantly — only by 4%. No cracks or microcracks were found in joints after soldering; therefore, a slight decrease of mechanical properties was accepted as noncritical for the application in electronics cooling, where structured soldered joints are not exposed to any stresses other than those arising from dissimilar expansion/contraction of joint materials during thermal cycling.

Microstructure of Soldered Joints

Microstructures of copper-silver joints soldered with the Sn-20Zn solder are presented in Fig. 4. The joint metal is dense, without voids and pores. Despite the formation of Ag3Sn intermetallics was expected at the interface between silver base and solder, no intermetallics were found. However, the joints were characterized with significant erosion of silver by the solder — Fig. 4B, C. The joint microstructure was changed after cryogenic cooling. A eutectic type of solder microstructure after soldering was transformed into a quenching-type microstructure after on-and-off cryogenic cooling. This change did not result in a shear strength gain due to significant tin content in the solder, which causes low strength of the alloy independent of any structural changes.

Microstructures of aluminum-silver joints soldered with the Sn-20Zn solder are presented in Fig. 5. The joint metal is dense, without voids but with several small-size pores (Fig. 5B), which probably appeared due to organic flux application. This flux is characterized by considerable evaporation of gaseous products from the decomposition of organic amines. An expected intermetallic layer of Ag3Sn phase was found at the silver-solder interface contrary to the previously mentioned microstructure of copper-silver joints. This can be explained by the fact that silver was pretinned before soldering with aluminum, while soldering of silver with copper was conducted in one thermal cycle.

The cryogenic treatment also trans-
formed the joint microstructure: needle-like structural aspects appeared as distinguishing features of a quenching structure. However, no cracks or microcracks were found in both the copper-silver and aluminum-silver soldered joints after cryogenic treatment. It is possible that thermal stresses are relaxed by relatively soft, plastic tin-zinc solder metal, as well as all the base metals, which also have good plasticity.

Conclusions

Soldered joints of A3003 and silver can be implemented, and are preferable in environments wherein they are expected to experience significant thermal-cycling-induced stress. The implication is that high-efficiency, low-cost components in electronics cooling can be assembled and brought nearer to market viability. Heat dissipation solutions dependent upon the relevant constructs are thereby made more competitive and brought nearer to market viability.

Cryogenic cooling resulted in a decrease in tensile strength for both copper and aluminum by about 15%, as well as shear strength reduction of soldered joints, but this can be considered as not critical or dangerous for this application. No cracks were found.

Significant erosion of silver by the Sn-20Zn solder was found after soldering with copper, while a formation of Ag3Sn intermetallic layer, due to pretinning, prevented this erosion when silver was soldered to aluminum.

Also, the cryogenic treatment resulted in changes in the solder joint microstructure, namely, an appearance of needle-like crystals characteristic of any quenching structure.

Acknowledgments

I am grateful to Dr. Alexander Shapiro of Titanium-Brazing, Inc., who provided valuable advice concerning methodology during joint strength testing, and to Dr. Boian Alexandrov of The Ohio State University Welding Engineering Program for help with metallographic work.

References

1. 2006. 30 Years of computer technology. *NASA Tech Briefs* 30(12).

Table 1 — Effect of Cryogenic Treatment on Strength of Base Metals and Soldered Joints

<table>
<thead>
<tr>
<th>Sample</th>
<th>Base metal at room temperature, MPa</th>
<th>Base metal, 6 min dipping in liquid nitrogen, MPa</th>
<th>Base metal after soldering, 6 min dipping in liquid nitrogen, MPa</th>
<th>Joint at room temperature, MPa</th>
<th>Joint, 6 min dipping in liquid nitrogen, MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>169.2-176.6</td>
<td>162.2-175.1</td>
<td>147.7-150.1</td>
<td>28.2-34.3</td>
<td>26.3-29.7</td>
</tr>
<tr>
<td>Alloy A3003</td>
<td>174.7</td>
<td>172.6</td>
<td>149.5</td>
<td>31.63</td>
<td>27.32</td>
</tr>
<tr>
<td>Copper 1010</td>
<td>271.4-279.1</td>
<td>273.6-283.1</td>
<td>229.9-237.4</td>
<td>33.1-38.3</td>
<td>32.8-36.1</td>
</tr>
<tr>
<td>Aluminum + Silver + (Sn-20Zn) Solder</td>
<td>276.0</td>
<td>281.75</td>
<td>234.45</td>
<td>37.36</td>
<td>35.77</td>
</tr>
<tr>
<td>Copper + Silver + (Sn-20Zn) Solder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Testing Sinter Braze Integrity Using Resonant Inspection

The process proved effective in detecting defects commonly found in sinter brazed powder metal parts

By Richard W. Bono

Powder metallurgy (PM) is the process of forming metal components by mixing elemental or metal alloy powders, die pressing at high force levels, and heating at temperatures just below the melting points of the particulate materials. This heating process, called sintering, takes place in a controlled-atmosphere furnace and bonds the particulate materials metallurgically. In recent years, the PM process has been shown to be a superior technique for manufacturing high-quality parts compared to forging or metal casting. Advantages include material utilization, shape complexity, and dimensional control, all yielding lower costs and greater flexibility.

Conventional PM, sometimes referred to as press and sinter, yields parts formed by compacting the powder in a single direction. The die forms the compacted shape, referred to as a green part. This shape is limited to definition in the compacting direction so that the green part can be removed from the die without damage.

Sinter brazing is a common joining process used by powder metal part manufacturers. It allows the formation of more complex parts while maintaining desirable levels of material strength. The technique involves assembling multiple powder metal parts, in the green state prior to sintering, adding a braze compound, and sintering at temperatures above the melting point of the brazing alloy. When processed properly, sinter brazing is cost effective and produces a strong joint. Several examples of brazed powder metal parts are shown in Fig. 1.

Certain defects are common among sinter brazed powder metal parts. These include subcomponent misalignment during initial assembly and incomplete braze material infiltration. Inadequate infiltration is typically caused by using an improper braze alloy or damaged braze pellets (for example, a slug with 50% of its material broken away). Another likely root cause of poor sinter brazing is missing the braze pellet altogether. Other common process variances that can lead to inadequate braze joints include improper furnace settings and dewpoint. Several examples of these defects are shown in Fig. 2.

To ensure the formation of quality parts, the presence of potential defects must be checked. Crack and chip defects, common to the root PM process, should also be tested. The consequences of shipping defective parts include expensive resorting, often at the customer’s site, or contracting additional inspection to a third-party vendor. Ultimately, expensive end product recall costs could become the responsibility of the failed component manufacturer.

Given that typical PM parts are manufactured in medium to high volumes, performing these inspections in a reliable, automated, objective fashion is critical to maintain cost effectiveness. The Resonant Acoustic Method Of

Fig. 1 — Examples of sinter brazed powder metal parts with braze plugs inserted as indicated.
Nondestructive Testing (RAM NDT) from the Modal Shop, Cincinnati, Ohio, provides a technique for these demanding performance requirements.

Resonant inspection (RI), the general process on which the technique is based, measures the structural response of a part and evaluates it against the statistical variation from a control set of good parts to screen defects. Its volumetric approach tests the whole part, both for external and internal structural flaws or deviations, providing objective and quantitative results. This structural response is a unique and measurable signature, defined by a component’s mechanical resonances. These resonances are a function of part geometry and material properties and are the basis for RI techniques. By measuring the resonances of a part, one determines the structural characteristics of that part in a single test.

The Resonant Acoustic Method technique performs RI by impacting a part and “listening” to its acoustic signature with a microphone. The controlled impact provides broadband input energy to excite the part, and the microphone allows for a noncontact measurement of the structural characteristic signature. The part’s mechanical resonances amplify the broadband input energy at its specific resonant frequencies, indicated by peaks in the resulting frequency spectrum (shown graphically in Fig. 3) measured by the microphone. “Good” parts (structurally sound) have consistent spectral signatures (i.e., the mechanical resonances are the same among part samples) while “bad” parts are different (i.e., exhibit resonant frequency shifts from expected values). Deviations in peak frequencies or amplitudes constitute a structurally significant difference in the part’s composition, providing a quantitative, objective, and repeatable part rejection. In simpler terms, just like a cracked bell sounds different when struck, flawed parts sound different and can be sorted accordingly.

The technique has proven effective for inspecting the structural integrity of sinter braze joints. In one such application, the structural integrity of a brazed powder metal carrier gear assembly was tested using the process, and the results correlated with destructive testing. Criteria templates with several critical resonant frequencies were established from a baseline set of parts. This initial set of parts was inspected with visual examination and microstructural analysis, and included acceptable production process variations in density, lot-to-lot powder, dimensions, and sintering effectiveness.

A tensile test of the braze joint was completed on this set of parts. The separation force was measured for a variety of groups of parts, with induced defects including misalignment, omitted braze pellets, small braze pellets, and poor sinter. The results are given in Table 1.

Within each of these groups of parts, certain resonant frequencies shifted that allowed accurate and reliable 100% inspection via RAM NDT. Typically, these frequency shifts were on the order of 6–10% as compared to resonant frequency shifts due to acceptable process variation of less than 1%. As a result, it was concluded that the technique can easily and reliably detect poor sinter braze joints.

Table 1 — Results of a Tensile Test of a Brazed Joint with Induced Defects

<table>
<thead>
<tr>
<th>Part Characterization/Induced Defect</th>
<th>Separation Force, lb (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good parts</td>
<td>26,118 (116,180)</td>
</tr>
<tr>
<td>1 of 4 braze pellets missing</td>
<td>13,360 (59,430)</td>
</tr>
<tr>
<td>2 of 4 braze pellets missing</td>
<td>8,121 (36,124)</td>
</tr>
<tr>
<td>3 of 4 braze pellets missing</td>
<td>4,288 (19,074)</td>
</tr>
<tr>
<td>Misaligned subcomponents</td>
<td>8,129 (36,160)</td>
</tr>
<tr>
<td>Small braze pellet</td>
<td>8,812 (39,198)</td>
</tr>
<tr>
<td>Poor sinter</td>
<td>5,995 (26,670)</td>
</tr>
</tbody>
</table>
Novel Diffusion Brazing Technique for Joining Aluminum at 570°C Using Thin Films of Pure Copper and Al-Cu-Si Alloy

A new brazing technique was developed in the Institute of Materials Engineering, Technical University of Dortmund, Germany, to join aluminum alloys at 570°C (1058°F) by the transient liquid phase (TLP) process through pure copper thin films and Al-Cu-Si with a hypereutectic composition. Variations of the Al-Cu-Si layer composition showed a minor dependence on the melting points: 533°, 537°, and 541°C (Ref. 1). This work proved that ultrathin physical vapor deposition (PVD) films can be successfully utilized for brazing aluminum alloy parts.

Diffusion brazing of aluminum alloys precoated with filler metal components, using an arc-PVD process, enables fluxless wetting, leading to high-strength braze joints at moderate brazing temperatures. During the subsequent diffusion brazing process, a transient liquid phase is formed based on the deposited thin film material. The filler alloy solidifies isothermally due to diffusion processes in the range of 560°–610°C (1040°–1130°F) within the brazing operation. Thereby, braze joints with higher remelting points than the actual brazing temperature can be obtained. The AA6060 alloy joints were fabricated in vacuum diffusion brazing processes after depositing filler metals of the systems Al-Cu and Al-Cu-Si. Alternatively, and for comparison purposes, conventional aluminum braze joints of the same aluminum alloy have been fabricated with the commercial BAI-4 (Al-12Si) filler metal of 0.2 mm thickness in a vacuum brazing process. Brazed joints have been analyzed metallographically and by scanning electron microscopy (SEM). No voids or pores were found in the joint. Depending on the diffusion conditions, the diffusion brazed joints obtain a structure and composition very close to the base material.

Sealing Active Component of Brazing Alloy for Joining Solid Oxide Fuel Cell Ceramics with Metals in Air

Traditionally, ceramic joining using active brazing alloys (ABA) is carried out in a vacuum. However, some materials of the solid oxide fuel cell (SOFC) are not chemically stable in a vacuum, e.g., the perovskite-type cathode, and a vacuum brazing process is sometimes not feasible. An alternative brazing process in air was developed in Forschungszentrum Jülich, ZAI.
and RWTH Aachen University, Welding and Joining Institute, Aachen, Germany, in order to replace the active brazing process in a vacuum (Ref. 2). Titanium or zirconium films were applied directly on the ceramic surfaces (8YSZ) and sealed with an oxidation-resistant silver-based brazing alloy to prevent a premature oxidation of these Ti or Zr active components and improve wetting behavior.

The active components were deposited by the PVD technique on the solid electrolyte surface, and then coated with a silver brazing filler metal also using the PVD process. This allows the contact of Ti or Zr to the melted silver alloy during the brazing process and provides a wetting-promoting reaction with the ceramic surface. This method allows the dispersion of additional flux and also a reduced or inert furnace atmosphere. Successful joining of ceramic electrolyte 8YSZ with the ferritic chromium steel Crofer22APU was made by brazing in air using zirconium or titanium film 1.25 microns thick on ceramic and fine silver film 15 microns thick deposited as the sealing layer on the Zr to protect it against oxidation. A silver foil 100 µm thick has been used for the wetting and joining tests. The joining and wetting tests were made in a muffle furnace at a brazing temperature of 1000°C (1832°F) and holding time of 10 min.

A zone with brownish discoloration has been observed on the 8YSZ ceramic surface coated with Ti or Zr. This is a sign of the oxygen removal by the Ti/Zr from the crystal lattice of the 8YSZ, which has a strongly reducing effect. The wetting angle of silver upon Ti film was ~35-40 and ~45-50 deg upon the Zr film, which is a significant improvement of the wetting behavior compared with pure silver that has the contact angle of ~73 deg in air. Some pore formation within the ZrO reactive layer was observed. The adhesion to the 8YSZ surface was consistently good. The silver also showed uniform and good adhesion to the ZrO reactive layer.

Brazing Hot-Runner Nozzles Made of Three Dissimilar Materials: Hot-Work Steel, Copper, and Titanium Alloy

Multiple nozzles for hot-runner tools consisting of the material combination Cu-alloy, Ti-alloy, and hot-work steel are brazed successfully by Listemann AG, Eschen, Liechtenstein (Ref. 3). Preconditions for a reliable manufacturing process are keeping defined diameter tolerances, “frozen” process steps including cleaning, preparation, and assembling single parts as well as a consistent quality of the base materials. The material prop-
properties of the joining partners and customer requirements partly generate an opposite impact on the brazing process by mismatch of the coefficient of thermal expansion, formation of intermetallics in the joint, and structure transformation at different temperatures, which did not correspond to the brazing cycle. Considering the boundary conditions, BVAg-8 and BVAg-30 filler metals were used for vacuum brazing at 840°C (1544°F) and a soak time of 5 min. Quenching should start at 780°C (1436°F) with a moderate N₂ pressure of 850 mbar.

A 840°C brazing temperature and 5-min soak time result in an intensive interaction between multiple nozzle (Cu alloy) and lower shaft (Ti alloy). As a consequence, cracks appear in the interface close to the lower shaft and joints fail during a pressure test at 300 bar. Palladium-containing BVAg-30 results more in pressure-tight joints than the silver-copper-eutectic BVAg-8 but with significantly reduced wetting and spreading behavior. Surprisingly, a brazed joint between the Ti alloy and hot-work steel is not the weakest link.

It could be proved that keeping diameter tolerances as narrow as possible is of major importance to ensure consistent brazing joint clearances. In addition, it becomes evident that even moderate quenching conditions could result in crack formation. Obviously, this phenomenon is increased by the different shrinkage behavior of the materials used.

Environmental regulations and market pressures create demand for the replacement of Pb-containing solders with Pb-free solders specifically for electronics assembly. Sn-Ag-Cu solders, replacements for Pb-containing solders, have been gaining ground. However, coarse intermetallic phases, which promote brittleness in joints produced with this solder, have been a substantial problem to overcome especially during slow cooling. Investigators at Ames Laboratory (USDOE) and Iowa State University, Ames, Iowa, have been considering single-element additions to the Alloy SAC3595 to improve eutectic solidification (Ref. 4).

Individual additions of Ni, Co, Fe, Mn, Zn, and Al at concentration levels 0.25, 0.20, 0.15, 0.10, and 0.05 wt-% were tested. It was found that individual additions of Zn ≥ 0.21 wt-%, Mn ≥ 0.10 wt-%, and Al = 0.05 wt-% improved the control (suppression) of Ag₃Sn blades in the microstructure of soldered joints during slow cooling. SAC3595 modified with either Fe, Co, Ni, and Mn additions was found to be comparable to unmodified SAC3595 in shear strength terms, whereas slight shear strength degrading was observed for Zn and Al additions. But this degrading was not significant.

Thermal aging effects (at 150°C) on shear strength were tested on joints made with SAC3595 + X for X = 0.21 Zn, 0.10 Mn, 0.05 Al, 0.15 Fe, 0.10 Co, and 0.20 Ni. The shear strengths of SAC3595 joints with the Fe, Co, Ni, and Mn additions were typical of unmodified SAC3595 with high initial strength and a decreasing strength with aging time. In contrast, the initial shear strength of SAC3595 joints with 0.21 Zn and 0.05 Al was nearly the same as Sn-0.95Cu, but thermal aging for up to 500 h did not significantly degrade the shear strength. Consistently with this stability in strength retention, the main microstructure features of these Zn and Al modified joints (the Sn dendrite morphology and ternary eutectic) did not seem to coarsen on aging. This reduced but constant shear...
strength and high microstructural stability may be beneficial for subsequent board level impact testing.

Sn-Ag-Cu+X, whereby X is the addition, was found to be a suitable, if not drop-in, replacement for Pb-containing solders in electronics assembly applications. This was expected by the authors. Additional alloying was determined to be a generally successful strategy to improve microstructural stability.

Brazing Ceramics to Metals through a Porous Metal Interlayer to Compensate the Mismatch in Coefficients of Thermal Expansion and to Fill Wide Joint Clearances

A metal interlayer application between ceramic and metal parts to be brazed allows resolving three technological problems that occurred during joining of such dissimilar materials: 1) adjusting the joint clearance between long parts, 2) brazing assemblies with a wide (not capillary) joint clearance, and 3) compensating the mismatch in coefficients of thermal expansion. The effects of nickel cloth or copper porous interlayer on brazing stainless steel 304 and 316L pipes assembled with the wide clearance were studied in Tokai University, Kanagawa, and Tokyo Braze Co., Ltd., Tokyo, Japan, as well as brazing alumina to aluminum nitride ceramics and diamond-coated silicon wafers (Ref. 5). The eutectic Ag-Cu brazing filler metal BAg-8 was used for vacuum brazing all designs.

This method was effective to fill the continuously changed clearance (50 to 900 μm) set between pipes with the brazing filler metal. Moreover, it was possible to form the fillets in the joints. Also, the brazed joint’s strength improvement was reached by dispersing the joint metal, which will stretch the nickel porous material. Brazing the wide clearance of 450 and 1500 μm between silicon wafers or ceramic and copper flat plates also was successful, which seemed to be impossible in the general brazing practice.

The nickel porous metal was also applied to braze shape-differed cooling channels on the stainless steel pipe surface. The good cooling channel was able to be formed when a metallic cloth was also similarly attached in the joint interface. The attached Ni porous metal in the brazed joint interface was perfectly melted to the brazing filler metal. It is important to choose the brazing filler metal material compatible to the steel for the cooling channels good brazing on the pipe surface.

References

All the papers listed below are from the Proceedings of the 4th International Brazing and Soldering Conference, cosponsored by AWS and ASM International, held April 26–29, 2009, in Orlando, Fla. In addition, these have all been edited by A. Rabinkin, R. Gourley, and C. Walker.

Johnson Mfg. Co is a leading supplier of lead-free solders, babbitt and tin/zinc spray wire, soldering fluxes, paste solders, tinning compounds, plus brazing fluxes for aluminum, and silver brazing applications, as well as many related chemicals, tools and supplies for the industries they serve.

Johnson Manufacturing Company
114 Lost Grove Road
Princeton, Iowa 52768
(563) 289-5123
www.johnsonmfg.com

METGLAS®

Metglas® Amorphous Brazing Filler Metals are 100% metallic, ductile foils with excellent wetting and flow characteristics without organic binders or contaminating residue creating virtually reject-free joints of high strength and superior corrosion and oxidation resistance. Metglas® Brazing Foils are available in a variety of compositions and sizes and can be stamped into preforms and precise shapes to increase productivity ideally suited for applications such as aerospace - lightweight honeycomb structures, and precise machining - plate heat exchangers. Our foil is also ideal for automotive applications such as: Heat Exchangers, EGR coolers, fuel coolers, oil coolers, metallic catalyst substrates, and diesel exhaust components

Lucas Milhaupt, Global Brazing Solutions

Now Lucas Milhaupt is your single supplier for the most comprehensive selection of silver, gold, copper, nickel, and aluminum brazing supplies. We can provide you technical support and materials globally, wherever your company manufactures your product. We are your one source for brazing materials including Handy One® flux cored products, aluminum coated products, Sil-Fos®, Easy-Flo®, Braze™, and Handy Flux®.

Lucas-Milhaupt, Inc.,
A Handy & Harman Company
5656 S. Pennsylvania Ave.
Milwaukee, WI 53110 U.S.A.
(414) 769-6000
info@lucasmilhaupt.com
www.lucasmilhaupt.com

Prince & Izant Co.

Prince & Izant is a global provider of braze, solder and welding alloys and products. Our manufacturing division features a wide array of precision fabrication and engineering capabilities for all manufacturing applications. Prince & Izant also provides our global customer base with metal joining solutions. We have over 80 years experience in eliminating problems for our customers through value-added program management. Our all-inclusive work flow systems ensure total quality on all our products and services.

Prince & Izant Co.,
12999 Plaza Drive
Cleveland, OH 44130
(216) 362-7000
www.princeizant.com

Washington Alloy Company
Founded 1983

Washington Alloy Company is an ISO 9001:2000 certified quality management system and wholesale distribution of welding filler metals and accessories. Since 1983, our product line has grown from primarily mild steel MIG wire (ER 70S-6) to include everything from (A)luminum to (Z)irconium welding wires, rods and coated electrodes. Going forward — Washington Alloy will continue to expand its product line, while increasing production capacity and maintaining tight quality control over all products.
The most complete event on weld cracking
Learn different types... Understand the causes... Discover solutions.

The most perplexing problem in the welding industry has to be weld cracking. Back by popular demand, this one-day conference is for those who want or need to get a handle on any weld cracking situation. The 2009 conference will also provide networking opportunities where you can talk to welding cracking experts and others in the industry who face the challenges of weld cracking.

For the latest conference information visit our website at www.aws.org/conferences or call 800-443-9353, ext. 455.

Hosted by:
American Welding Society®

Earn PDH’s toward your AWS recertification or renewal when you attend the conference!

November 16, 2009 - Chicago

WELD CRACKING
“THE HEAT AFFECTED ZONE” CONFERENCE
BRAZING

Q&A

Q1: We are working with refrigeration equipment for special applications. During the installation process, a steel valve must be brazed or soldered to a copper pipe without “pinhole” leaks. We have contacted manufacturers of copper and steel parts, flux dealers, and condenser manufacturers. All have the same answer, “It is a standard procedure and we have no instructions.”

A: Both questions can be attributed to the same limitation of heating temperature. Copper is characterized by fast grain growth above 900°F (1652°C) while the brass has a melting point in the area of 900°–930°C (1652°–1706°F). Therefore, the heating temperature in both cases must be below 900°C (1652°F). The use of an oxyacetylene torch is not necessary as propane torches or MAP gas torches provide a sufficient and “softer” flame for heating of thin parts.

The answer to the second question has several options. You can use low-melting silver brazing wires such as BAg-1 or BAg-1a according to Table 1 of American Welding Society A5.8/A58M, Specification for Filler Metals for Brazing and Braze Welding. These filler metals contain about 50 wt-% silver and have brazing temperatures below 760°C (1400°F). Also, it is important that they contain only 16% zinc, while other low-melting silver brazing filler metals contain about 25–30 wt-% zinc or a higher amount of silver. You also can use more economical silver-based wires such as BAg-2a containing only 30 wt-% silver, but the brazing temperature will be higher, in the 710°–840°C (1300°–1550°F) range. If you would prefer a cadmium-free filler metal, there are several good choices such as BAg-28, which has the same brazing temperature but only 40% silver.

Thin brazing wire of ½-in. diameter is preferable in your case in order to avoid long heating for melting of the filler metal. Another approach is to use silver-free brazing filler metal such as Pb1 having a brazing temperature in the range of 680°–750°C (1256°–1380°F). This particular filler metal is supplied in the form of nonround rods. It does not have an AWS specification, but it is successfully used in Europe for joining steel to copper or steel to brass despite it containing phosphorus. Generally, the use of phosphorus is discouraged on steel due to the formation of brittle joints. It might be suitable if you are going to braze brass parts to steel for decoration purposes only.

Borate-fluoride fluxes of FB3-A, FB3C, and FB3-G according to AWS A5.31, Specification for Fluxes for Brazing and Braze Welding, are workable with all above-mentioned brazing filler metals. I would recommend so-called “black flux” — a borate-fluoride flux containing about 1% of boron powder as an activator. It provides good flow of both silver and silver-free brazing alloys. Flux residues are easily removed after brazing by washing in hot water and/or cleaning with a metal brush.

Evaporation and oxidation of zinc occurs during heating brazing parts by flame of propane or oxyacetylene torches. Therefore, if your decorative brass parts have large areas, it is recommended to cover all surfaces to be brazed with the flux in order to diminish the formation of ZnO, which deteriorates wetting and spreading of the filler metal. Conversely, if the brass parts are small, you can place flux on the end of the brazing wire. The appearance of tiny pores at the surface of the braze joint should not surprise you. Porosity may result from evaporation of zinc from both the base metal and the filler metal. Thin brass base metal is vigorously dissolved in silver brazing fillers. It is important to avoid the contact of brass with molten braze longer than necessary. Remove the heat when you see that the filler metal has melted and flowed into the gap.

All of the above-mentioned combinations of brazing filler metals and fluxes are suitable for brazing a steel valve to a copper pipe as asked in the first question. However, I would recommend testing mechanical properties of the brazed joints if you are going to attempt using the silver-free Pb1 due to formation of iron phosphate at the steel-braze interface. It does not matter for brazing decoration pieces, but is reasonable for brazing structural parts.

Another option for silver-free brazing is the application of wire or rods of brass filler metal RBCuZn-B according to Table 4 of AWS A5.8/A58M. It has a melting point of 882°C (1620°F), and brazing is possible slightly above 900°C (1652°F). For this purpose, I would recommend you place the brazing wire inside the gap before heating. One or two grooves can be machined either on the copper or the steel parts to place filler wire rings in. Placing the filler metal inside the gap will guarantee better filling of the joint along the overlap.

Other useful tips are to (a) cover the entire steel surface with the flux before brazing, especially if you braze stainless steel with copper. This allows for longer flux activity because the heating can be of sufficient duration to heat the structure of dissimilar metals; (b) heat the more massive part first. If the masses of both parts to be brazed are the same, heat the copper first due to its better heat conductivity against the steel; and (c) heat the joint with constant torch movement along the overlap in order to heat the joint uniformly.

Design of a braze joint using these dissimilar metals requires attention due to the big difference in their coefficients of thermal expansion (CTE). Copper's CTE is about 10×10⁻⁶ in./in. • °F, while the CTE of carbon steel is only 6.5×10⁻⁶ in./in. • °F, and stainless steel is 8×10⁻⁶ in./in. • °F. This means that the copper pipe should be the outside part in the tube-in-tube joint structure, while the steel part should be the inside part. Assembling must be done almost without a gap between steel valve and copper pipe. A brazed joint designed in such a way will have the minimal width of the joint metal and will experience compressive residual stresses after cooling. Also, it is possible to avoid any defects in the joint or reduce a number of defects to a minimum. The leak-proofness (or airtightness) will also be good if the brazed structure is intended to work under gas or hydraulic pressure. The overlap is to be at least three thicknesses of the copper tube in order to provide sufficient shear strength of the brazed joint, but not longer than six thicknesses in order to avoid such defects as voids or flux residue inserts.

The emphasis of this article is focused on copper and brass because these base metals determine the specifications in brazing technology when they are joined to steel. The carbon or stainless steels have no limitation in brazing temperature as they can be heated or repaired by another heating cycle almost without a loss of strength. The oxide film formed on the surface of carbon steel is chemically unstable and is easily dissolved in all of the above-mentioned fluxes. Although the oxide film formed on the surface of stainless steel is significantly more stable, standard borate fluxes of the FB3 class (AWS A5.31-92), containing such active components as potassium fluoroborate, remove
this oxide film without problems. The steel part should be heated uniformly to a dark-red color as this is a good visual indicator of readiness to react with the molten filler metal. Neither copper nor brass give us such a clear indication of brazing temperature.

The last advice in the context of steel is, if you cannot provide a uniform, sufficient heating of the joint comprising dissimilar base metals having different heat conductivities (steel and copper alloys), it is reasonable to deposit a thin layer of silver filler metal on the steel surface as a first brazing operation with the flux. Then, remove the flux residues, and braze the “coated” steel part to the copper or brass part by a second heating with the addition of a new portion of the flux. This approach is especially helpful when brazing large surfaces of dissimilar metals. Small parts can be brazed directly without such complications.

My thanks to Prof. Igor N. Pashkov, Moscow University of Steel and Alloys, for his advice on silver-free brazing of steel to copper.

This column is written alternately by TIM P. HIRTHE and ALEXANDER E. SHAPIRO. Both are members of the C3 Committee on Brazing and Soldering and several of its subcommittees, ASH Subcommittee on Filler Metals and Fluxes for Brazing, and the Brazing and Soldering Manufacturers Committee (BSMC). They are coauthors of the 5th edition of AWS Brazing Handbook.

Hirthe (timhirthe@aol.com) currently serves as a BSMC vice chair and owns his own consulting business.

Shapiro (ashapiro@titanium-brazing.com) is brazing products manager at Titanium Brazing, Inc., Columbus, Ohio.

Readers are requested to post their questions for use in this column on the Brazing Forum section of the BSMC Web site www.brazingandsoldering.com.

Less handling, easier positioning, faster and cleaner welds.

Atlas Pipemate and Idler Rolls
- Unit with idler rolls supports balanced loads up to 1000 lb.
- Rotates pipe and tube up to 17” dia.
- Portable, low profile for shop or field
- Dual speed 0 to 30 in/min or 0 to 60 in/min
- High frequency filter prevents interference with GTA welding

Atlas Rotary Table Positioners
- Three models: 9” table, 100 lb. capacity, 10” tilt table, 200 lb. capacity 14” table, 500 lb. capacity
- Heavy duty grounding circuit for stick electrode, MIG or TIG welding
- Low profile for bench mounting
- Foot switch for feathering speed and on/off control
- Front panel speed and rotation controls

Other handling and welding aids...Atlas Pipe Supports, Atlas Roller Stands, Atlas Pipe Dollies

Manufacturing
Flux Cored Welding Wire
COBALT NICKEL
HARDFACE STAINLESS
ALLOY STEEL TOOL STEEL MAINTENANCE FORGE ALLOYS CUSTOM ALLOY

COR-MET, INC.
12500 Grand River Rd.
Brighton, MI 48116
PH: 810-227-3251
FAX: 810-227-9266
www.cor-met.com
sales@cor-met.com

For info go to www.cor-met.com
For info go to www.aws.org/ad-index
The Japan International Welding Show 2010

April 21–24
Tokyo Big Sight

For further information, please visit:
www.weldingshow.jp

Information on Exhibit

Space Fee ¥336,000.-/unit
Space Spec. 3m (w) × 3m (d) × 2.7m (h)
Deadline for Application: December 11, 2009

Think Future, Act Now!
Gateway to a Great Success in Asia

For info go to www.aws.org/ad-index

Organized by The Japan Welding Engineering Society
Sanpo Publications Incorporated
The welding of chrome-moly steel goes back to the days when tubing was oxyacetylene-welded to make up the fuselages of the early pre-aluminum airplanes. It required outstanding precision on the part of the welder. Even though the methods have changed, the welding of chrome-moly steel still requires utmost precision on the part of the welder and all involved parties.

Heat treatment and nondestructive testing are part and parcel of a successful weld. The 2 1/4Cr-1Mo steels are very popular materials for boilers and pressure vessels where the ASME Code is used. More recently, the modified 9Cr-1Mo steel, which was originally developed as the base metal for the Fast Breeder Reactor, is now widely specified in electric utilities and is moving into the oil and gas industry. To weld any of these steels for the first time, the engineer and the welder actually have to go back to school and start all over again.

Conventional arc welding processes are all used effectively on 4130, 2 1/4Cr-1Mo, and modified 9Cr-1Mo steels. Some newer processes like hybrid welding have also become popular. Proper administration of the preheat and postweld heat treat operations is most critical.

For the latest conference information, visit our website at www.aws.org/conferences or call 800-443-9353, ext. 455.

Tuesday, Nov. 17, 2009
Chicago (at the FABTECH INT’L & AWS Welding Show)

AWS Members: $345
Nonmembers: $480

Hosted by:
American Welding Society®

Earn PDH’s toward your AWS recertification or renewal when you attend the conference!

National Robot Safety Conf. XXI. Oct. 26–29, Hyatt Regency, Dearborn, Mich. Contact Robotic Industries Assn. at ria@informz.net or ria@robotics.org.

ICALEO®, 28th Intl Congress on Applications of Lasers & Electro-Optics. Nov. 2–5, Hilton in the Walt Disney World Resort®, Orlando, Fla. Visit conferences@laserinstitute.org or visit www.icaleo.org.

♦ FABTECH International & AWS Welding Show including METALFORM. Nov. 15–18, McCormick Place, Chicago, Ill. This show is the largest event in North America dedicated to showcasing the full spectrum of metal forming, fabricating, tube and pipe, welding equipment, and technology. Contact American Welding Society, call (800/305) 443-9353, ext. 455; or visit www.aws.org.

♦ Weld Cracking VII. Nov. 16, Chicago, Ill. Held during the FABTECH International & AWS Welding Show. Contact American Welding Society, call (800/305) 443-9353, ext. 455; or visit www.aws.org.

FABTECH International & AWS Welding Show including METALFORM. Nov. 2–4, 2010, Georgia World Congress Center, Atlanta, Ga. This show is the largest event in North America dedicated to showcasing the full spectrum of metal forming, fabricating, tube and pipe, welding equipment, and technology. Contact American Welding Society, (800/305) 443-9353, ext. 455; or visit www.aws.org.

Educational Opportunities

ASM Int'l Courses. Numerous classes on welding, corrosion, failure analysis, metallography, heat treating, etc., presented in Materials Park, Ohio, online, webinars, on-site, videos, and DVDs. Visit www.asminternational.org. search for “courses.”

Boiler and Pressure Vessel Inspectors Training Courses and Seminars. Columbus, Ohio. Call (614) 888-8320; visit www.nationalboard.org.

CWI/CWE Prep Course and Exam and NDT Inspector Training. Courses. An AWS Accredited Testing Facility. Courses held year-
round in Allentown, Pa., and at customers’ facilities. Contact: Welder Training & Testing Institute, (800) 223-9884, info@wtti.edu; visit www.wtti.edu.

CWI Preparatory and Visual Weld Inspection Courses. Classes presented in Pascagoula, Miss., Houston, Tex., and Houma and Sulphur, La. Contact: Real Educational Services, Inc., (800) 489-2890, info@realeducational.com.

Environmental Online Webinars. Free, online, real-time seminars conducted by industry experts. For topics and schedule, visit www.augustmack.com/Web%20Seminars.htm.

EPRI NDE Training Seminars. EPRI offers NDE technical skills training in visual examination, ultrasonic examination, ASME Section XI, and UT operator training. Contact Sherryl Stogner, (704) 547-6174; ststogner@epri.com.

Hellier NDT Courses. Contact Hellier, 277 W. Main St., Ste. 2, Niantic, CT 06357; (860) 739-8950; FAX (860) 739-6732.

Lyncole XIT™ Grounding Course. Training to protect facilities and equipment from power surges. Oct. 15, 16, Las Vegas, Nev. Contact: (800) 962-2610; Education@Lyncole.com; or visit www.lyncole.com.

For info go to www.aws.org/ad-index
AWS Certification Schedule

Certification Seminars, Code Clinics and Examinations

Application deadlines are six weeks before the scheduled seminar or exam. Late applications will be assessed a $250 Fast Track fee.

Certified Welding Inspector (CWI)

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>SEMINAR DATES</th>
<th>EXAM DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlanta, GA</td>
<td>Nov. 1-6</td>
<td>Nov. 7</td>
</tr>
<tr>
<td>Dallas, TX</td>
<td>Nov. 1-6</td>
<td>Nov. 7</td>
</tr>
<tr>
<td>Sacramento, CA</td>
<td>Nov. 1-6</td>
<td>Nov. 7</td>
</tr>
<tr>
<td>Spokane, WA</td>
<td>Nov. 1-6</td>
<td>Nov. 7</td>
</tr>
<tr>
<td>Corpus Christi, TX</td>
<td>EXAM ONLY</td>
<td>Nov. 21</td>
</tr>
<tr>
<td>St. Louis, MO</td>
<td>EXAM ONLY</td>
<td>Dec. 5</td>
</tr>
<tr>
<td>Syracuse, NY</td>
<td>Dec. 6-11</td>
<td>Dec. 12</td>
</tr>
<tr>
<td>Reno, NV</td>
<td>Dec. 6-11</td>
<td>Dec. 12</td>
</tr>
<tr>
<td>Miami, FL</td>
<td>Dec. 6-11</td>
<td>Dec. 12</td>
</tr>
<tr>
<td>Beaumont, TX</td>
<td>Jan. 10-15</td>
<td>Jan. 16</td>
</tr>
<tr>
<td>Corpus Christi, TX</td>
<td>EXAM ONLY</td>
<td>Jan. 23</td>
</tr>
<tr>
<td>Miami, FL</td>
<td>Jan. 24-29</td>
<td>Jan. 30</td>
</tr>
<tr>
<td>Albuquerque, NM</td>
<td>Jan. 31-Feb.5</td>
<td>Feb. 6</td>
</tr>
<tr>
<td>Pittsburgh, PA</td>
<td>Jan. 31-Feb.5</td>
<td>Feb. 6</td>
</tr>
<tr>
<td>Denver, CO</td>
<td>Jan. 31-Feb.5</td>
<td>Feb. 6</td>
</tr>
<tr>
<td>Seattle, WA</td>
<td>Jan. 31-Feb.5</td>
<td>Feb. 6</td>
</tr>
<tr>
<td>Miami, FL</td>
<td>EXAM ONLY</td>
<td>Feb. 25</td>
</tr>
<tr>
<td>Birmingham, AL</td>
<td>Feb. 21-26</td>
<td>Feb. 27</td>
</tr>
<tr>
<td>Long Beach, CA</td>
<td>Feb. 21-26</td>
<td>Feb. 27</td>
</tr>
<tr>
<td>Milwaukee, WI</td>
<td>Feb. 28-Mar. 5</td>
<td>Mar. 6</td>
</tr>
<tr>
<td>Atlanta, GA</td>
<td>Feb. 28-Mar. 5</td>
<td>Mar. 6</td>
</tr>
<tr>
<td>San Diego, CA</td>
<td>Feb. 28-Mar. 5</td>
<td>Mar. 6</td>
</tr>
<tr>
<td>Houston, TX</td>
<td>Mar. 7-12</td>
<td>Mar. 13</td>
</tr>
<tr>
<td>Norfolk, VA</td>
<td>Mar. 7-12</td>
<td>Mar. 13</td>
</tr>
<tr>
<td>Perrysburg, OH</td>
<td>EXAM ONLY</td>
<td>Mar. 13</td>
</tr>
<tr>
<td>Indianapolis, IN</td>
<td>Mar. 14-19</td>
<td>Mar. 20</td>
</tr>
<tr>
<td>Portland, OR</td>
<td>Mar. 14-19</td>
<td>Mar. 20</td>
</tr>
<tr>
<td>Miami, FL</td>
<td>EXAM ONLY</td>
<td>Mar. 18</td>
</tr>
<tr>
<td>Rochester, NY</td>
<td>EXAM ONLY</td>
<td>Mar. 20</td>
</tr>
<tr>
<td>Corpus Christi, TX</td>
<td>EXAM ONLY</td>
<td>Mar. 20</td>
</tr>
<tr>
<td>Boston, MA</td>
<td>Mar. 21-26</td>
<td>Mar. 27</td>
</tr>
<tr>
<td>Phoenix, AZ</td>
<td>Mar. 21-26</td>
<td>Mar. 27</td>
</tr>
<tr>
<td>Anchorage, AK</td>
<td>Mar. 21-26</td>
<td>Mar. 27</td>
</tr>
<tr>
<td>Chicago, IL</td>
<td>Mar. 21-26</td>
<td>Mar. 27</td>
</tr>
<tr>
<td>York, PA</td>
<td>EXAM ONLY</td>
<td>Mar. 27</td>
</tr>
<tr>
<td>Miami, FL</td>
<td>Mar. 28-Apr. 2</td>
<td>Apr. 3</td>
</tr>
<tr>
<td>Dallas, TX</td>
<td>Apr. 11-16</td>
<td>Apr. 17</td>
</tr>
<tr>
<td>Knoxville, TN</td>
<td>EXAM ONLY</td>
<td>Apr. 17</td>
</tr>
<tr>
<td>Springfield, MO</td>
<td>Apr. 18-23</td>
<td>Apr. 24</td>
</tr>
<tr>
<td>Mobile, AL</td>
<td>EXAM ONLY</td>
<td>Apr. 24</td>
</tr>
<tr>
<td>St. Louis, MO</td>
<td>EXAM ONLY</td>
<td>Apr. 24</td>
</tr>
<tr>
<td>Portland, ME</td>
<td>Apr. 25-30</td>
<td>May 1</td>
</tr>
<tr>
<td>Las Vegas, NV</td>
<td>Apr. 25-30</td>
<td>May 1</td>
</tr>
<tr>
<td>Waco, TX</td>
<td>EXAM ONLY</td>
<td>May 1</td>
</tr>
<tr>
<td>Baton Rouge, LA</td>
<td>May 2-7</td>
<td>May 8</td>
</tr>
<tr>
<td>San Francisco, CA</td>
<td>May 2-7</td>
<td>May 8</td>
</tr>
<tr>
<td>Nashville, TN</td>
<td>May 9-14</td>
<td>May 15</td>
</tr>
<tr>
<td>Jacksonville, FL</td>
<td>May 9-14</td>
<td>May 15</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>May 9-14</td>
<td>May 15</td>
</tr>
<tr>
<td>Corpus Christi, TX</td>
<td>EXAM ONLY</td>
<td>May 15</td>
</tr>
<tr>
<td>Detroit, MI</td>
<td>May 16-21</td>
<td>May 22</td>
</tr>
<tr>
<td>Miami, FL</td>
<td>May 16-21</td>
<td>May 22</td>
</tr>
<tr>
<td>Albuquerque, NM</td>
<td>May 16-21</td>
<td>May 22</td>
</tr>
<tr>
<td>Long Beach, CA</td>
<td>EXAM ONLY</td>
<td>May 29</td>
</tr>
<tr>
<td>Spokane, WA</td>
<td>Jun. 6-11</td>
<td>Jun. 12</td>
</tr>
<tr>
<td>Oklahoma City, OK</td>
<td>Jun. 6-11</td>
<td>Jun. 12</td>
</tr>
<tr>
<td>Birmingham, AL</td>
<td>Jun. 6-11</td>
<td>Jun. 12</td>
</tr>
</tbody>
</table>

9-Year Recertification Seminar for CWI/SCWI

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>SEMINAR DATES</th>
<th>EXAM DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miami, FL</td>
<td>Nov. 30-Dec. 5</td>
<td>NO EXAM</td>
</tr>
<tr>
<td>New Orleans, LA</td>
<td>Jan. 11-16, 2010</td>
<td>NO EXAM</td>
</tr>
<tr>
<td>Denver, CO</td>
<td>Feb. 22-27</td>
<td>NO EXAM</td>
</tr>
<tr>
<td>Dallas, TX</td>
<td>Mar. 15-20</td>
<td>NO EXAM</td>
</tr>
<tr>
<td>Miami, FL</td>
<td>Apr. 12-17</td>
<td>NO EXAM</td>
</tr>
<tr>
<td>Sacramento, CA</td>
<td>May 3-8</td>
<td>NO EXAM</td>
</tr>
<tr>
<td>Pittsburgh, PA</td>
<td>Jun. 7-12</td>
<td>NO EXAM</td>
</tr>
</tbody>
</table>

For current CWIs and SCWIs needing to meet education requirements without taking the exam, if needed, recertification exam can be taken at any site listed under Certified Welding Inspector.

Certified Welding Supervisor (CWS)

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>SEMINAR DATES</th>
<th>EXAM DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Beach, CA</td>
<td>Nov. 30-Dec. 5</td>
<td>Dec. 9</td>
</tr>
<tr>
<td>New Orleans, LA</td>
<td>Apr. 19-23</td>
<td>Apr. 24</td>
</tr>
<tr>
<td>Miami, FL</td>
<td>Sept. 13-17</td>
<td>Sep. 18</td>
</tr>
</tbody>
</table>

CWS exams are also given at all CWI exam sites.

Certified Radiographic Interpreter (CRI)

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>SEMINAR DATES</th>
<th>EXAM DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miami, FL</td>
<td>Feb. 1-5, 2010</td>
<td>Feb. 6, 2010</td>
</tr>
<tr>
<td>Miami, FL</td>
<td>Mar. 8-12</td>
<td>Mar. 13</td>
</tr>
<tr>
<td>Miami, FL</td>
<td>Apr. 19-23</td>
<td>Apr. 24</td>
</tr>
<tr>
<td>Miami, FL</td>
<td>Jun. 21-25</td>
<td>Jun. 26</td>
</tr>
<tr>
<td>Miami, FL</td>
<td>Jul. 26-30</td>
<td>Jul. 31</td>
</tr>
</tbody>
</table>

Radiographic Interpreter certification can be a stand-alone credential or exempt you from your next 9-Year Recertification.

Certified Welding Sales Representative (CWSR)

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>SEMINAR DATES</th>
<th>EXAM DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicago, IL</td>
<td>Nov. 16-18</td>
<td>Nov. 18</td>
</tr>
<tr>
<td>Miami, FL</td>
<td>Feb. 29-30</td>
<td>Feb. 29</td>
</tr>
<tr>
<td>Houston, TX</td>
<td>Apr. 1-3</td>
<td>Apr. 3</td>
</tr>
<tr>
<td>Miami, FL</td>
<td>May 6-8</td>
<td>May 8</td>
</tr>
<tr>
<td>Chicago, IL</td>
<td>Jun. 10-12</td>
<td>Jun. 12</td>
</tr>
<tr>
<td>Miami, FL</td>
<td>Aug. 26-28</td>
<td>Aug. 28</td>
</tr>
</tbody>
</table>

CWSR exams will also be given at CWI exam sites.

Certified Welding Educator (CWE)

Seminar and exam are given at all sites listed under Certified Welding Inspector. Seminar attendees will not attend the Code Clinic portion of the seminar (usually first two days).

Senior Certified Welding Inspector (SCWI)

Exam can be taken at any site listed under Certified Welding Inspector. No preparatory seminar is offered.

Certified Welding Engineer (CWEng)

Exam can be taken at any site listed under Certified Welding Inspector. No preparatory seminar is offered. Two exam days are necessary for this certification.

Certified Robotic Arc Welding (CRAW)

For information on any of our seminars and certification programs, visit our website at www.aws.org/certification or contact AWS at (800) 443-9353. Ext. 273 for Certification and Ext. 455 for Seminars. Please apply early to save Fast Track fees. This schedule is subject to change without notice. Please verify the dates with the Certification Dept. and confirm your course status before making final travel plans.

For current CWIs and SCWIs needing to meet education requirements without taking the exam, if needed, recertification exam can be taken at any site listed under Certified Welding Inspector.

Certified Radiographic Interpreter (CRI)

Exams are given at all CWI exam sites.

For current CWIs and SCWIs needing to meet education requirements without taking the exam, if needed, recertification exam can be taken at any site listed under Certified Welding Inspector.

Certified Welding Sales Representative (CWSR)

Exams are given at all CWI exam sites.

For current CWIs and SCWIs needing to meet education requirements without taking the exam, if needed, recertification exam can be taken at any site listed under Certified Welding Inspector.

Certified Welding Educator (CWE)

Seminar and exam are given at all sites listed under Certified Welding Inspector. Seminar attendees will not attend the Code Clinic portion of the seminar (usually first two days).

Senior Certified Welding Inspector (SCWI)

Exam can be taken at any site listed under Certified Welding Inspector. No preparatory seminar is offered.

Certified Welding Engineer (CWEng)

Exam can be taken at any site listed under Certified Welding Inspector. No preparatory seminar is offered. Two exam days are necessary for this certification.

Certified Robotic Arc Welding (CRAW)

For current CWIs and SCWIs needing to meet education requirements without taking the exam, if needed, recertification exam can be taken at any site listed under Certified Welding Inspector.

International CWI Courses and Exams

AWS training and certification for CWI and other programs are offered in many countries. For international certification program schedules and contact information, please visit http://www.aws.org/certification/inter_contact.html

For more information, visit the American Welding Society’s website at www.aws.org/certification.
Tips for Fusion Welding of Aluminum

- When loading “preweld cleaned” details or assemblies into welding fixtures, avoid contamination of the weld zone. For example, do not allow the clean weld edge to scrape the copper hold-down bars or fingers. Clean, lint-free or low-lint gloves should be used when touching weld zones.

- Just prior to welding, it is recommended to vacuum the weld zone with a shop vacuum cleaner fitted with a clean stainless steel tip. Do not clean by blowing air because besides producing potential contamination, the forced air may push contaminants into crevices or open joints.

- Minimize the number of tack welds. Each tack weld adds an additional start and stop area to the final weld. Starts and stops are prone to defects.

- Runoff weld tabs for starting and stopping butt joint welds should be utilized whenever possible. The tab material should be built into the details and may be removed after completion of the weld. If this is not possible, tabs may be added to the details by welding with the same quality procedures as the final weld. This will provide a uniform thermal transfer minimizing meltdowns and holes at the tab-to-part intersections — Fig. 1.

- Ideally, run-on/run-off weld tab material is provided as excess material on the details prior to welding, as shown in Fig. 1A. When this isn’t practical, weld tabs can be added as shown in Fig. 1B–E. Remember the following:
 1) Preweld cleaning, scraping, and weld quality should be similar to that of the production part.
 2) Tab welds should be terminated on the tabs.
 3) Tab welds should have complete penetration if required on the production weld.
 4) Excess tab weld metal reinforcement should be flush to the detail surface so it won’t interfere with production tooling and will provide thermal transfer.
 5) Weld tabs should not be removed until after the production weld is accepted.

- Soot removal from tack welds may be accomplished utilizing a clean, 18-8 stainless steel wire brush. Brushing should be performed manually. Do not use rotary brushing. Technique is critical. Use the stainless steel tipped vacuum while brushing. Manually brush from the beginning or end of the tack toward the center of the tack weld and vacuum tip, avoiding pushing the smut or dirt into the open joint — Fig. 2.

- Weld travel should be delayed until the desired penetration and surface weld width are achieved. Start diameters should not exceed the weld bead width. The current slope time of the amperage to welding current should be short. When filler metal is employed it should be fed into the leading edge of the weld pool and kept within the shielding of the torch gas.

- When terminating the weld, the molten pool should be solidified prior to terminating the arc.

- Extinguishing the arc at welding current will result in craters and crater cracks. When cold wire feed is used the wire feed speed should be down sloped while doing the same with the current, but stopped prior to final solidification of the weld pool to prevent freezing the wire in the solidified weld. At weld arc termination, the welding torch should remain over the stop area during solidification with sufficient postflow gas time to allow the electrode to cool down within the protection of the gas shield. If the tungsten electrode is discolored, it may be due to insufficient postflow time.

Fig. 1 — Start and stop run-on and run-off weld tabs.

Fig. 2 — Method of utilizing an 18-8 stainless steel manual wire brush to remove soot and other debris from the surface of open weld joint.

Educators Hone Skills at Annual Institute

Welding educators nationwide met at AWS headquarters in Miami, Fla., July 29–31, for the 2009 Instructor Institute. Conducting the training were Dr. Ron Gilbert, facilitator; past AWS President Jim Greer, who served as lab manager; and Rick Polanin, Dist. 13 director and a professor at Illinois Central College in East Peoria, Ill.

The manufacturers’ representatives included Jason Schmidt, Lincoln Electric, Cleveland, Ohio; and Jay Ginder and Tony Anderson, ESAB Welding & Cutting Products, Florence, S.C.

The following welding educators participated in the event (their AWS District numbers are shown in parentheses):
- Douglas DeMarco (2) NYC District Council Carpenters, Rethpage, N.Y.
- Daniel Millan (3) Reading Muhlenberg CTC, Shillington, Pa.
- James Stallsmith (5) Trident Technical College, Charleston, S.C.
- Shaun Lower (6) UA #73, Oswego, N.Y.
- Brian Barnes (7) Ivy Tech Community College, Bryan, Ohio
- Dale Kite (9) George Stone Technical Center, Molino, Fla.
- Nick Baughman (10) Coshocton County Career Center, Malvern, Ohio.
- Daniel Crlfase (12) Gateway Technical College, Silver Lakes, Wis.
- Mark Stevenson (13) Kankakee Community College, Manteno, Ill.
- Rick Suria (14) Hillsdale Fabricators, St. Louis, Mo.
- Lee Larson (15) North Dakota State College of Science, Fargo, N.Dak.
- Chris Beatty (16) Metropolitan Community College, Omaha, Neb.
- Charles Credicott (17) Tarrant County College, Benbrook, Tex.
- Hamp Drew (18) St. Phillip’s College, Sequin, Tex.
- Jeff Taniguchi (20) Vernal, Utah.
- Edward Hinajosa (21) Wilmington Skills Center, San Pedro, Calif.
- Melvin Johnson (22) American River College, Sacramento, Calif.

AWS Educational Services supporting staff included Dennis Marks, managing director; Paola Chacón, event manager; and Nichole Bradley, manager.

Notice of Annual Meeting of the American Welding Society

The Annual Meeting of the members of the American Welding Society will be held on Monday, Nov. 16, 2009, beginning at 9:00 AM at McCormick Place, Chicago, Ill. The regular business of the Society will be conducted, including election of officers and ten members of the Board of Directors. Any business properly brought before the membership will be considered.

Nominations Sought for National Officers

AWS members who wish to nominate candidates for President, Vice President, and Director-at-Large on the AWS Board of Directors for the term starting Jan. 1, 2011, may

1) Send their nominations electronically by Oct. 5, 2009, to Gricelda Manalich at gricelda@aws.org, c/o Gene E. Lawson, chairman, National Nominating Committee, or

2) Present their nominations in person at the open session of the National Nominating Committee meeting scheduled for 2:00 to 3:00 PM, Tuesday, November 17, 2009, at McCormick Place, Chicago, Ill., during the 2009 FABTECH International & AWS Welding Show. Nominations must be accompanied by biographical material on each candidate, including a written statement by the candidate as to his or her willingness and ability to serve if nominated and elected, letters of support, plus a 5x7-inch head-and-shoulders color photo. Note: Persons who present their nominations at the Show must provide 20 copies of the biographical materials and written statement.
Member-Get-A-Member Campaign

Listed are the members participating in the 2009–2010 Member-Get-A-Member Campaign. See page 69 in this *Welding Journal* for campaign rules and prize list, or visit www.aws.org/pg. These standings are as of July 1, 2009. Call the AWS Membership Dept. (800/305) 443-9353, ext. 480, if you have questions about your status.

Winner’s Circle

Sponsored 20+ new members.

The superscript indicates the number of times the member has achieved Winner’s Circle status since June 1, 1999. J. Compton, San Fernando Valley

<table>
<thead>
<tr>
<th>District</th>
<th>Awardee — Section Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-2010 Member-Get-A-Member Campaign</td>
<td>Sponsored 20 or more new members.</td>
</tr>
</tbody>
</table>

President’s Club

Sponsored 3–8 new members.

<table>
<thead>
<tr>
<th>District</th>
<th>Awardee — Section Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-2010 Member-Get-A-Member Campaign</td>
<td>Sponsored 3–8 new members.</td>
</tr>
</tbody>
</table>

President’s Roundtable

Sponsored 9–19 new members.

<table>
<thead>
<tr>
<th>District</th>
<th>Awardee — Section Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-2010 Member-Get-A-Member Campaign</td>
<td>Sponsored 9–19 new members.</td>
</tr>
</tbody>
</table>

President’s Guild

Sponsored 20 or more new members.

<table>
<thead>
<tr>
<th>District</th>
<th>Awardee — Section Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-2010 Member-Get-A-Member Campaign</td>
<td>Sponsored 20 or more new members.</td>
</tr>
</tbody>
</table>

President’s Honor Roll

Sponsored 2 new members.

<table>
<thead>
<tr>
<th>District</th>
<th>Awardee — Section Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-2010 Member-Get-A-Member Campaign</td>
<td>Sponsored 2 new members.</td>
</tr>
</tbody>
</table>

2009 District and Section Awardees Announced

Section Meritorious

<table>
<thead>
<tr>
<th>District</th>
<th>Awardee — Section Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Ken Messimer, Long Island</td>
<td>18 Christopher Long, Corpus Christi</td>
</tr>
<tr>
<td>3 Justin Heistand, Lancaster</td>
<td>18 Rick Ynguezn, Corpus Christi</td>
</tr>
<tr>
<td>4 Roger Snider, SW Virginia</td>
<td>18 Mike Huelscemp, Corpus Christi</td>
</tr>
<tr>
<td>4 Bill Rhodes, SW Virginia</td>
<td>18 Derek Stelly, Houston</td>
</tr>
<tr>
<td>4 Craig Streif, Charlotte</td>
<td>18 Danny Castro, Houston</td>
</tr>
<tr>
<td>4 Russell Wahrmann, Triangle</td>
<td>18 Sudhanshu Ogale, Sabine</td>
</tr>
<tr>
<td>6 Fred Schmidt, Niagara Frontier</td>
<td>18 Richard Salinas, Rio Grande Valley</td>
</tr>
<tr>
<td>6 Ken Hammond, Niagara Frontier</td>
<td>18 George Balcree, Rio Grande Valley</td>
</tr>
<tr>
<td>6 Robert Christoffle, Northern New York</td>
<td>18 Howard Thomas, San Antonio</td>
</tr>
<tr>
<td>6 Robert Davis, Syracuse</td>
<td>18 Hemp Drew, San Antonio</td>
</tr>
<tr>
<td>8 Bill Warwick, NE Tennessee</td>
<td>19 Jerry Hope, Puget Sound</td>
</tr>
<tr>
<td>10 Tim Singleon, NE Tennessee</td>
<td>20 David Drake, Albuquerque</td>
</tr>
<tr>
<td>10 Mike Barnett, Mobile</td>
<td>20 John Morrison, Idaho/Montana</td>
</tr>
<tr>
<td>10 Travis Moore, New Orleans</td>
<td>20 Tim McCunin, Idaho/Montana</td>
</tr>
<tr>
<td>10 Anthony Blakeney, Baton Rouge</td>
<td>20 Adam Johnson, Utah</td>
</tr>
<tr>
<td>10 Tom Shelton, Baton Rouge</td>
<td>20 Paul Dowding, Utah</td>
</tr>
<tr>
<td>10 Gary Owens, Baton Rouge</td>
<td>20 Robert McGee, Wyoming</td>
</tr>
<tr>
<td>12 Darren Haas, Pascagoula</td>
<td>22 Jerry Azzaro, San Francisco</td>
</tr>
<tr>
<td>12 Charles Everett, Pascagoula</td>
<td>22 Sharon Jones, San Francisco</td>
</tr>
<tr>
<td>12 Jim Cooley, Birmingham</td>
<td>22 Don Robinson, Sacramento</td>
</tr>
<tr>
<td>12 Charles Lewis, Acadiana</td>
<td>22 Matt Wysocki, Sacramento</td>
</tr>
<tr>
<td>12 Bob Brenner, Stark Central</td>
<td>22 Alex Gutierrez, Santa Clara Valley</td>
</tr>
<tr>
<td>12 Ward Kiser, Drake Well</td>
<td>22 Tom Smeltzler, San Francisco</td>
</tr>
<tr>
<td>14 Curt Eggan, St. Louis</td>
<td>16 Wayne Burns, Iowa</td>
</tr>
<tr>
<td>14 Scott Zimmer, St. Louis</td>
<td>17 Robert White, Central Texas</td>
</tr>
<tr>
<td>14 John Myers, Indiana</td>
<td>17 Adam Esminger, Tulsa</td>
</tr>
<tr>
<td>14 Tj Nethowler, Sangamon Valley</td>
<td>18 Saty Sagu, Houston</td>
</tr>
<tr>
<td>15 Dan Johnson, Northwest</td>
<td>18 Derek Stelly, Houston</td>
</tr>
<tr>
<td>15 Paul Carter, Northwest</td>
<td>18 Glynn Savage, Sabine</td>
</tr>
<tr>
<td>15 Paul Carter, Northwest</td>
<td>19 Jerry Hope, Puget Sound</td>
</tr>
<tr>
<td>16 Jim King, Eastern Iowa</td>
<td>20 Bruce Madigan, Idaho/Montana</td>
</tr>
<tr>
<td>16 Wayne Burns, Iowa</td>
<td>20 Patrick Mulville, Southern Colorado</td>
</tr>
<tr>
<td>16 Virginia Fagan, Ozark</td>
<td>21 Stan Luis, California Central Coast</td>
</tr>
<tr>
<td>16 Wayne Burns, Iowa</td>
<td>22 Jerry Shatell, Sacramento Valley</td>
</tr>
<tr>
<td>16 Chris Wright, North Texas</td>
<td>22 Tom Smeltzler, San Francisco</td>
</tr>
<tr>
<td>16 Chris Layton, Central Arkansas</td>
<td>19 Edwin Riveva, Rio Grande Valley</td>
</tr>
<tr>
<td>16 Angela Harrison, Central Arkansas</td>
<td>19 Bryon Suck, Texas</td>
</tr>
<tr>
<td>16 Aaron Campbell, Central Arkansas</td>
<td>192 Robert McGee, Idaho/Montana</td>
</tr>
<tr>
<td>16 Kevin Sava, Central Arkansas</td>
<td>20 Richard Dean, Idaho/Montana</td>
</tr>
<tr>
<td>16 Dan Bricker, East Texas</td>
<td>20 Richard Dean, Idaho/Montana</td>
</tr>
<tr>
<td>16 James Dobos, Lake Charles</td>
<td>20 Tim McJunkin, Idaho/Montana</td>
</tr>
</tbody>
</table>

Student Meritorious

<table>
<thead>
<tr>
<th>District</th>
<th>Awardee — Section Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Ken Messimer, Long Island</td>
<td>16 Wayne Burns, Iowa</td>
</tr>
<tr>
<td>3 Justin Heistand, Lancaster</td>
<td>17 Robert White, Central Texas</td>
</tr>
<tr>
<td>4 Roger Snider, SW Virginia</td>
<td>17 Adam Esminger, Tulsa</td>
</tr>
<tr>
<td>4 Bill Rhodes, SW Virginia</td>
<td>18 Saty Sagu, Houston</td>
</tr>
<tr>
<td>4 Craig Streif, Charlotte</td>
<td>18 Derek Stelly, Houston</td>
</tr>
<tr>
<td>4 Russell Wahrmann, Triangle</td>
<td>18 Glynn Savage, Sabine</td>
</tr>
<tr>
<td>6 Fred Schmidt, Niagara Frontier</td>
<td>19 Jerry Hope, Puget Sound</td>
</tr>
<tr>
<td>12 Rob Stinson, Madison-Beloit</td>
<td>20 Bruce Madigan, Idaho/Montana</td>
</tr>
<tr>
<td>12 Rob Stinson, Madison-Beloit</td>
<td>20 Patrick Mulville, Southern Colorado</td>
</tr>
<tr>
<td>12 John Morrison, Idaho/Montana</td>
<td>21 Stan Luis, California Central Coast</td>
</tr>
<tr>
<td>12 Richard Dean, Idaho/Montana</td>
<td>22 Jerry Shatell, Sacramento Valley</td>
</tr>
<tr>
<td>12 Tim McJunkin, Idaho/Montana</td>
<td>22 Tom Smeltzler, San Francisco</td>
</tr>
</tbody>
</table>

Section Educator

<table>
<thead>
<tr>
<th>District</th>
<th>Awardee — Section Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Lora Saffert, Charlotte</td>
<td>4 Ray Sosko, Charlotte</td>
</tr>
<tr>
<td>4 Jon Cookson, Tidewater</td>
<td>4 Russell Wahrmann, Triangle</td>
</tr>
<tr>
<td>4 Russell Wahrmann, Triangle</td>
<td>6 Don Schucknecht, Niagara Frontier</td>
</tr>
<tr>
<td>6 Tim Bryant, Syracuse</td>
<td>6 Tom Howard, Syracuse</td>
</tr>
<tr>
<td>8 Bobby Graham, NE Mississippi</td>
<td>8 Robin Dykes, Chattanooga</td>
</tr>
<tr>
<td>9 Larry Porter, Pascagoula</td>
<td>9 Chevis Necaise, Pascagoula</td>
</tr>
<tr>
<td>9 Darren Haas, Pascagoula</td>
<td>9 Chris Weber, New Orleans</td>
</tr>
<tr>
<td>9 Chris Weber, New Orleans</td>
<td>9 William Wilson, New Orleans</td>
</tr>
<tr>
<td>9 Lane Beard, Baton Rouge</td>
<td>9 Dawn Dowling, Baton Rouge</td>
</tr>
<tr>
<td>9 Robert White, Central Texas</td>
<td>9 Kevin Crovetto, Baton Rouge</td>
</tr>
<tr>
<td>9 Arthur Savoy, Acadiana</td>
<td>9 Tommy Smith, Acadiana</td>
</tr>
<tr>
<td>9 Jerry Hope, Puget Sound</td>
<td>9 Roy Ledford, Birmingham</td>
</tr>
<tr>
<td>9 Adam Esminger, Tulsa</td>
<td>10 Nick Regets, Detroit</td>
</tr>
<tr>
<td>9 Adam Esminger, Tulsa</td>
<td>10 Jay Jezlo, Upper Peninsula</td>
</tr>
<tr>
<td>9 Adam Esminger, Tulsa</td>
<td>13 Curt Rippey, Peoria</td>
</tr>
<tr>
<td>9 Adam Esminger, Tulsa</td>
<td>13 Shane Seals, Peoria</td>
</tr>
<tr>
<td>9 John Crager, Indiana</td>
<td>14 Steve Wilson, St. Louis</td>
</tr>
<tr>
<td>9 Wayne Burns, Iowa</td>
<td>16 Edwin Riveva, Rio Grande Valley</td>
</tr>
</tbody>
</table>
District Director Awardees Named

The District Director Award provides a means for District Directors to recognize individuals who have contributed their time and effort to the affairs of their local Section and/or District.

Roy Lanier, District 4 director, nominated the following for this award:

Stewart Harris, Triangle
Jesse O'Neal, Triangle
Marvin Tyler, Triangle
Russell Wahrmann, Triangle
Kevin Shaffer, Triangle
Jon Cookson, Tidewater

Ed Dupree, Tidewater
Lynn Showalter, Tidewater
Steve Gore, Charlotte
Jeff Martin, Charlotte
Lori Safrit, Charlotte
Ray Sosko, Charlotte
Gary Stillner, Charlotte
Roy Lanier, NE Carolina
Teresa Williams, NE Carolina
James A. Stump, SW Virginia

Richard Harris, District 10 director, nominated the following for this award:

Mike Owens, Drake Well

Jason Fry, Drake Well
Chuck Moore, Mahoning Valley
Larry Elms, St. Louis
Gene Norwood, Corpus Christi
Tom Smeltzer, San Francisco

Larry Blake, NW Ohio
Larry Bowers, Madison-Beloit
Bob Ellenbecker, Fox Valley
Jack Compton, San Fernando Valley
Jeff Hankins, NE Tennessee
Frank Ramos, Sacramento Valley
Mary Means, L.A./Inland Empire

WELDING JOURNAL 67
Errata A5.12

The following errata have been identified and incorporated into the current reprint of this document.

Page 3, Table 1 — Chemical composition requirements for tungsten electrodes — Changed Principal oxide in second column from “La2O3” to “La2O3” at three places.
Page 13, Subclause B6.1, seventh line — Changed “Table A.1” to Table A.2.
Page 14, Subclause B6.4, third line Changed “Table A.1” to Table A.2.
Page 14, Subclause B7.2, fourth line — Changed “CeO” to “CeO2”.

Response: A given process of welding is the same welding process or processes used by the welder or welding operator for the original performance qualification.
(a) No. It is not “any process,” but only the process for which the welder or welding operator was qualified (e.g., SMAW, FCAW, etc.) and it may include welding with that qualified process to other codes.
(b) Yes, however, a given process of welding means the physical act of welding by the welder or welding operator. It is not required that the welder or welding operator performs welding to the original qualification WPS or original base material.
(c) No. It is not “any welding,” but welding with the same process (e.g., SMAW, FCAW, etc.) for the employer regardless of the code or standard employed.

Official Interpretations D1.1

Subject: CVN and Tables 4.5, 4.6
Code Provision: Tables 4.5, 4.6
AWS Log: D1.1-06-06
Inquiry 1: Does Variable 27 of Table 4.5 supersede Variable 6 of Table 4.6 for all applications?
Response: No, see Clause 4.35.3.
Inquiry 2: Does Variable 6 of Table 4.6 supersede Variable 27 of Table 4.5 only for WPSs tested with impacts?
Response: No, the supplementary essential variables are in addition to Table 4.5. See 4.35.3.

Subject: Welder Six Month Requirement
Code Provision: Subclause 4.1.3.1
AWS Log: D1.1-06-108b
Inquiry 1: What specifically does the term a given process mean?
(a) Is a given process for D1.1 any welding process inclusive of other codes (e.g., D1.2, ASME code welding, etc.)?
(b) Is a given process inclusive of welding on other base metals (e.g., aluminum, stainless steels, etc.) using similar WPSs?
(c) Is a given process inclusive of any welding performed in the six month window including welding not done to recognized standards or codes or not done under some form of quality control?

Subject: Qualifying Two Processes on One Plate
Code Provision: Tables 4.2, 4.11
AWS Log: D1.1-06-I15b
Inquiry 1: Can I qualify two welding processes on one test plate?
Response: Yes.

Inquiry 2: Do I use the deposited weld metal thickness for each weld process to establish the range of thickness qualified?
Response: AWS D1.1:2006 does not address the range of qualified deposit thicknesses where more than one process is combined within the same test plate.

Subject: Limitation of Prequalified WPS Variables
Code Provision: Clause 3.6, Table 4.5
AWS Log: D1.1-08-101
Inquiry 1: If the 4 variables are listed on the Prequalified WPS without qualification testing how does one select the value to be used to generate the required range?
Response: Selection of the parameters listed in AWS D1.1:2008 Clause 3.6(1), 2, 3, and 4 for use on the WPS is at the discretion of the contractor. The parameters listed on the WPS shall be within the recommendations of the electrode manufacturer and any other limits put forth by Clause 3 and Clause 5 of this code.

Inquiry 2: Should a mean value be selected based on the wide ranges given by the electrode manufacturer, and known by the user to produce sound welding performance in their shop, after which the ranges required by Table 4.5 may be developed and listed on the prequalified WPS?
Response: A range may be established as described in Inquiry 2 or a narrower range may be specified.

Inquiry 3: Or may we use the full range recommended by the manufacturer for a given size electrode and list that on our prequalified WPS and allow the shop to determine how to apply those wide ranges to the welding applications?
Response: It is not the intent of AWS D1.1:2008 Clause 3.6 that a single entry on the WPS include the full range recommended by the manufacturer for a given size electrode. Multiple entries, each including compatible welding parameter ranges in compliance with Table 4.5 and within the manufacturer’s recommendations, may be necessary.
ISO Draft Standards for Public Review
ISO/DIS 25239-1.2 — Friction stir welding — Aluminium — Part 1: Vocabulary
ISO/DIS 25239-2.2 — Friction stir welding — Aluminium — Part 2: Design of weld joints
ISO/DIS 25239-3.2 — Friction stir welding — Aluminium — Part 3: Qualification of welding operators
ISO/DIS 25239-4.2 — Friction stir welding — Aluminium — Part 4: Specification and qualification of welding procedures
ISO/DIS 25239-5.2 — Friction stir welding — Aluminium — Part 5: Quality and inspection requirements
Copies of the above draft standards are available for review and comment through your national standards body, which in the United States is ANSI, 25 W. 43rd St., 4th Fl., New York, NY 10036; (212) 642-4900. Send comments regarding ISO documents to your national standards body.

Technical Committee Meetings
All AWS technical committee meetings are open to the public. To attend a meeting, call the staff committee secretary, (800/305) 443-9353, at the extension shown in parentheses.

Oct. 7, SH1 Subcommittee on Fumes and Gases. Columbus, Ohio. S. Hedrick (305).

Oct. 22, C4 Committee on Oxyfuel Gas Welding and Cutting. Cleveland, Ohio. A. Alonso (299).

The Following Meetings Will Be Held at the FABTECH International & AWS Welding Show in Chicago, Ill.

Nov. 15, C7 Committee on High Energy Beam Welding and Cutting. R. Starks (304).

Nov. 15, C7B Subcommittee on Electron Beam Welding and Cutting. R. Starks (304).

Nov. 16, D15C Subcommittee on Track Welding. R. Starks (304).

Nov. 16, D16 Committee on Robotic and Automatic Welding. M. Rubin (215).

Nov. 17, ASH Subcommittee on Filler Metals and Fluxes for Brazing. S. Borrero (334).

BY WALTER J. SPERKO

Readers are advised that the opinions expressed in this article are those of the author and not the official opinions of ASME Standards Committee IX. These changes become mandatory Jan. 1, 2010.

Changes to QW/QB-422, P-Number Table

If you work with Section IX regularly, the first thing you noticed when you inserted the blue pages was that QW/QB-422 is different: The columns for S-numbers are gone. S-numbers, you may recall, were assigned to certain materials that were permitted by the ASME B31 Code and select Code Cases but were not adopted as Boiler Code materials (i.e., S-number materials were not “SA” or “SB” materials). Previous ASME policy was that only materials that were SA or SB materials were allowed to be assigned P-numbers. That policy changed recently, and Standards Committee IX made life easier for everyone by converting all materials with S-numbers designations to P-number designations.

A parallel but more subtle and expansive change was made in QW-420. Previously, materials were manufactured to the ASTM version of a specification could be considered as having the same S-number as the corresponding SA or SB material’s assigned P-number (i.e., ASTM A-312 TP304 could be considered S-8 since ASME SA-312 TP 304 was assigned to P-8), this revision allows all materials that have the same UNS number as any material that is assigned a P-number to be considered as having the same P-number as the listed material. That is, ASME SA-312 TP 304 is listed as UNS S30400; therefore, all materials manufactured to any specification in which the material is identified as UNS S30400 may be considered as P-8. This provision also applies to group number assignments.

When taking advantage of this change, however, the materials used for the test coupon have to be materials that are assigned other than P-8.
signed P-numbers by Section IX; continuing with the above example, readers should use ASME SA-312 TP304 (which is listed) and not ASTM A-312 TP304 (which is not listed) for test coupons. For materials not assigned a UNS number and not listed in QW/QB-422, QW-424.1 applies.

These changes, of course, do not mean that you can construct ASME boilers, pressure vessels, or nuclear components with former S-number materials or with materials assigned a P-number using the UNS number; they still have to be constructed using materials that are listed in ASME Section II, Part D, i.e., they have to be built from materials that are made to SA or SB specifications, and piping has to be constructed using materials that are permitted by the applicable section of the ASME B31 Code for Pressure Piping.

For purposes of reducing the number of procedure qualifications when materials were similarly weldable, base metals were assigned P-numbers in the first edition of Section IX published in 1941. In those days, a welding power supply (motor-generator) was known as a “welder,” and the person who did the welding was known as a “welding operator.” For purposes of reducing the number of operator qualifications when materials were similarly weldable, base metals were assigned O-numbers. The Operator grouping system was dropped in the early 1950s, leaving only P-numbers, which are used today for both procedure and performance qualification purposes. Both P-numbers and O-numbers were just numbers in the old days; however, by the 1960s, Subcommittee IX started using alphanumeric designations such as P-9A, P-10C, P-11A, etc., and the rules typically required that separate qualifications were required for each number-letter combination. In these addenda, QW-420 specifically states that P-numbers are considered alphanumeric designations even though they are called “P-numbers.” This means that P-1A and P-1B are considered separate P-numbers without further identifying them as such in the variables, the tables, and in other locations throughout Section IX. This allowed deletion of QW-403.13, which addressed P-5, 9, and 10 with their separate alpha designations, and it eliminated the need to address alpha designations in a new P-number family, P-15.

Creep-Strength-Enhanced Ferritic Alloys: P-number 15

The power industry has been using a creep-strength-enhanced ferritic alloy (CSEFA) identified as “Grade 91” for elevated-temperature service for more than two decades. Although Grade 91 is based on Cr-Mo steels that have been used for decades, industry has discovered that its microstructure and associated creep behavior is far more sensitive to fabrication and installation practices than predecessor Cr-Mo steels such as 2/4 Cr-1Mo. As the result of some failures in Grade 91 installations, special rules have been written for this material such as the postweld heat treatment requirements for P-5B, Group 2, in Section I, paragraph PW-39, and in B31.1, Table 136. While the industry has learned to deal with Grade 91’s idiosyncrasies, more CSEFAs are on the way: Grades 92, 911, 122, 23, 24, and others. It is anticipated that they will exhibit similar idiosyncrasies to Grade 91 and possibly some of their own. In order to make it easier for the construction codes to deal with these idiosyncrasies as they arise, Section IX has designated a new P-number family for CSEFAs — P-15. Assignments will be as follows:

P-15A Open
P-15B 1Cr
P-15C 2Cr (e.g., 23, 24)
P-15D Open
P-15E 9Cr (e.g., 91, 92, 911)
P-15F 12Cr (e.g., 122, VM12)

Grade 91 materials currently assigned to P-5B, Group 2, will become P-15E. Existing WPSs and supporting PORQs that permit welding P-5B Group 2 materials must be reviewed to see if the WPSs are still qualified for welding materials under P-15E. If a PORQ shows that the test coupon base metal was one of those assigned to P-No. 15E, the WPS may be revised to allow welding of P-15E. If a PORQ shows that the test coupon base metal was not one of those assigned to P-No. 15E, the WPS may only permit welding of materials currently assigned that P-number.

When the PORQ shows that the test coupon base metal was one of those assigned to P-15E, the PORQ may be revised to P-15E, or it may remain as P-5B, Group 2, since 1) the base metal that was welded was P-5B, Group 2, at the time that the test coupon was welded, and 2) it is the base metal that was welded that determines the P-number that may be specified on the WPS, not the historically assigned P-number shown on the PORQ.

In the writer’s experience, however, not changing PORQs to the new P-number will result in negative comments from reviewers of WPSs who are not aware of the above subtlety. If you choose to revise PORQs to show the new P-number assignments, be sure to recertify the record and annotating that the base metal P-number assignment was revised due to a code change.

The old WPS and PORQ are still valid for ongoing and repair work to previous editions of the Code where the applicable construction code assigned Grade 91 to P-5B, Group 2.

Readers may note that the above description of how to deal with reassigned P-numbers is slightly different from my previous advice that said that the PORQ had to be revised. Due to feedback from some readers, this matter was recently voted in committee and the above is consistent with recent interpretations. This advice is applicable not only to the CSEFAs but also to other materials such as those base metals with revised P-numbers in the nickel-base family.

Corresponding changes were also made in various paragraphs and tables where ranges such as “P-1 through P-11” have been changed to “P-1 through P-15F.” This means that, since QW-423 was revised as described above, welders who were previously qualified to weld on P-1 through P-11 base metals are now qualified to weld on P-1 through P-15F base metals. Although Section IX does not specifically address revisions to welder qualification records, the provisions of QW-200.3, which address revisions to PORQs, could reasonably be applied to welder qualification records, allowing PORQs to be revised when there is a relevant code change; accordingly, one could revise previous welder qualification records by changing the base metal range qualified from P-1 through P-11 to P-1 through P-15F, recertifying the record and annotating that the base metal range qualified was revised due to a code change.

ISO Material Grouping Assignments

After you received your Addenda sheets, you should have been notified that revised QW/QB-422 tables should be downloaded from the ASME Web site: http://cstools.asme.org/cspecifpdf/CommitteeFiles/29447.pdf.

When you downloaded that table, you saw that there were more changes to the table. A new column “ISO/TR 15608 group” was added. This column lists assignments of materials to group numbers in accordance with the criteria of ISO/TR 15608:2005, Welding — Guidelines for a metallic materials grouping system, and it is consistent with the assignments found in ISO/TR 20137:2008, Grouping systems for materials — American materials. While this listing is provided as a convenience to users worldwide, it is provided for information only. Section IX does not refer to this grouping as a basis for establishing the range of base metals qualified for either procedure or performance qualification. There are two other ISO standards that assign ISO 15608 group numbers to European and Japanese materials, ISO/TR-20172 and ISO/TR-20174 respec-
tively. The availability of the ISO base metal grouping assignments will make it easier to evaluate the similarity of materials for welding purposes.

Condition(s)

While there appear to be a lot of revisions when reviewing the listing of changes, most are editorial and the rest are simplifications. Biggest number changes were associated with an action in which a senior SC IX member examined how the word “condition” and its variants were used. It turns out there were many ways the term was used, and some were inappropriate. Some examples: QW-100.3, “conditions” was changed to “rules”; and in QW-321, “conditions” was changed to “provisions”; QW-322.2(a), “conditions” was changed to “requirements”; QW-322.1, “conditions” was deleted; QW-407.1, “conditions” was deleted (several of these); and in QW/QW-492, “conditions” was changed to “parameters” for active fluxes.

So, if you are reading a paragraph marked with “69” in the margin and the change is not obvious, look it up in the change summary and you will probably find that “condition” was modified.

Welding Procedure (QW-200) Changes

Beyond the changes in S-numbers and addition of P-15, there were a couple of changes to the procedure qualification rules worth noting.

QW-442, the A-number table, changes rarely. In these addenda, the transition point for chromium between A-4 and A-5 was changed from 5 to 4% so that the transition in chromium content matched the same transition between base metals assigned to P-5A (2% Cr and 3% Cr-Mo) and those assigned to P-5B (nominally 5 through 12% Cr-Mo steels). This allows WPSs qualified using any P-5B base metal to be written so that the chemical composition of the filler metal can match that of any other P-5B base metal, whereas previously, a POR showing that a 5% Cr-Mo steel was used for both the test coupon and the filler metal could only support a WPS written for welding 5% Cr-Mo base metals using 5% Cr-Mo filler metals. Readers might want to review their existing P-5B WPSs to see if they can take advantage of this change.

QW-404.23, which is an essential variable for GTAW and PAW for both procedure and performance qualification, was modified to add use of flux-coated rod in addition to requiring separate qualification when using flux cored, powder, metal cored, and solid wires. The most commonly used filler metal product form qualified with either process is solid wire, and when solid wire is used to weld a test coupon, that also qualifies metal cored wires and vice versa, but no other product form. Flux cored and flux covered rods are most commonly used as an alternate to using gas backing when welding stainless steel, and this variable requires separate qualification of both WPSs and welders when these product forms are used. The use of separately applied backing flux is not addressed by Section IX; readers who use such fluxes would be wise to run a procedure qualification test to satisfy themselves that these fluxes do not affect the properties of the weld and advise their customers that there may be residual flux in the piping.

Welder Qualification (QW-300) Changes

There were no significant changes to welder qualification other than those resulting from P-number changes discussed above.

Base Metals and Filler Metals

Beyond the extensive changes described above regarding S-numbers and P-15, the regular collection of new base metals was added and editorial corrections were made. One notable addition was the addition of ASME B16.50, *Wrought Copper and Copper Alloy Brazed-Joint Pressure Fittings*, as brazing P-number 107. Fittings made to this specification are made from the same copper alloys as B16.22 solder-joint fittings, but B16.50 permits the fittings to have shallower cups that are more suitable for brazed joints than the deep cups that are needed for soldered joints.

Brazing (QB) Changes

Other than the addition of B16.50, two small changes were made to clarify the variables associated with overlap length of brazed joints.

QB-408.1 says, for lap or socket joints, the brazor is qualified to braze using an overlap length up to 25% greater than that used on the performance qualification test coupon. This recognizes that, as the overlap length increases, it becomes more difficult to make a sound braze joint, but it says nothing about decreasing the overlap. To clarify that decreasing the overlap from that used on the test coupon was acceptable, a parenthetical clarification was added saying that an increase in overlap is permitted without requalification since that decreases the unit stress through the joint.

Inquiries

It was a pretty dull year for inquiries. One curious inquiry was IX-07-11 that asked if a person making adjustments of the volts, amps, wire feed speed, or other settings at the direction of a qualified welder or welding operator had to also be a qualified welder or welding operator. The reply was “no.” It's always reassuring to know that if a welder hollers, “Joe, give me five more amps,” that Joe does not have to be qualified to weld.

Coming Attractions

Over the last several decades, electronic controls have moved into welding power supplies and controls. Motor-generators that produced nearly pure DC current were replaced with transformers and rectifiers. Most of these power supplies produced DC current with some waveform ripples, but the waveform was highly regular, and ordinary volt and ammeters could be used to measure the energy accurately. Modern power supplies use inverters and electronic controls to control volts and amps independently; this allows the power supply to control the volts and amps waveforms to minimize spatter, control penetration, bridge gaps, and the like to make welding easier and more consistent; these controls operate at 5 to 10 MHz, and the heat input used to make a weld cannot be measured correctly using either averaging or RMS meters to determine the heat input. Conveniently, the electronics that control the waveform can also be used to measure the arc energy accurately by sampling the volts and amps at the same frequency as the controls operate, and those measurements can be integrated over time to provide a meter reading of cumulative Joules over the time the arc is on or Joules/s (watts). When such a reading is recorded along with the travel speed, heat input can be accurately recorded on the POR and controlled during welding. How this will be incorporated into Section IX will be revealed next year in the *Welding Journal* and will appear in the 2010 edition.

Note ASME Code Committee meetings are open to the public. The meeting schedule is posted on www.asme.org and www.sperkoengineering.com.
New Sustaining Company

Mandina’s Inspection Services, Inc.
209 Pi St.
Belle Chasse, LA 70037
www.mandinasndt.com
Representative: Shannon K. Murphy

Mandina’s Inspection Services, Inc., is a pioneer in providing ultrasonic phased array and TOFD services to oil, gas, petrochemical, and construction clients across the globe. Its other offerings include online and in-house training, NDT inspection, a full-service welding and machine lab, and auditing and consulting services.

Supporting Companies

Master Steel, LLC
9769 Speedway Blvd.
Hardeeville, SC 29927

Simko Industrial Fabricators
4545 Ash Ave.
Hammond, IN 46327

Welding Distributor
Quality Equipment Distributors, Inc.
70 Benbro Dr.
Cheektowaga, NY 14225

Affiliate Companies

Industrial Repairs and Services, LLC
1358 Hwy. 91
Elizabethtown, TN 37643

Military Systems Group, Inc.
736 Fesslers Ln.
Nashville, IN 37210

Runding, LLC
90 Greendale Dr.
Oak Ridge, NJ 07438

Educational Institutions

Applied Technology Education Campus
874 Vocational Ln.
Camden, SC 29020

Egyptian Welding Academy
7, 6th October St., Tereat El Ismailia
Shobra El Khema, Kalyoubia, Mostorod
Cairo, Egypt

Lynnes Welding Training, Inc.
2801 1st St. Ave. N.
Fargo, ND 58102

Nationwide Diesel Technologies, Inc.
10-A Appian Way
Smithfield, RI 02917

Oillfield Training Centre
Mooppukandathil, Magaram
Pandalam (P.O.) Pathanamthittal
Pandalam, Kerala 689501, India

AWS Membership

Member Grades
As of 9/01/09
Sustaining..504
Supporting.......................................313
Educational......................................502
Affiliate...467
Welding distributor.........................48
Total corporate members...............1,834
Individual members...............52,248
Student + transitional members....5,720
Total members.......................57,968

Quality Technical Training Institute
4490 Broadway
Depew, NY 14043

Sigma Institute of Welding Services
E-56 Dewan, Apt. No. II, Navuhar Rd. Vasai (E), Thane, MH 401210, India

UNESP
Av. Protasio Alves 1121/14
Porto Alegre, RS 90410-001, Brazil

Walker Career Center
9651 E. 21st St.
Indianapolis, IN 46229

Life Members Offered Perks at FABTECH International & AWS Welding Show

AWS Life Members are urged to take advantage of their complimentary free admission to the upcoming FABTECH International & AWS Welding Show, including MetalForm, plus free registration to the entire Professional Program (a $325 value).
The event will take place Nov. 15–18, 2009, at McCormick Place in Chicago, Ill.

Name Your Candidate for the Prof. Masubuchi Award

November 2 is the deadline for submitting nominations for the 2010 Prof. Koichi Masubuchi Award, sponsored by the Dept. of Ocean Engineering at Massachusetts Institute of Technology.
This award is presented each year to one person who has made significant contributions to the advancement of materials joining through research and development. The award includes an honorarium of $5000. The candidate must be 40 years old or younger, may live anywhere in the world, and need not be an AWS member. The nomination package should be prepared by someone familiar with the research background of the candidate. It should include the candidate’s résumé listing background, experience, publications, honors, and awards, plus at least three letters of recommendation from fellow researchers.
This award was established to recognize Prof. Koichi Masubuchi for his numerous contributions to the advancement of the science and technology of welding, especially in the fields of fabricating marine and outer space structures. E-mail your nominations to Prof. John DuPont at jnd1@lehigh.edu.
NEW JERSEY

MARCH 17
Activity: The Section members met at Ironworker District Council Northern New Jersey in Edison, N.J., for a presentation on the careers available to graduates of the Ironworker apprenticeship and journeyman training programs. The meeting concluded with a tour of the facilities. The presenters included William Lawson, Ed Mironski, Ron Savasta, Bill Kolfenbach, and Jim Creegan.

NEW YORK

JULY 27
Activity: The Section’s executive board members met at Buckley’s Restaurant in Brooklyn, N.Y., to plan the coming year’s schedule of events. Treasurer Alan Zibitt received the District Directors award for his contributions to the Society.

District 1
Russ Norris, director
(207) 604-9262
russ.norris@airgas.com

District 2
Kenneth R. Stockton, director
(908) 412-7099
kenneth.stockton@pseg.com

District 3
Michael Wiswesser, director
(610) 820-9551
mike@welderinstitute.com
Shown at the Atlanta Section event at Local Union 72 are (from left) Cajun Seeger, District 5 Director Steve Mattson, Greg Webster, Robbie Zappa, Mike Cockerham, and Branden Muehlbrandt.

Activity: The Atlanta Section members participated in the grand opening of the new Welding Technology Center training facility operated by The Plumbers and Pipefitters Local Union 72 of the United Association (UA) of Journeymen and Apprentices of the Plumbing and Pipefitting Industry of the United States and Canada, Mechanical Trades Institute, in Lithia Springs, Ga., to augment its skilled trades apprenticeship program. Its students, from beginners to advanced welders, earn college credits while at the center and working in the five-year apprenticeship on-the-job training program. The facility will graduate highly skilled tradespeople trained to fill the requirements of the local contractors with welders certified to the UA Welder Certification Program Quality Systems Manual. Officiating was Cajun Seeger, UA welding director, with welding instructors Greg Webster, Mike Cockerham, and Branden Muehlbrandt — all qualified AWS CWIs and CWEs. Steve Mattson, District 5 director, attended the event.

The Atlanta Section executive board members are (clockwise from front-left) David Ennis, Chair Robbie Zappa, Rene Engeron, Carl Matricardi, and Tom Rieger.

District 4
Roy C. Lanier, director
(252) 321-4285
rlanier@email.pittcc.edu

District 5
Steve Mattson, director
(904) 260-6040
steve.mattson@yahoo.com

District 5 Conference
JUNE 5, 6
Activity: The annual District 5 conference was held in Savannah, Ga. Steve Mattson, District 5 director, conducted the program. The presenters included Robbie Zappa, David Ennis, and Carl Matricardi.

ATLANTA
JULY 23

District 6
Kenneth Phy, director
(315) 218-5297
kenneth.phy@gmail.com

OCTOBER 2009
District 7
Don Howard, director
(814) 269-2895
howard@ctc.com

PITTSBURGH
August 11
Activity: The Section executive board met at Rockefeller’s Grille in McKees Rocks, Pa., to plan the upcoming season’s activities. Attending were Chair Dave Daugherty, John Menhart, Carl Ott, Dave McQuaid, and Carl Spaeder.

District 8
Joe Livesay, director
(931) 484-7502, ext. 143
joe.livesay@ttcc.edu

District 9
George D. Fairbanks Jr., director
(225) 473-6362
fits@bellsouth.net

District 9 Conference
June 21
Activity: George Fairbanks, District 9 director, presided over the conference hosted by Cei Fabricators, Inc., in St. James, La., and the Baton Rouge Section. A highlight was a boiled crawfish dinner. George Shaheen, Cei Fabricators owner, was presented a plaque in recognition of his support over the years to the Southeastern Louisiana University AWS Student Chapter.

MORGAN CITY
August 4
Activity: The Section’s executive committee met to install new board members and make plans to revitalize the Section. The Section draws attendees from the Morgan City, Houma, Thibodaux, and surrounding areas. The board set its first Section meeting for September 8, to be hosted by outgoing Chair Bill New at his fabrication shop in Morgan City. The incoming board members are John Derrick, chairman; Renesse Landry, first vice chair; Joey Rentrop, second vice chair and secretary; and Tim Theiss, treasurer. Attending the meeting were Bill New and District 9 Director George Fairbanks. The meeting was held at Atchafalaya Club House in Patterson, La.

Shown at the District 9 conference are (from left) Anthony Blakeney, Michael Beaveau, George Shaheen, and George Fairbanks, District 9 director.

Attending the Morgan City Section executive board meeting are (from left) Joey Rentrop, Bill New, Chairman John Derrick, Tim Theiss, District 9 Director George Fairbanks, and Renesse Landry.
The Central Michigan Section team members proudly display the Quiz the Experts traveling trophy they earned the right to keep for the second year in a row. Shown are (from left) Jim Farmer, Roy Bailiff, and Bill Eggleston.

Shown at the Quiz the Experts event are (from left) Jeff Seelye, District 11 Director F. T. Siradakis, awardee Jim Farmer, Roy Bailiff, and Bill Eggleston.

Detroit Section Chair Mark Rotary displays the attention-getting T-shirt he wore in the Whirlpool Ironman Triathlon. The logo reads, “American Welding Society, Building ‘Iron Men.’”

Detroit Section Chair Mark Rotary (left) and Jim Kline, a fellow Ironman Triathlon competitor, get ready for the big challenge. First vice chair; Roy Bailiff, second vice chair; and Jim Farmer, treasurer. Jim Farmer received his Life Membership Certificate for 35 years of service to the Society and an appreciation plaque for serving as treasurer of the Central Michigan Section for 27 years. The awards were presented by Chairman Jeff Seelye, the Section’s board members, and District 11 Director F. T. Siradakis.

DETROIT
August 1
Activity: Chairman Mark Rotary took the plunge and competed in the Whirlpool Ironman 70.3 Steelhead Triathlon 2009 in Benton Harbor, Mich., finishing in six hours and 21 minutes. The three-part competition included a 1.3-mile swim, 56-mile bike course, and a 13-mile run. For the occasion, AWS Director-at-Large Don DeCorte presented Rotary with a custom-made T-shirt emblazoned with the AWS logo to wear during his competition. Rotary said several people inquired about the AWS logo giving him the opportunity to tell them about the Society and his Section’s activities.

NORTHWEST OHIO
July 10
Activity: The Section hosted its annual AWS scholarship fund-raising golf outing at South Toledo Golf Club in Toledo, Ohio. The event is named in honor of Donald J. Leonhardt, a welding instructor at Owens Community College, and a supervisor of the Section’s CWI exams. Coordinating the event were Mike Rogers, Tony Duris, and Mark Scallse. Fifteen, four-man teams competed.

District 10
Richard A. Harris, director
(440) 338-5921
richaharris@windstream.net

District 11
Efthios Siradakis, director
(989) 894-4101
ft.siradakis@airgas.com

CENTRAL MICHIGAN
April 20
Activity: The annual Quiz the Experts event took center stage for this program attended by members of the Detroit, Saginaw Valley, Central Michigan, and Western Michigan Sections, and members of the Ferris State University Student Chapter. Taking top honors was the Central Michigan team of experts Bill Eggleston, Jim Farmer, first vice chair; Roy Bailiff, second vice chair; and Jim Farmer, treasurer. Jim Farmer received his Life Membership Certificate for 35 years of service to the Society and an appreciation plaque for serving as treasurer of the Central Michigan Section for 27 years. The awards were presented by Chairman Jeff Seelye, the Section’s board members, and District 11 Director F. T. Siradakis.

District 12
Sean P. Moran, director
(920) 954-3828
sean.moran@hobartbrothers.com
Shown at the Chicago Section executive meeting are (seated, from left) Chair Hank Sima, Craig Tichelar, and Pete Harris; (standing, from left) Pete Host, Eric Krauss, Cliff Iftimie, Jim Greer, Marty Vondra, and Chuck Hubbard.

Eldon Lafevre (left) received the District 13 Private Sector Educator Award from John Willard, J.A.K. Section chair, in July.

Attending the 2009 Leadership Symposium are (from left) Lee Kvidahl, an AWS past president; Cassie Burrell, AWS deputy executive director; Alfred Nieves, senior coordinator; Rhenda Mayo, director, member services; Chicago Section Secretary Eric Krauss; Gailyn Cornell, representing the St. Louis Section; and facilitator Ron Gilbert.

Ben Johnson (left) accepts his golf awards from Northern Plains Section Chair Brent Smith.

District 13
W. Richard Polanin, director
(309) 694-5404
rpolanin@icc.edu

CHICAGO
JULY 13
Activity: Secretary Eric Krauss participated in the 2009 Leadership Symposium held July 12–15 at AWS headquarters in Miami.

AUGUST 12
Activity: The Section held its executive board meeting at Bailey’s Restaurant in Westmont, Ill. Attending were Chair Hank Sima, Craig Tichelar, Pete Harris, Pete Host, Eric Krauss, Cliff Iftimie, Jim Greer, Marty Vondra, and Chuck Hubbard.

J.A.K.
JULY 13
Activity: The Joliet-Aurora-Kankakee Section made an awards presentation as part of the Ironworkers Local 444 regular meeting in Joliet, Ill. Eldon Lafevre, recently retired Ironworkers Apprenticeship Coordinator, received the District 13 Private Sector Educator Award from Chairman John Willard. Lafevre was involved in the Local’s training program for more than 20 years with an emphasis on training and certifying welders for the structural steel industry. Lafevre continues to mentor its welders and instructors.

District 14
Tully C. Parker, director
(618) 667-7795
tpanke@millerwelds.com

NORTHERN PLAINS
JULY 25
Activity: The Section hosted its annual golf outing at Sandhill Golf Club in Fer- tile, Minn. The scholarship fund-raising event attracted 45 golfers that ended in a three-way-tie for first place. After the tie-breaking run, the winning team included Travis Effhauser, Ben Johnson, Scott Langlie, and Lonnie Thompson.

District 15
Mace V. Harris, director
(612) 861-3870
macevh@aol.com
The Northern Plains Section golf winners are (from left) Travis Effhauser, Ben Johnson, Scott Langlie, and Lonnie Thompson.

Shown at the Northwest Section golf outing fund-raising event are (from left) Clint Emmert, Bob Sands, and Bob Keilty.

The Section hosted its annual scholarship fund-raising golf outing at New Prague Golf Club in New Prague, Minn. The Section members formally recognized Production Engineering Corp. (PEC) for its support and making a $1000 contribution each year for the past ten years to the fund. Attending were PEC representatives Mike Albers, president; Clint Emmert, vice president of manufacturing; and Bob Sands.

Activity: The Section hosted its annual scholarship fund-raising golf outing at New Prague Golf Club in New Prague, Minn. The Section members formally recognized Production Engineering Corp. (PEC) for its support and making a $1000 contribution each year for the past ten years to the fund. Attending were PEC representatives Mike Albers, president; Clint Emmert, vice president of manufacturing; and Bob Sands.

Ben Johnson took the longest-drive and closest-to-the-pin honors, and Darrell Byram earned the prize for the longest putt. Brent Smith, chairman, presented the awards.

NORTHWEST

Activity: The Section hosted its annual scholarship fund-raising golf outing at New Prague Golf Club in New Prairie, Minn. The Section members formally recognized Production Engineering Corp. (PEC) for its support and making a $1000 contribution each year for the past ten years to the fund. Attending were PEC representatives Mike Albers, president; Clint Emmert, vice president of manufacturing; and Bob Sands.

Iowa Section member Bruce Severson and daughter Devon worked together on a 4-H welding project in the summer.

District 16

David Landon, director
(641) 621-7476
dandon@vermeermfg.com

IOWA

Activity: Bruce Severson participated in a 4-H “reuse, recycle, reclaim” project with his daughter, AWS Student Member Devon, age 10. He taught her what she needed to know to use welding and other shop skills to create art pieces from scrap metal parts.

Darrell Byram (left), the long-putt champ, is shown with Brent Smith, Northern Plains Section chairman.

‘Devon’s Duck’ came to life from a handful of scrap metal under the steady welding hands of Devon Severson coached by her father, Bruce, for an Iowa 4-H project.

National Sections

District 17

J. Jones, director
(940) 368-3130
jjones@thermadyne.com

District 18

John Bray, director
(281) 997-7273
sales@affiliatedmachinery.com

District 19

Neil Shannon, director
(503) 419-4546
neilshnn@msn.com

District 20

William A. Komlos, director
(801) 560-2353
bkoz@arctechllc.com
Jose Luis won the raffle prize at the Los Angeles/Inland Empire Section meeting.

District 21
Nanette Samanich, director
(702) 429-5017
Nan07@aol.com

L.A./INLAND EMPIRE
May 29
Activity: The Section members participated in a company tour and welding competition held at Red-D-Arc Welderentals in Rancho Cucamonga, Calif. The attendees saw demonstrations of various machines, then 30 contestants competed in an entry-level welding contest. The assignment was to complete a ⅜-in. fillet weld using ½-in. E7018 electrode on low-carbon steel. The procedure involved welding a 3 x 3 x ⅛-in. angle to a ⅛-in.-thick horizontal plate using shielded metal arc welding. The judges included two engineers, two CWIs, and two welding instructors. The top scorers were Carlos Vasquez and Miguel Bonilla.

Jose Luis won the raffle prize.

Shown at the L.A./Inland Empire Section welding contest are (from left) Chair George Rolla, Miguel Bonilla, and Mary Means, education chair.

District 22
Dale Flood, director
(916) 298-6100, ext. 172
flashflood@email.com

Share Your Expertise with the World — Join an AWS Technical Committee

Thermal Spraying
Volunteers are invited to participate on the C2 Committee on Thermal Spraying. Its documents include C2.16, Guide for Thermal-Spray Operator Qualification; C2.18, Guide for the Protection of Steel with Thermal Sprayed Coatings of Aluminum and Zinc and their Alloys and Composites; C2.19, Machine Element Repair; C2.20, Thermal Sprayed Coating for Reinforced Concrete; C2.21, Specification for Thermal Spray Equipment Acceptance Inspection; C2.23, Specification for the Application of Thermal Spray Coatings (Metallizing) of Aluminum, Zinc, and Their Alloys and Composites for the Corrosion Protection of Steel; C2.25, Specification for Thermal Spray Feedstock — Solid and Composite Wire and Ceramic Rods. Contact Reino Starks, rstarks@aws.org, (800/305) 443-9353, ext. 304, for information, or visit www.aws.org/1UQ4 to submit your application online.

Welding Sales Representatives
AWS established a new certification program for welding sales representatives in 2009. Volunteers are invited to be part of the technical subcommittee responsible for setting the qualification requirements, AWS B5.14, Specification for the Qualification of Welding Sales Representatives, that this program is based on. For complete information about this committee’s work, contact John Gayler, gayler@aws.org, (800/305) 443-9353, ext. 472; or submit a technical committee application online at www.aws.org/1UQ4.

Robotic and Automatic Welding
Volunteers are sought to participate on the D16 Committee on Robotic and Automatic Welding. Its documents include D16.1, Specification for Robotic Arc Welding Safety; D16.2, Guide for Components of Robotic and Automatic Arc Welding Installations; D16.3, Risk Assessment Guide for Robotic Arc Welding; D16.4, Specification for Qualification of Robotic Arc Welding Personnel. Persons engaged in robotic welding operations and suppliers of equipment who want to contribute their expertise to the preparation of one or more of these documents are urged to contact Matt Rubin, mmrubin@aws.org; (800/305) 443-9353, ext. 215, or visit www.aws.org/1UQ4 to submit your member application online.

George Rolla (left), L.A./Inland Empire Section chair, gives a helping hand to Carlos Vasquez who totes the prize he won for taking first place in the welding competition.
Guide to AWS Services

American Welding Society
550 NW LeJeune Rd., Miami, FL 33126
www.aws.org; (800/365) 443-9353; FAX (305) 443-7559
Staff telephone extensions are shown in parentheses.

AWS PRESIDENT
Victor Y. Matthews
vic.matthews@lincolnelectric.com
~The Lincoln Electric Co.
7955 Dines Rd., Novelty, OH 44072

ADMINISTRATION
Ray W. Shook., rshook@aws.org (210)
Deputy Executive Director
Cassie R. Burrell., currell@aws.org (253)
Senior Associate Executive Director
Jeff Weber., jweber@aws.org (246)
Associate Executive Director Accounting
Gesana Villegas., gvillegas@aws.org (252)
Executive Assistant for Board Services
Gricelda Manalich., griceldata@aws.org (294)

Administrative Services
Managing Director
Jim Lankford., jlankford@aws.org (214)
IT Network Director
Armando Campana., acampana@aws.org (296)
Director
Hidalg Nuñez., hidalg@aws.org (287)
Database Administrator
Natallia Swain., nswain@aws.org (245)
Human Resources
Director, Compensation and Benefits
Luisa Hernandez., lhernandez@aws.org (266)
Director, Human Resources
Dora A. Shade., dshade@aws.org (235)

INT’L INSTITUTE OF WELDING
Senior Coordinator
Sissibeth Lopez., slopez@aws.org (319)
Provides liaison services with other national and international professional societies and standards organizations.

GOVERNMENT LIASON SERVICES
Hugh K. Webster., hwebster@aws.org
Webster, Chamberlain & Bean, Washington, D.C., (202) 785-9506; FAX (202) 835-0243. Identifies funding sources for welding education, research, and development. Monitors legislative and regulatory issues of importance to the welding industry.

CONVENTION and EXPOSITIONS
Senior Associate Executive Director
Jeff Weber., jweber@aws.org (246)
Corporate Director, Exhibition Sales
Joe Kral., jkral@aws.org . (297)
Organizes the annual AWS Welding Show and Convention, regulates stack assignments, registration items, and other Expo activities.

Brazing and Soldering Manufacturers’ Committee
Jeff Weber., jweber@aws.org (246)

RWMA — Resistance Welding Manufacturers Alliance
Manager
Susan Hopkins., susan@aws.org (295)

WEMCO — Welding Equipment Manufacturers Committee
Manager
Natalie Tapley., tapley@aws.org (444)

PUBLICATION SERVICES
Department Information . (275)
Managing Director
Andrew Cullison., cullison@aws.org (249)

Welding Journal
Publisher
Andrew Cullison., cullison@aws.org (249)
Editor
Mary Ruth Johnson., mjohnson@aws.org (238)
National Sales Director
Rob Saltzstein., rsaltzstein@aws.org (243)

Society and Section News Editor
Howard Woodward., hwoodward@aws.org . . (244)

Welding Handbook
Welding Handbook Editor
Annette O’Brien., annette@aws.org (303)

MARKETING COMMUNICATIONS
Director
Ross Hancock., rhancock@aws.org (226)
Public Relations Manager
Cindy Weihl., cweihl@aws.org (416)
Webmaster
Angela Miller., amiller@aws.org (456)

MEMBER SERVICES
Department Information . (480)
Deputy Executive Director
Cassie R. Burrell., currell@aws.org (253)
Director
Rhenda A. Mayo., rmayo@aws.org (260)
Serves as a liaison between Section members and AWS headquarters. Informs members about AWS benefits and activities.

CERTIFICATION SERVICES
Department Information . (273)
Managing Director, Certification Operations
John Filippi., jfilippi@aws.org (222)
Managing Director, Technical Operations
Peter Howe., phowe@aws.org (309)
Manages and oversees the development, integrity, and technical content of all certification programs.

Director, Int’l Business & Certification Programs
Priti Jain., pdjain@aws.org (285)
Directs all Int’l business and certification programs. Is responsible for oversight of all agencies handling AWS certification programs.

EDUCATION SERVICES
Managing Director
Dennis Marks., dmarks@aws.org (449)
Director, Education Services Administration and Convention Operations
John Osipa., josipa@aws.org (462)

AWS AWARDS, FELLOWS, COUNSELORS
Senior Manager
Wendy S. Reeve., wreeve@aws.org (293)
Coordinates AWS awards and AWS Fellow and Counselor nominees.

TECHNICAL SERVICES
Department Information (340)
Managing Director
Andrew R. Davis., adavis@aws.org (466)
Int’l Standards Activities, American Council of the Int’l Institute of Welding (IIW)
Director, National Standards Activities
John L. Gayler., jgayler@aws.org (472)
Personnel and Facilities Qualification, Computerization of Welding Information
Manager, Safety and Health
Stephen P. Hedrick., shedrick@aws.org . (305)
Metric Practice, Safety and Health, Joining of Plastics and Composites, Welding Iron Castings and Tubing
Technical Publications
AWS publishes about 200 documents widely used throughout the welding industry.
Senior Manager
Rosalinda O’Neill., roo@aws.org (451)
Staff Engineers/Standards Program Managers
Annette Alonso., aalonso@aws.org (299)
Automotive Welding, Resistance Welding, Oxyfuel Gas Welding and Cutting, Definitions and Symbols, Sheet Metal Welding
Stephen Borrello., sborrello@aws.org (334)
Rakesh Gupta., rgupta@aws.org (301)
Filler Metals and Allied Materials, Int’l Filler Metals, Instrumentation for Welding, UNS Numbers Assignment
Brian McGrath., bmcgrath@aws.org (311)
Methods of Inspection, Mechanical Testing of Welds, Welding in Marine Construction, Piping and Tubing
Selvis Morales., smorales@aws.org (313)
Welding Qualification, Structural Welding
Matthew Rubin., mrubin@aws.org (215)
Aircraft and Aerospace, Machinery and Equipment, Robotics Welding, Arc Welding and Cutting Processes
Rene Stark., rstark@aws.org (304)
Welding in Surface Applications, High-Energy Beam Welding, Friction Welding, Railroad Welding, Thermal Spray

Note: Official interpretations of AWS standards may be obtained only by sending a request in writing to the Managing Director, Technical Services, Andrew R. Davis, adavis@aws.org.

On oral opinions on AWS standards may be rendered. However, such opinions represent only the personal opinions of the particular individuals giving them. These individuals do not speak on behalf of AWS, nor do these oral opinions constitute official or unofficial opinions or interpretations of AWS. In addition, oral opinions are informal and should not be used as a substitute for an official interpretation.
Honorary Meritorious Awards

The Honorary Meritorious Awards Committee makes recommendations for the nominees presented to receive the Honorary Membership, National Meritorious Certificate, William Irrgang Memorial, and the George E. Willis Awards. These honors are presented during the FABTECH International & AWS Welding Show held each fall. The deadline for submissions is December 31 prior to the year of the awards presentations. Send candidate materials to Wendy Sue Reeve, secretary, Honorary Meritorious Awards Committee, wreve@aws.org; 550 NW LeJeune Rd., Miami, FL 33126. Descriptions of these awards follow.

William Irrgang Memorial Award
Sponsored by The Lincoln Electric Co. in honor of William Irrgang, the award, administered by AWS, is given each year to the individual who has done the most over the past five years to enhance the Society’s goal of advancing the science and technology of welding. It includes a $2500 honorarium and a certificate.

George E. Willis Award
Sponsored by The Lincoln Electric Co. in honor of George E. Willis, the award, administered by AWS, is given each year to an individual who promoted the advancement of welding internationally by fostering cooperative participation in technology transfer, standards rationalization, and promotion of industrial goodwill. It includes a $2500 honorarium and a certificate.

Honorary Membership Award
The honor is presented to a person of acknowledged eminence in the welding profession, or to one who is accredited with exceptional accomplishments in the development of the welding art, upon whom the Society deems fit to confer an honorary distinction. Honorary Members have full rights of membership.

National Meritorious Certificate Award
This certificate award recognizes the recipient’s counsel, loyalty, and dedication to AWS affairs, assistance in promoting cordial relations with industry and other organizations, and for contributions of time and effort on behalf of the Society.

International Meritorious Certificate Award
This honor recognizes recipients’ significant contributions to the welding industry for service to the international welding community in the broadest terms. The awardee is not required to be an AWS member. Multiple awards may be given. The award consists of a certificate and a one-year AWS membership.

Nominees for National Office

Only Sustaining Members, Members, Honorary Members, Life Members, or Retired Members who have been members for a period of at least three years shall be eligible for election as a director or national officer.

It is the duty of the National Nominating Committee to nominate candidates for national office. The committee shall hold an open meeting, preferably at the Annual Meeting, at which members may appear to present and discuss the eligibility of all candidates.

To be considered a candidate for the positions of president, vice president, treasurer, or director-at-large, the following qualifications and conditions apply:

President: To be eligible to hold the office of president, an individual must have served as a vice president for at least one year.

Vice President: To be eligible to hold the office of vice president, an individual must have served at least one year as a director, other than executive director and secretary.

Treasurer: To be eligible to hold the office of treasurer, an individual must be a member of the Society, other than a Student Member, must be frequently available to the national office, and should be of executive status in business or industry with experience in financial affairs.

Director-at-Large: To be eligible for election as a director-at-large, an individual shall previously have held office as chairman of a Section; as chairman or vice chairman of a standing, technical, or special committee of the Society; or as a District director.

Interested persons should submit a letter stating which office they seek, including a statement of qualifications, their willingness and ability to serve if nominated and elected, and a biographical sketch.

E-mail the letter to Gricelda Manalich, gricelda@aws.org, c/o Gene Lawson, chair, National Nominating Committee.

The next meeting of the National Nominating Committee is scheduled for November 2009. The terms of office for candidates nominated at this meeting will commence January 1, 2011.
Occupational Safety Products Catalog Updated

The Occupational Health and Safety Catalog offers all of the products and resources businesses need to keep their employees and facilities safe. This edition doubles the offerings from the previous catalog, including a larger selection of safety footwear, clothing, and training and reference materials. It is organized by key safety issues and OSHA standards, making it easier for readers to select the right solutions for their safety-related needs. The catalog can be viewed online or ordered in printed format.

W. W. Grainger, Inc.
www.grainger.com/safetyinfo
(800) 323-0620

Hybrid Laser-Arc Welding Reference Released

The reference book, Hybrid Laser-Arc Welding Report, features twelve technical papers on the title subject written by researchers in the United States, Japan, Germany, China, Finland, Denmark, and Austria, divided into three parts. Part one reviews the characteristics of the process, including the properties of joints produced and ways of assessing weld quality. Part two concerns applications using magnesium alloys, aluminum, steel, and dissimilar metals in the shipbuilding and automotive industries. Part three has a paper on hybrid laser-arc welding of steel. Edited by F. O. Olsen, Technical University of Denmark, the price is $245, including shipping and handling.

Research and Markets
www.researchandmarkets.com/reports/991980
FAX: (646) 607-1907

Valve Back to Basics Compilation Released

The book Back to Basics is a compilation of 17 articles previously published in Valve Magazine between 2004 and 2009. The 80-page, full-color, spiral-bound book addresses the major valve categories plus actuator fundamentals and selection, valve specifying for beginners, and a primer on materials. The valve types detailed include gate, globe, check, pressure-seal, plug, hydrant, ball, butterfly, diaphragm and pinch, safety relief, and control valves and systems. Written by valve industry experts, the book is part of the association’s new educational and training initiative. The list price is $79, $69 for VMA members, plus shipping. A free copy is provided for every five copies ordered.

Valve Manufacturers Assn.
www.vma.org
(540) 785-8901

Free Guide Addresses Packaging Automation

The eight-page guide, Packaging Automation Trends: Using Small Assembly Ro-
YOU ASKED FOR IT, AND NOW IT’S HERE...
THE AMERICAN WELDING SOCIETY CLOTHING & ACCESSORY LINE

AWS Members now have access to American Welding Society shirts, hats, accessories and more at the AWS E-store. All of the products in this store are branded with the American Welding Society logo. Don’t miss out on an assortment of great products.

Visit www.logodogz.net/aws

Classic Oxford Shirt
Mens Pique Knit Sport Shirt
Ladies Easy Care Twill Shirt
Beefy-T Crew Neck T-Shirt
Challenger Jacket
Ladies Pique Knit Sport Shirt
Grommeted Golf Towel
Midcity Messenger
Racing Check Panel Cap
Fashion Visor

Check out the complete product line, and order on-line at www.logodogz.net/aws
bots in Upstream Packaging Processes, is written for manufacturers, packaging engineers, machine builders, and system integrators. Explored are the advantages of using small assembly robots in the processes that take place before final cartoning and palletizing, which usually require larger robots. Illustrated and compared are high-speed, pick-and-place, four-axis SCARA robots and six-axis articulated robots that offer added flexibility of movement. One section deals with robot automation basics, calculating payload capacity, necessary reach, cycle time, programming, etc. Another section details the ten things to look for when choosing a robot. The free guide can be downloaded from the Web site.

DENSO Robotics
www.densorobotics.com/pdf/upstreampackagingrobots
(310) 952-7955

Factory Man Bios Auto Expert James E. Harbour

The recently released James E. Harbour autobiography, Factory Man, details how he discovered Toyota's quality and productivity methods on the factory floor and helped the U.S. auto industry get competitive, and why Detroit's Big Three still need help. Harbour is recognized as a leading automotive industry analyst and founder of The Harbour Report, a study of original equipment manufacturers' manufacturing performance. In nontechnical terms, the book discusses “common-based” manufacturing to reduce investment for design and product development, and the use of common platforms and architectures including such components as seat tracks, horns, lumbar supports, sensors, bearings, lock sets, door handles, etc. The net savings of such implementations, he explains, has the potential to conservatively save $2000 per vehicle. The book is coauthored by James V. Higgins, an auto industry reporter, columnist, and editor, primarily for The Detroit News, for more than 25 years. The book lists for $30, $26 for SME members.

Society of Manufacturing Engineers
www.sme.org/factoryman
(800) 733-4763

Master Catalog Illustrates Railing Systems

The 304-page master catalog includes 7800 items in the company’s lines of aluminum and stainless steel railing systems. Complete information is presented on spiral stairs, cable railing, glass railings, connectors, woven wire mesh panels, flanges, slip-on fittings, balusters, brackets, architectural shapes, and stamped ornaments. Included is an expanded technical information section providing installation instructions and current code summaries. New products include the PanelGrip™ dry glaze system for the installation of structural glass railing, Kee Access® galvanized malleable iron slip-on fittings, Speed Rail® aluminum slip-on fittings, and numerous other products.

The Wagner Companies
www.wagnercompanies.com
(888) 243-6914

Texts Document Commonly Used Aluminum Alloys

The 2009 editions of Aluminum Standards and Data and Aluminum Standards and Data — Metric SI provide information and data pertaining to nominal and specified chemical compositions of alloys; typical mechanical and physical properties of commonly used commercial alloys; mechanical property limits; information on comparative characteristics and applications; definitions; and dimensional tolerances for semifabricated products. Included are the latest information from the 2009 American National Standards for wrought aluminum and aluminum alloys, and the reorganized Terminology Section now harmonizes with international definitions. Available in print or CD, either individually or as a set of both documents, the list prices are $125 each, and $190 for the set. Aluminum Association member prices are $65 each, and $95 for the set. To order, visit the Web site and click on “What’s New.”

The Aluminum Association
www.aluminum.org/bookstore
(301) 645-0756

Heavy-Duty Air Pollution Control Systems Pictured

A four-page, full-color brochure illustrates and describes the features of the company’s “green” Gold Series heavy-duty air pollution control systems for industrial applications. Shown are the HEMIpleat® filter with Gold Cone™ filter technology, and the DURApleat® washable and reusable model for more rigorous applications and temperatures. A number of photographs show the equipment installed in a variety of customized industrial settings.

FARR Air Pollution Control
www.farrasp.com
(800) 479-6801
The American Welding Society and The International Thermal Spray Association are organizing the first Thermal Spray and Coatings Conference, to be held in conjunction with the 2009 Fabtech Int’l & AWS Welding Show. This event will introduce the process and its uses to new potential users with morning and afternoon sessions focusing on actual applications and new developments in thermal spray technology.

In addition, on Sunday, Nov. 15, a free half-day tutorial on thermal spray fundamentals is scheduled, sponsored by the International Thermal Spray Association, titled “What Is Thermal Spray?”

For the latest conference information, visit our website at www.aws.org/conferences or call 800-443-9353, ext. 455.

Monday, Nov. 16, 2009 - Chicago
(at the FABTECH INT’L & AWS Welding Show)

AWS Members: $345
Nonmembers: $480

NEW DEVELOPMENTS IN THERMAL SPRAY COATING, PROCESSES AND APPLICATIONS

Earn PDH’s toward your AWS recertification or renewal when you attend the conference!
Lincoln Makes Executive Management Changes

Lincoln Electric Holdings, Inc., Cleveland, Ohio, has named David LeBlanc to the newly created position of senior vice president, president of Lincoln Electric International; George Blankenship has been promoted to senior vice president and president, Lincoln Electric North America; Richard Seif has been named senior vice president, global marketing and automation; and Gretchen Farrell has been named senior vice president, human resources and compliance. LeBlanc, with the company since 1995, has served since 2005 as president, Lincoln Electric Europe. Blankenship previously was president, Lincoln Cleveland and senior vice president of global engineering. Seif, with the company since 1971, most recently was vice president, sales and marketing U.S.A. Prior to this promotion, Farrell served as vice president, human resources.

Airgas Names Presidents

Airgas, Inc., Radnor, Pa., has named Pamela M. Swanson president of Airgas North Central. She replaces Ronald J. Stark who has joined the company’s corporate management team as senior vice president — sales and marketing. Edward A. Richards was named Airgas Nor Pac president, succeeding Dan L. Tatrow who has joined the Airgas Core Strategy II team as director — CS². Since 2004, when Swanson joined the company, she has served as vice president for Airgas North Central’s northeast division. With the company since 2005, Richards most recently served as vice president — operations for Airgas Nor Pac, based in Vancouver, Wash.

Director of Sales Appointed at Wagner Companies

Wagner Companies, Milwaukee, Wis., has appointed Anthony R. Goodings to the newly created position of director of sales. Goodings brings 22 years of experience in the sales and account management field gained from affiliations with Herman Miller, McGraw-Hill Construction, Johnson Controls, and Olon Industries. Wagner, a metal products manufacturer, is a supplier to the architectural and industrial markets.

Operations Manager Named at Saint-Gobain

Saint-Gobain Technical Fabrics, Grand Island, N.Y., has appointed Ron Franklin glass mat operations manager, overseeing operations in Charleston, S.C., and Russellville, Ala. Prior to joining the company, Franklin was general manager for glass mat operations at GAF Materials Corp.

President Named at Northwire

Northwire, Inc., Technical Cable, Oseola, Wis., has named Michael Conger president, succeeding Mark Kravik who has transitioned to chairman of the board. Prior to joining the company, Conger, an AWS Certified Welding Inspector with the Fox Valley Section, served in senior management roles in the railway and truck manufacturing industry, most recently with a company in Paris, France.

Business Director Named at Bluewater Thermal

Bluewater Thermal Services, Buffalo, N.Y., operating 15 certified heat treating facilities in nine states and Canada, has appointed Terry Brown to the new position of director — business development. Before joining the company, Brown served with Lindberg Heat Treating Co. in a variety of positions, most recently as director — sales and marketing.

PTM Hires Military Contract Specialist

PTM Corp. and its Modified Technology
— continued on page 90
Welders who are committed to making their jobs, as well as their lives easier, are candidates for the AWS Welder Membership.

The AWS Welder Membership will allow you to save on welding equipment that you use every day, give you direct access to a health insurance program that fits your needs, provide you with the latest information in the industry and much more.

You’ll connect with the materials joining community through educational seminars, informal get-togethers and special events. You’ll be tuned into the latest happenings and trends. You’ll get the discounts and benefits that you’ve been looking for.

- Discounts on welding equipment and tools of the trade offered by participating GAWDA distributors
- Health Insurance Program
- Publications exclusively for welders
- Discounts on auto and home insurance
- Discounts on dental, vision and pharmacy programs
- The Welder’s Exchange bulletin board on the AWS web site
- and more...

Membership in AWS is a great way to nurture your professional development. Whether you’re just starting out or a veteran welder, you’ll benefit from becoming a member. Join today!

Call: (800) 443-9353, ext 480, or (305) 443-9353, ext. 480
Visit: www.aws.org/membership
PERSONNEL
— continued from page 88

gies Advanced Engineering and Tooling Group, Fair Haven, Mich., has hired Samra Weindl as military defense specialist to explore the military sector for contracts and other related business. Weindl previously worked at Cypress Manufacturing for three years where she served as defense contract specialist.

KUKA Robotics Canada Appoints Sales Director

KUKA Robotics Canada, Ltd., Toronto, has appointed Yarek Niedbala director of sales for the Canadian marketplace. Niedbala has 12 years’ experience in the field with 8 years at KUKA Robotics Corp. U.S.

NEW PRODUCTS
— continued from page 25

cutting, and similar operations. It employs a negative-pressure system that exhausts all fumes quickly to the outside or into existing ductwork. Four models are available with fume extraction capacities from 400 to 1150 ft3/min. Accessories include flexible goose-neck hood support arms.

Vent-A-Kiln Corp.
www.ventafume.com
(877) 876-8368

Box Furnaces Suit Brazing, Special Applications

A line of general-purpose box furnaces is offered for brazing, hardening, drawing, preheating, annealing, normalizing, and special applications under air atmos-

Vacuum Upender Provides Power Tilt Control

The Univac® economy vacuum upender provides a fast way to lift and manipulate sheet, plate, or glass. This product is fully adjustable to handle varying lengths/widths of materials. The standard power tilt will increase overall productivity. Nonmarking neoprene vacuum pads protect the load from damage, and the linear actuator provides smooth continuous tilting. Standard features include vacuum reservoir, indicator gauges, and isolation valves along with push button tilt control, adjustable handle, and pads. Models are available with 2 or 4 crossarms (4–8 pads) and capacities from 100 to 2000 lb.

The Caldwell Group, Inc.
www.caldwellinc.com
(800) 628-4260

WELDING JOURNAL REPRINTS

Take Advantage of your Editorial Exposure

Reprints of Welding Journal are a simple way to put information directly into the hands of your target audience. Having been featured in a well-respected publication adds the credibility of a third-party endorsement to your message.

Reprints are ideal for:
- PR Materials and Media Kits
- Direct Mail Enclosures
- Trade Shows/Promotional Events
- Conferences/Speaking Engagements
- Recruitment and Training Packages
- Customer and Prospect Communications/ Presentations

For additional information, please contact FosteReprints, the official reprint provider for Welding Journal.
Email: sales@fostereprints.com or call 866-679-9144
NEWS OF THE INDUSTRY

continued from page 13

ATI Industrial Automation Holds Open House, Technology Training Fair

ATI Industrial Automation, an engineering-based developer of robotic peripheral equipment, hosted its 3rd Annual Open House and Technology Training Fair at the Detroit, Mich., sales office on August 20. As shown above, guests take a first-hand look at the company’s latest robotic end-effector products. Account managers and engineers discussed existing and potential applications. Demonstrations of the company’s robotic tool changers, collision sensors, and deburring tools as well as compliance devices ran all day. Also, training sessions were held for robotic deburring applications, industrial fieldbus systems, and new product developments.

Eberspaecher Expanding Production in Michigan

At Eberspaecher North America’s manufacturing plant in Brighton, Mich., a multimillion-dollar renovation of the facility has been finished. Production Associate Dawnn Anderson is pictured here.

Production of new commercial-vehicle exhaust aftertreatment systems is scheduled to begin later this year at Eberspaecher North America’s manufacturing facilities in Brighton, Mich. Recently, the company completed a multimillion-dollar renovation of the facility, retooling 80% of the 120,000-sq-ft plant floor space with automated welding equipment for the final assembly of new aftertreatment systems.

Eberspaecher has also installed manufacturing technology at a new facility in Wixom, Mich. The 100,000-sq-ft plant houses roll-forming and new patented sizing equipment for the production of canning used in its aftertreatment systems.

Designed to meet new Environmental Protection Agency commercial-vehicle emissions standards for 2010, the company’s selective catalytic reduction technology has the ability to reduce critical heavy-truck emissions.

Machinery Added to Manufacturing Technology’s Contract Welding Services

Part of the growth experienced by Manufacturing Technology Inc.’s Contract Welding Services, South Bend, Ind., includes more than $3 million in machinery. Three new friction stir welding machines were added as well as a linear friction welding machine. This expansion has provided more than a 40% increase in capacity and reduced turnaround time. Among its equipment is a large contract rotary friction welding machine. Displayed is the Contract Welding area where welding, heat treat, and pre/post processing are conducted. Several other specialized machines are scheduled to join the lineup later this year.

Industry Notes

• Eight winners were chosen for the North American Die Casting Association’s 2009 International Die Casting Design Competition. These were on display at the 113th Metalcasting Congress in Las Vegas, Nev. Two honorable mention winners were also awarded. Categories were grouped by material.

• OKI Electric Industry developed static pressure soldering technology for lead-free soldering of large, high-density products. Using it, the company and Nihon Dennetsu jointly developed a soldering machine enabling lead-free (Sn-3.0Ag-0.5Cu) soldering for products sized up to 490 x 510 mm and 6 mm thick.

• A memorial endowment scholarship for welding students attending Aims Community College, Colorado, has been established by family and friends of the late Dale Majors, a welder who played a role in developing the school’s vocational programs.

• Walker Corp., Ontario, Calif., acquired Specialty International de Mexico, a metal fabricating, welding, assembly, and powder coating operation that will become Walker Specialty International de Mexico.
BUSINESS PARTNERING OPPORTUNITY

See our ad on page 62 of this issue. The opportunity is to partner with industrialists who want to start or expand their own business in the welding industry or to expand their own business. We are also looking for small business owners in welding supply or technical sales. We will train you in Hong Kong and make you the boss. A welding background is important. Lots of top areas open in Asia, the U.S., and elsewhere. This is your opportunity to really grow a business and share in the rewards of that growth.

E-mail: info@easyweld.net

AWS JobFind

Post Jobs. @ Find Jobs.
www.aws.org/jobfind

job categories for welders, engineers, inspectors, and more than 17 other materials joining industry classifications!

CERTIFICATION & TRAINING

Real

CWI PREPARATORY
Guarantee - Pass or Repeat FREE!
80+ HOUR COURSE
MORE HANDS-ON/PRACTICAL APPLICATIONS
Houston, TX Oct. 14–23 & Nov. 11–20
Beaumont, TX Oct. 28–Nov. 6
Baton Rouge, LA Dec. 2–11
Pascagoula, MS Jan. 11–22

56+ HOUR COURSE
EXTRA INSTRUCTION TO GET A HEAD START
Houston, TX Oct. 17–23 & Nov. 14–20
Beaumont, TX Oct. 31–Nov. 6
Baton Rouge, LA Dec. 5–11
Pascagoula, MS Dec. 12–18 & Jan. 14–22

40 HOUR COURSE
GET READY-FAST PACED COURSE!
Houston, TX Oct. 19–23 & Nov. 16–20
Beaumont, TX Nov. 2–6
Baton Rouge, LA Dec. 7–11
Pascagoula, MS Dec. 14–18 & Jan. 18–22
Test follows on Saturday at same facility & includes additional self study for weekend.

FOR DETAILS CALL OR E-MAIL:
(800) 489-2890
info@realeducational.com
Also offering API 510, API 570, RT Film Interpretation, MT/PT/UT Thickness, Welding Procedure Fundamentals and 9-Year Recertification Courses!

Put Your Products and Services to Work in January 2010

Generate sales leads by showcasing your full-color product photo, a product description, Web site, or other sales literature. These showcases reach 70,000 qualified buyers. Great exposure for just pennies a contact.

Closing date is
November 13, 2009

Call our sales team at:
1-800-443-9353
Rob Saltzstein at ext. 243
salty@aws.org
Lea Garrigan at ext. 220
garrigan@aws.org
MITROWSKI RENTS
Made in U.S.A.
Welding Positioners
1-Ton thru 60-Ton

Used Equipment for Sale
www.mitrowskiwelding.com
sales@mitrowskiwelding.com
800-218-9620
713-943-8032

WELDPLUS
WELDING SOLUTIONS
Reconditioned
New & Used Machinery
Aronson - Pandjiris - IRCO - Webb
Ransome - Jetline - Profax - MBC
Positioners - Manipulators - Seamers
Turning Rolls - Welding Systems
Fronius • Lincoln • Miller

Weld Plus can customize new or used welding machinery with
TIG-MIG-SUB ARC upon request
800-288-9414
www.weldplus.com

Quality-Checked PRE-OWNED Equipment
An Excellent Selection of Used Welders, Welding Positioners, Welding-Related Specialty Equipment and Generators.
View at redarc.com or call us toll-free.
Red-D-Arc Welderentals. 1-866-733-3272
redarc.com

WELDING SOLUTIONS

ATTENTION!! WELDING EQUIPMENT SALES PEOPLE
We pay you for finding us good used welding positioners, seamers, manipulators, turning rolls, systems, etc.
We will buy your customers’ trade-ins.
800-288-9414 www.weldplus.com

VERSATIG™
MULTIPLE TIG TORCH SELECTORS
www.versa-tig.com

JOE FULLER LLC
We manufacture tank turning rolls
3-ton through 120-ton rolls
www.joefuller.com
email: joe@joefuller.com
Phone: 979-277-8343
Fax: 281-290-6184
Our products are made in the USA

MARKING PEN DEPOT.COM
Paint markers for professionals
ArroMark, Artline, Dixon, Dykem, Markal, Posca, Sakura, Sharpie, SKM, UniPaint.
The world’s best selection of markers!

Used and New Linking, Jump Ring and Looping Machines
Tack, Pulse Arc and Fusion Welding Machines
Repairs and Service Parts
401-284-4501
888-494-2663
E-Mail: abi1655@aol.com
www.abiusa.net

Boiler Tube Alignment Tools
Walhonde Wallbanger™
• DB model fits 2 tubes on specific OD’s ranging from 7/8” to 1-3/4”.
• HD model fits 1 tube on specific OD’s ranging from 1-3/4” to 3-1/4”

Walhonde Wallstick™
• Quickly & accurately aligns waterwall tubes with 1/4” or 3/8” membrane. Fits OD tube sizes: 7/8” through 3” (Patented)

More alignment tools available at our website: www.walhonde.com

Walhonde Tools, Inc.
1-800-TUBE FIT (882-3348)
Tel: 304-756-3796 / Fax: 304-756-3834

VERSA-TIG™
MULTIPLE TIG TORCH SELECTORS
www.versa-tig.com
ADVERTISER INDEX

AlcoTec/ESAB Group, Inc. 5
www.alcotec.com 800-228-0750
Arcos Industries, LLC IBC
www.arcos.us 800-233-8460
Astro Arc Polysoude 23
www.astroarc.com 661-702-0141
Atlas Welding Accessories, Inc. 57
www.atlaswelding.com 800-962-9353
AWS Certification Services 29, 63
www.aws.org 800-443-9353
AWS Education Services 30, 42, 55, 87
www.aws.org 800-443-9353
AWS Foundation 16
www.aws.org 800-443-9353
AWS Membership Services 14, 24, 38, 85, 89
www.aws.org 800-443-9353
AWS RWMA 11
www.aws.org 800-443-9353
Belmont Metals, Inc. 41
www.belmontmetals.com 718-342-4900
Bluco Corp. 23
www.bluco.com 866-372-5826
Commercial Diving 21
www.commercialdivingacademy.com 888-974-2232
Cor-Met 57
www.cor-met.com 810-227-3251
Diamond Ground Products, Inc. 13
www.diamondground.com 805-498-3837
Divers Academy International 25
www.diversacademy.com 800-238-3483
Easweld Welding Logistics 62
www.easweld.net 852-2463 3362
Fibtech International & AWS Welding Show 15
www.aws.org 800-443-9353
Fischer Engineering 19
www.fischerengr.com 937-754-1750
Fusion, Inc. 41
www.fusion-inc.com 800-626-9501
Gedik Welding, Inc. 9
www.gedikwelding.com +90 216 378 50 00
Hobart Inst. of Welding Tech. 61
www.welding.org 800-332-9448
Japan Intl. Welding Show 2010 58
www.weldingshow.jp +81-3-3258-6411
Johnson Mfg. Co. 50
www.johnsonmfg.com 563-289-5123
J. P. Nissen Co. 50
www.nissenmarkers.com 215-886-2025
Kiswel Welding Products 2
www.kiswelweldingproducts.com 859-371-0070
KMT Saw 51
www.kmtsaw.com 269-321-8860
Lincoln Electric Co. OBC
www.lincolnelectric.com 216-481-8100
Lynnes Welding Training 61
www.learntoweld.com 888-356-0871
Midalloy 21
www.midalloy.com 800-776-3300
Olympus NDT 1
www.olympus-ims.com 781-419-3900
Prince/Izant, Co. 52
www.princeizant.com 216-362-7000
Select Arc, Inc. IFC
www.select-arc.com .937-295-5215
Smart TCP 7
www.smarttcp.com 248-994-1041
Syenetik 12
www.syenetik-di.com 514-488-7045
Uniweld Products, Inc. 13, 51
www.uniweld.com 800-323-2111
Wall Colmonoy Corp. 37
www.wallcolmonoy.com 248-585-6400
Weld Hugger, LLC 84
www.weldhugger.com 877-935-3447

IFC = Inside Front Cover
IBC = Inside Back Cover
OBC = Outside Back Cover

Brazing and Soldering Company Profiles

Johnson Mfg. Co. 54
Lucas-Milhaupt, Inc. 54
Metglas 54
Prince/Izant, Co. 54
Washington Alloy Co. 54

Visit Our Interactive Ad Index: www.aws.org/ad-index
Transient High-Frequency Welding Simulations of Dual-Phase Steels

Numerical and experimental simulations were used to investigate high-frequency welding of advanced high-strength steels

BY R. BAUMER AND Y. ADONYI

ABSTRACT
Continued development of advanced high-strength steel (AHSS) requires a corresponding improvement in joining technology. One promising joining method is high-frequency butt joint welding. Seeking to validate the utility of this process for joining AHSS flat sheet specimens for steel mill processing lines, high-frequency butt joint welding of flat sheet steel was investigated through a combined numerical and experimental simulation methodology. Simulated welds were produced and pre-Curie and post-Curie temperature heating rate differences were observed with infrared radiation (IR) imaging. Good correlations were found between numerical predictions and actual heating rates. Final metallographic analysis revealed complete coalescence of faying surface, with only minor hardening at the weld interface. It was concluded that high-frequency welding shows good potential for coil joining in steel processing lines.

Introduction

Modern steel coil processing lines (such as pickling and galvanizing) benefit greatly from a continuous feed of steel strip, a process that requires coil end joining (Ref. 1). As is shown in Fig. 1, continuous processing is achieved through the combined use of an accumulator (Fig. 1B) (Ref. 2) and a coil end welding machine (Fig. 1C). Due to the finite capacity of the accumulator, one main constraint on welding process selection is welding speed. Additional constraints, such as material thickness, result in a variety of welding processes being used for coil end joining, including gas tungsten arc welding (GTAW), gas metal arc welding (GMAW), flash welding (FW), resistance (mash) seam welding (RSEW-MS), and laser beam welding (LBW) (Ref. 3). Note that the last two are mostly used on tin coating and recoiling lines, where the sheet thickness is less than 1 mm.

Joining of advanced high-strength steel (AHSS) coil ends brings additional challenges to coil end joining due to inherent high strength, prompting difficulties in end shearing, and faying surface alignment, and a propensity for localized hardening in welding microstructures. Indeed, excessive hardness in the fusion and heat-affected zones has been reported in the case of laser beam welding of dual-phase (DP) and transformation-induced plasticity (TRIP) steels (Ref. 4). The presence of such excessive hardness can provide a metallurgical notch, precipitating joint failure during subsequent mill operations. To eliminate potential problems stemming from the as-cast microstructures found in fusion welding, a solid-state welding process is desired for joining AHSS coil ends. While resistance welding (RW) and flash welding (both solid-state processes) are currently widely employed in coil joining, RW is slow and is limited to small thicknesses (Ref. 1) while FW can be difficult to control because it is susceptible to irregular arcing and incomplete fusion on the strip edges. Even resultant strip breaks of 0.2% are not acceptable, as equipment is damaged and production lost. Therefore, an improved solid-state joining process is desired for joining AHSS coil ends.

Previous work has demonstrated that a coupled high-frequency induction heating/pressure welding (termed hyper-interfacial bonding) operation can produce faying surface coalescence in butt joint configurations and minimize thermally induced changes in grain size of ultrafine-grained steel (Ref. 5). Heating times for 5 x 5 x 30-mm specimens were shown to be very rapid (0.2 s to 1600°C at 1 MHz and 50–59 kW) (Ref. 5), indicating that high-frequency welding can satisfy the time constraints associated with coil end joining.

Additionally, previous research demonstrated that high-frequency welding could produce good welds in AHSS specimens (Fig. 2), as evidenced by successful limited dome height formability testing (Ref. 6). The long history of successful high-frequency induction welding (HFIW) of joints in tubular products and structural shapes (Ref. 7) also suggests the usefulness of high-frequency welding for coil end joining.

This present work builds on this foundation by developing numerical and experimental techniques for simulating high-frequency welding of dual-phase steel coil ends, thereby 1) providing insight into fundamental high-frequency heating/material interactions, 2) establishing operating parameters, and 3) demonstrating the feasibility of joining DP steel coil ends with high-frequency welding.

Physical Simulation Overview

High-frequency induction heating/pressure welding of dual-phase steels was performed at small scale through induction heating using a solid-state-controlled, state-of-the-art 100-kW variable-frequency (250–400 kHz) induction welding power supply. After heating specimens to forging

KEYWORDS
High-Frequency Welding
Dual-Phase Steels
FEA Modeling
Heating Rates
temperatures and turning off the induction coil power supply, controlled deformation was delivered by the hydraulic ram system of a connected Gleeble 1500® thermomechanical simulator. All heating and deformation timing was precisely controlled via a LabVIEW control program connecting the two systems. Small-scale welding specimens (1.5 x 44 x 89 mm) were rigidly constrained in aluminum jaws and heated by a water-cooled, copper induction coil — Fig. 3A. Atmospheric shielding was accomplished by flooding the welding chamber with argon.

As compared to the industry standard high-frequency resistance welding (HFRW) often employed in tube welding (Ref. 7), the experimental simulation technique reported here is distinguished by 1) a transient process unable to reach the steady-state operating condition characteristic of HFRW, 2) controlled relative motion between faying surfaces (i.e., not dependent upon the speed or V angle of the advancing pipe), and 3) variable frequency between 250 and 400 kHz using the latest solid-state power control technology.

Fundamentals of the Heating Mechanisms

Heating of welding specimen edges prior to forging is the consequence of both eddy current heating, accentuated by the skin effect, and hysteresis heating (ferromagnetic materials only). Eddy current heating occurs due to resistive heating losses accompanying induced current flow in a material. By consequence of the skin effect, current distributions are restricted to shallow penetration depths on faying surfaces, leading to rapid heating and high efficiencies (Ref. 8). For ferromagnetic materials, hysteresis heating also occurs, a direct consequence of inelastic magnetization/demagnetization (represented by the area enclosed by the BH curve of a material) (Ref. 9). Naturally, hysteresis heating ceases when the Curie temperature (approximately 1033 K for ferromagnetic materials) (Ref. 10) is reached and materials become paramagnetic.
Fig. 4 — A — Comparison of numerical and experiment temperatures; B — heating rates vs. time at the faying surface (weld interface center). Numerical simulation results for DP600 heated with a 1750-A induction coil current input (315 kHz). Physical experimental results shown for DP600 welded at 315 kHz and 40 kW.

Table 1 — Material Input Parameters for Numerical Simulations of High-Frequency Induction Heating of DP600 Sheet Steel

<table>
<thead>
<tr>
<th>Temp. K</th>
<th>Thermal Conductivity W m⁻¹ K⁻¹</th>
<th>Temp. K</th>
<th>Specific Heat J kg⁻¹ K⁻¹</th>
<th>Temp. K</th>
<th>Resistivity µΩ m</th>
<th>Magnetic Loss W kg⁻¹</th>
<th>B T</th>
<th>H Amp m⁻¹</th>
<th>293 K µT</th>
<th>523 K µT</th>
<th>773 K µT</th>
<th>1023 K µT</th>
</tr>
</thead>
<tbody>
<tr>
<td>273</td>
<td>59.5</td>
<td>323</td>
<td>450</td>
<td>273</td>
<td>0.3</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>373</td>
<td>57.8</td>
<td>473</td>
<td>520</td>
<td>373</td>
<td>0.38</td>
<td>5512</td>
<td>0.015</td>
<td>100</td>
<td>11.0</td>
<td>9.2</td>
<td>6.7</td>
<td>1.9</td>
</tr>
<tr>
<td>473</td>
<td>53.2</td>
<td>573</td>
<td>565</td>
<td>473</td>
<td>0.44</td>
<td>22050</td>
<td>0.03</td>
<td>200</td>
<td>16.6</td>
<td>13.8</td>
<td>10.0</td>
<td>2.9</td>
</tr>
<tr>
<td>573</td>
<td>49.4</td>
<td>673</td>
<td>590</td>
<td>573</td>
<td>0.42</td>
<td>49612</td>
<td>0.045</td>
<td>300</td>
<td>20.3</td>
<td>17.0</td>
<td>12.3</td>
<td>3.6</td>
</tr>
<tr>
<td>673</td>
<td>45.6</td>
<td>773</td>
<td>650</td>
<td>673</td>
<td>0.65</td>
<td>88200</td>
<td>0.06</td>
<td>400</td>
<td>23.2</td>
<td>19.4</td>
<td>14.1</td>
<td>4.2</td>
</tr>
<tr>
<td>773</td>
<td>41.1</td>
<td>873</td>
<td>730</td>
<td>773</td>
<td>0.78</td>
<td>137812</td>
<td>0.075</td>
<td>500</td>
<td>25.5</td>
<td>21.3</td>
<td>15.5</td>
<td>4.7</td>
</tr>
<tr>
<td>873</td>
<td>36.8</td>
<td>973</td>
<td>825</td>
<td>873</td>
<td>0.92</td>
<td>198450</td>
<td>0.09</td>
<td>1000</td>
<td>35.2</td>
<td>29.5</td>
<td>21.6</td>
<td>6.8</td>
</tr>
<tr>
<td>973</td>
<td>33.3</td>
<td>1073</td>
<td>1100</td>
<td>973</td>
<td>1.11</td>
<td>270112</td>
<td>0.105</td>
<td>2000</td>
<td>44.8</td>
<td>37.7</td>
<td>27.9</td>
<td>9.4</td>
</tr>
<tr>
<td>1073</td>
<td>28.5</td>
<td>1173</td>
<td>875</td>
<td>1073</td>
<td>1.34</td>
<td>352800</td>
<td>0.12</td>
<td>3000</td>
<td>50.7</td>
<td>42.9</td>
<td>31.9</td>
<td>11.4</td>
</tr>
<tr>
<td>1273</td>
<td>27.6</td>
<td>1273</td>
<td>846</td>
<td>1173</td>
<td>1.55</td>
<td>446512</td>
<td>0.135</td>
<td>4000</td>
<td>55.2</td>
<td>46.8</td>
<td>35.2</td>
<td>13.2</td>
</tr>
</tbody>
</table>

Note: Thermal conductivity values were taken from SAE 1008 carbon steel (Ref. 18); specific heat capacity values were taken from SAE 1010 (323–1023 K) and SAE 1008 (1073–1123 K) (Ref. 16). Resistivity values were determined using DP980 (Ref. 17). Magnetic loss was determined at 280 kHz using Equation 9. Relative magnetic permeability was determined using Equation 10.

Fig. 5 — Comparison of numerical and experiment temperature distributions. Experimental data obtained through static heating trials of DP600.

Fundamentals of the Deformation Mechanisms

Weld quality in high-frequency welding is strongly dependent upon the nature of deformation at the faying surface. Previous research indicates that control of deformation input parameters of total faying surface upset, deformation strain rate, and forging operation temperatures can improve coalescence of faying surfaces during high-frequency welding of high-performance steels (HPS) (Ref. 11). While the significance of these mechanisms is certainly recognized in this present research, neither total upset nor deformation rates were considered as primary variables in this initial process development, as fundamental heating parameters were of primary concern.

Objectives

The purpose of this numerical and physical simulation study was to understand and characterize the thermal phenomena governing the bond quality in transient high-frequency joining of DP steels. The study was also intended to validate the concept of designing a steel coil joining prototype and provide means to link parametric effects found at small scale to future full-scale implementation.

Methodology

Induction Heating Simulation Overview

Induction heating is modeled by solving both the electromagnetic response to current flow through the heating coil and the thermal response of the specimen to eddy current and hysteresis heating. The electromagnetic regime is described by Maxwell’s equations and associated constitutive relations (as given by Ref. 15)

\[\nabla \cdot \mathbf{B} = 0 \]

(1)
where B is magnetic induction, D is electric flux density, E is electric field strength, H is magnetic field strength, μ is magnetic permeability, ε is dielectric constant, and σ is conductivity.

Solutions in the electromagnetic regime yield eddy current and hysteresis power losses, which comprise the thermal generation term in the generalized heat equation (Refs. 12, 15)

$$\nabla \cdot \vec{D} = 0 \quad (2)$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \quad (3)$$

$$\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t} \quad (4)$$

$$\vec{D} = \varepsilon \vec{E} \quad (5)$$

$$\vec{B} = \mu \vec{H} \quad (6)$$

$$\vec{J} = \sigma \vec{E} \quad (7)$$

where Q is internal heat generation (in this problem, coming from hysteresis and eddy current power losses), k is thermal conductivity, ρ is density, and C is specific heat.

Solving the heat equation yields the resulting temperature distribution in the specimen. Due to the temperature dependence of all material properties, coupling between the governing equations is highly nonlinear, requiring a numerical solution method. (Refer to Refs. 9 and 12-15 for detailed explanations of the governing equations and associated numerical solutions.)

In this present work, a systematic numerical simulation of induction heating of flat sheet DP steels was conducted using the commercial finite element analysis (FEA) software MagNet and ThermNet from Infolytica Corp. MagNet enables a user to model components and current-carrying conductors (using a CAD-type interface) and solve for the resulting electromagnetic field interaction between the two via an FEA-based solution method. Solutions include static, time-harmonic, and transient responses in two or three dimensions. Similarly, ThermNet provides an FEA-based solution to the transient thermal response of a component subject to heating or cooling phenomenon. Solutions include static and transient responses in two or three dimensions. Induction heating is modeled by solving electromagnetic and thermal systems together.

Numerical Simulation: Specimen Geometry, Mesh, and Boundary Conditions

Model geometry was defined in two dimensions only, operating under the assumption that edge heating effects were negligible. Dual-phase steel welding specimens were each said to be 1.6 mm thick and 43.5 mm in length, with a 1-mm root opening between faying surfaces. The induction coil was modeled as a solid copper conductor of 6.35 mm diameter with a liftoff of 4 mm. Aluminum jaws utilized to contain specimens during physical trials were also included in the model — Fig. 3B. Simulations were conducted in a simulation cell (referred to as the AirBox) of dimensions 176×176 mm.

Following the definition of specimen...
geometry, the second step in FEA implementation was spatial discretization. In the electromagnetic model, due to the rapidly changing electromagnetic fields, the maximum element size (MES) in the sample was to be no larger than 0.25 mm. No MES was specified for the AirBox or the coil, and the computer generated one appropriate to the geometry — Fig. 3C. For the thermal model, no maximum element size was set for any part of the model, and an appropriate mesh was automatically generated — Fig. 3C. A polynomial order of two was set for all element equations.

The electromagnetic boundary conditions were set to have flux lines tangential to the AirBox perimeter and at the intersection of the AirBox with the sheet specimen. This facilitated the approximation that the sheet specimen was being inductively heated in an infinitely large volume. In the thermal regime, the adiabatic boundary condition was applied to all surfaces, assuming that radiative and convective heat losses were small compared to conduction of heat within the specimen.

Numerical Simulation: Material Properties

Material properties requiring definition for successful FEA simulation of induction heating are mass density, thermal conductivity, specific heat, electrical resistivity (or conductivity), magnetic loss (hysteresis loss), magnetic permeability, and electric permittivity. Mass density was taken to be 7600 kg/m3. Thermal conductivity and specific heat were determined through handbook data for low-carbon steel (Ref. 16), with the values defined as shown in Table 1. Electrical resistivity as a function of temperature was measured through a modified form of ASTM B-193 (Ref. 17) (Table 1). While simulations were based on resistivity data collected on...
DP980, additional resistivity testing of DP600 demonstrated the values to be nearly identical — Fig. 8. Magnetic loss was determined through the empirically based Steinmetz equation (Ref. 18):

$$<P_r(t)> = C \cdot f^n \cdot B^m$$ \hspace{1cm} (9)

where $<P_r(t)>$ is the average power loss per volume; C, α, and γ are constants (set equal to 87500, 1, and 2, respectively); f is frequency; and B is the peak magnetic induction. Magnetic permeability was found through the following equation

$$\mu_r(H,T) = 1 + \sqrt{(T_c - T)} \cdot \frac{k_1}{k_2 + H}$$ \hspace{1cm} (10)

where μ_r is the relative magnetic permeability, k_1 and k_2 are constants (set equal to 10 and 100, respectively); and T_c is the Curie temperature. Magnetic induction (B-field) was subsequently determined by treating μ as the first derivative of the B-H curve and performing numerical integration (Ref. 15).

In the initial stages of material property definition, experimentally obtained heating profiles of DP steel at low powers (1 kW) were utilized to optimize the correlation between numerical and experimental simulation heating profiles. Assuming that hysteretic heating dominates the heating mechanism before the Curie temperature, hysteretic loss was treated as a correction factor and the constants of Equation 1 were iteratively adjusted until an optimal correlation was obtained with experimental heating curves. Following material property definition, high-power simulations were conducted (1000–1750 A_{rms} coil current input, 250–400 kHz, and 4.5 s heating time). A complete list of material input properties for DP600 is provided in Table 1. Electromagnetic models were solved using the time-harmonic approximation (material nonlinearities were still considered) while the thermal mode was solved for the transient solution. A time step of 0.25 s was used in the electromagnetic model, while a 0.10 s time step was utilized in the thermal model.

Experimental Simulation Methodology

Dual-phase steel and SAE 1018 carbon steel specimens (1.5 mm thick) were water cut to 1.75 x 3.5 in. (44.45 x 88.9 mm), sandblasted, and painted with high-temperature HiE-Coat™ 840-M paint (Ref. 19), designed to ensure consistent material emissivity and corresponding infrared radiation (IR) camera accuracy. Welds were made on both DP and carbon steels, with the primary operating parameters being 4-mm coil liftoff, 42 kW, 315 kHz, and a 1-mm root opening (Table 2). During heating, the transient thermal response was collected via two digital IR cameras, which provided (when operated together) an accurate measure of a range of temperatures between 298 and 1733 K. Data collected with these two cameras enabled temperature evolution at the weld interface and temperature distributions transverse to faying surfaces to be measured. Following welding, metallurgical analysis was performed using optical microscopy and Vickers microhardness indentation (1000-g load and 12-s dwell time). Selected specimens were cross sectioned transverse to the weld interface, mounted, prepared to a 1.0-μm final polish, and chemically etched using 2% Nital etch.

Results

Numerical Simulation

Temperature evolution profiles for the faying surface of DP600 specimens (FEA simulation at 1750 A_{rms} input current and 315 kHz) clearly indicated the distinct heating mechanisms occurring before and after the Curie temperature — Fig. 4A. Before the Curie temperature (~1033 K), heating rates are as high as 1000 K s$^{-1}$. After the Curie temperature, heating rates drop to approximately 225 K s$^{-1}$, a decrease of approximately 75% — Fig. 4B. Comparison with physical simulation results indicates that the numerical values fall within approximately 10% of the experimental data, emphasizing that the dramatic decrease in heating rate after the Curie temperature observed in our numerical simulations is indeed a real result.

While heating profiles at the faying surface correspond well between the numerical and physical simulations, temperature distribution comparisons (sampled at the peak temperature in static heating trials) reveal a growing divergence (with increasing distance from the weld interface) between the numerical and experimental temperature distributions — Fig. 5. Divergence between numerical and experimental simulations in the transverse heating profiles suggests that our material property values could be further refined. We consider Equations 9 and 10 to be the most likely source of this divergence, especially since Equation 10 deviates somewhat from formulations given in the literature (Refs. 13, 15). However, the accurate temperature evolution profiles indicate that our general methodology is sound, and we anticipate that future re-

Fig. 8 — Resistivity vs. temperature profiles for DP600, DP980, and SAE 1025. Resistivity data for SAE 1025 taken from Ref. 16. Resistivity of DP steels determined through a modified form of ASTM B193-02 (Ref. 17).

Fig. 9 — Hardness data on DP600 high-frequency welding simulation specimens.
finement of model material properties (particularly magnetic loss and permeability) could improve results.

Physical Simulation

Both SAE 1018 and DP600 steel sheet specimens (1.6 x 44 x 89 mm) were welded at the parameters in Table 2, successful welds being produced in all cases — Fig. 6. During welding, IR thermal imaging of specimens was obtained, enabling the determination of temperature evolution of the weld interface and temperature distributions transverse to the weld interface (measured right before the weld plunge).

Curie Temperature Effect on Heating Rate

Analysis of the continuous heating profiles (Fig. 7) indicates a striking difference in heating rate before and after the Curie temperature, comparison of continuous heating profiles between DP600 and SAE 1018 welding specimens revealed a noticeable difference (also observed qualitatively during experiments) in induction heating response. Statistical analysis performed using a one-sided t-test (data assumed to be normally distributed and variances assumed to be unequal) indicated a statistically significant difference between the mean heating rates for DP600 and SAE 1018. For mean pre-Curie temperature heating rates, DP600 was shown to be 7.6% greater than SAE 1018 at a 96% confidence level (Table 3). However, post-Curie temperature heating rates and maximum temperatures were not shown to have any statistically significant differences.

The lack of a statistically significant difference in heating rate after the Curie temperature indicates that heating arising from resistive losses is essentially the same in the two materials, prompting the supposition that the difference in heating rate between DP600 and SAE 1018 must arise from a difference in the magnetic response of each material. Support for this conjecture is supported first by the similarity in resistivity vs. temperature profiles for dual-phase and carbon steel (Fig. 8) (Refs. 16, 17). Secondly, such an explanation is bolstered by the reported sensitization of the magnetization response of materials to their composition and microstructural differences (Refs. 20–22). Considering that compositions (Table 4) (Refs. 23, 24) and microstructures (by definition of a dual-phase vs. plain carbon steel) are different between DP600 and SAE 1018, the magnetization response ought to be different between the two materials, as was observed experimentally.

Metallography

Microstructure analysis of the DP600 specimens revealed grain coarsening at the weld interface, indicating that upset was not sufficient to expel the thermally affected base metal completely from the weld interface — Fig. 6. Microhardness profiles across the welding zone indicated a slight hardening at the weld interface — Fig. 9. However, in an extreme case of failure to upset the cast microstructure, hardness at the weld interface was double those values found in other specimens, underscoring the importance of sufficient upset to displace unwanted material from the faying surfaces.

Deformation Response

A maximum force of approximately 275 kN was measured at the faying surfaces, indicating that a maximum pressure of 20 MPa ensured faying surface coalescence and upset.

Conclusions

1) Fundamental induction heating mechanisms were revealed through a combined numerical and physical simulation effort. Specifically, in both DP600 and
SAE 1018 (ferromagnetic) materials, heating rates were found to be significantly different before and after the Curie temperature. Additionally, induction heating rates were found to be dependent on the ferromagnetic material type.

2) Satisfactory simulated welds can be produced in sheet steel specimens at 42 kW, 315 kHz, and heating for 4 s with 1-mm root opening (gap) between faying surfaces. This result demonstrates that high-frequency induction heating/pressure welding could serve as an excellent solid-state joining process for use in joining steel coil ends in continuous coil processing mills.

3) The usefulness of the coupled numerical and experimental simulation technique was clearly evidenced by the insights gained into the high-frequency induction heating process.

Additional study of this new process is certainly warranted and successful realization of a full-scale prototype of the joining process is optimistically anticipated.

Acknowledgments

The financial support of this work by the 2007 AISI/FeMET Grant and US Steel Europe R&D sponsorship is gratefully acknowledged. We also thank Prof. Robert Warke for his invaluable contributions to the project, as well as the following LeTourneau University students: Caleb Melbom, Jordan Smith, Josh Swenson, Stevenson Jian, Jack Dunaway, Jerica Cadman, Jody Carter, Mitch Plant, and Steve Wolbert.

References

Appendix 1 — Data Table

Table 5 — Summary of Data Collected during April 10, 2008, Trial

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>kHz</td>
<td>kW</td>
<td>mm</td>
<td>mm</td>
<td>mm s⁻¹</td>
<td>s</td>
<td>s</td>
<td>mm</td>
<td>s</td>
<td>s</td>
<td>K</td>
<td>K s⁻¹</td>
<td>K s⁻¹</td>
</tr>
<tr>
<td>1</td>
<td>1018</td>
<td>310</td>
<td>300 set</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.0</td>
<td>4</td>
<td>?</td>
<td>?</td>
<td>744</td>
<td>388</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>42</td>
<td>317</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>2.0</td>
<td>4</td>
<td>2.4</td>
<td>?</td>
<td>929</td>
<td>265</td>
<td>310</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>42</td>
<td>317</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>2.5</td>
<td>4</td>
<td>2.8</td>
<td>1505</td>
<td>840</td>
<td>301</td>
<td>273</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>42</td>
<td>317</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2.5</td>
<td>4</td>
<td>2.7</td>
<td>1434</td>
<td>696</td>
<td>301</td>
<td>273</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>42</td>
<td>317</td>
<td>1.5</td>
<td>0</td>
<td>0</td>
<td>2.5</td>
<td>4</td>
<td>2.5</td>
<td>1401</td>
<td>794</td>
<td>273</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>42</td>
<td>317</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
<td>4</td>
<td>3.0</td>
<td>1539</td>
<td>837</td>
<td>286</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>42</td>
<td>317</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3.5</td>
<td>4</td>
<td>3.9</td>
<td>1628</td>
<td>724</td>
<td>232</td>
<td>273</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>42</td>
<td>317</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4.0</td>
<td>4</td>
<td>4.2</td>
<td>1661</td>
<td>787</td>
<td>205</td>
<td>273</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>42</td>
<td>318</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4.0</td>
<td>4</td>
<td>4.0</td>
<td>1706</td>
<td>807</td>
<td>212</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>42</td>
<td>318</td>
<td>1</td>
<td>-1</td>
<td>10</td>
<td>4.0</td>
<td>4</td>
<td>4.7</td>
<td>1710</td>
<td>694</td>
<td>196</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>42</td>
<td>316</td>
<td>1</td>
<td>-1</td>
<td>10</td>
<td>0.25</td>
<td>4.8</td>
<td>3.8</td>
<td>1707</td>
<td>889</td>
<td>226</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>42</td>
<td>317</td>
<td>1</td>
<td>-1</td>
<td>10</td>
<td>0.25</td>
<td>4.8</td>
<td>4.4</td>
<td>1714</td>
<td>806</td>
<td>200</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>DP 600</td>
<td>315</td>
<td>42</td>
<td>-2</td>
<td>20</td>
<td>-0.25</td>
<td>4.75</td>
<td>4.0</td>
<td>1731</td>
<td>969</td>
<td>250</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>DP 600</td>
<td>316</td>
<td>42</td>
<td>-1</td>
<td>100</td>
<td>-0.25</td>
<td>4.5</td>
<td>4.7</td>
<td>1706</td>
<td>836</td>
<td>172</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>DP 600</td>
<td>315</td>
<td>42</td>
<td>-1</td>
<td>20</td>
<td>-0.25</td>
<td>4.5</td>
<td>4</td>
<td>?</td>
<td>1688</td>
<td>?</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>DP 600</td>
<td>313</td>
<td>42</td>
<td>-1</td>
<td>20</td>
<td>-0.25</td>
<td>4.4</td>
<td>3.9</td>
<td>1698</td>
<td>831</td>
<td>219</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>DP 600</td>
<td>309</td>
<td>42</td>
<td>-2</td>
<td>20</td>
<td>-0.25</td>
<td>4.4</td>
<td>4</td>
<td>?</td>
<td>1715</td>
<td>?</td>
<td>242</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>DP 600</td>
<td>308</td>
<td>42</td>
<td>-1</td>
<td>100</td>
<td>-0.25</td>
<td>4.4</td>
<td>4.2</td>
<td>1701</td>
<td>965</td>
<td>207</td>
<td>242</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>DP 600</td>
<td>315</td>
<td>42</td>
<td>-2</td>
<td>100</td>
<td>-0.25</td>
<td>4.4</td>
<td>4.2</td>
<td>1679</td>
<td>915</td>
<td>185</td>
<td>242</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>DP 600</td>
<td>319</td>
<td>42</td>
<td>-1</td>
<td>100</td>
<td>-0.25</td>
<td>4.3</td>
<td>3.7</td>
<td>1697</td>
<td>923</td>
<td>216</td>
<td>242</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>DP 600</td>
<td>319</td>
<td>42</td>
<td>-2</td>
<td>20</td>
<td>-0.25</td>
<td>4.4</td>
<td>3.6</td>
<td>1697</td>
<td>959</td>
<td>236</td>
<td>242</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>DP 600</td>
<td>318</td>
<td>42</td>
<td>-1</td>
<td>100</td>
<td>-0.25</td>
<td>4.3</td>
<td>3.3</td>
<td>1703</td>
<td>872</td>
<td>259</td>
<td>242</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>DP 600</td>
<td>318</td>
<td>42</td>
<td>-2</td>
<td>100</td>
<td>-0.25</td>
<td>4.4</td>
<td>3.7</td>
<td>1707</td>
<td>805</td>
<td>248</td>
<td>242</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>403</td>
<td>42</td>
<td>-2</td>
<td>20</td>
<td>-0.25</td>
<td>4.4</td>
<td>4.6</td>
<td>1695</td>
<td>692</td>
<td>224</td>
<td>242</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>398</td>
<td>42</td>
<td>-2</td>
<td>20</td>
<td>-0.25</td>
<td>4.4</td>
<td>3.6</td>
<td>1670</td>
<td>755</td>
<td>226</td>
<td>242</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Frequency, root opening size, upset, displacement rate, forge delay, set trial time, and liftoff were input parameters. Time to maximum temperature, maximum temperature, pre-Curie temperature heating rate, and post-Curie temperature heating rate were determined via analysis of IR thermal imaging.

Preparation of Manuscripts for Submission to the Welding Journal Research Supplement

All authors should address themselves to the following questions when writing papers for submission to the Welding Research Supplement:

◆ Why was the work done?
◆ What was done?
◆ What was found?
◆ What is the significance of your results?
◆ What are your most important conclusions?

With those questions in mind, most authors can logically organize their material along the following lines, using suitable headings and subheadings to divide the paper.

1) Abstract. A concise summary of the major elements of the presentation, not exceeding 200 words, to help the reader decide if the information is for him or her.

2) Introduction. A short statement giving relevant background, purpose, and scope to help orient the reader. Do not duplicate the abstract.

3) Experimental Procedure, Materials, Equipment.

4) Results, Discussion. The facts or data obtained and their evaluation.

5) Conclusion. An evaluation and interpretation of your results. Most often, this is what the readers remember.

6) Acknowledgment, References and Appendix.

Keep in mind that proper use of terms, abbreviations, and symbols are important considerations in processing a manuscript for publication. For welding terminology, the Welding Journal adheres to AWS A3.0:2001, Standard Welding Terms and Definitions.

Papers submitted for consideration in the Welding Research Supplement are required to undergo Peer Review before acceptance for publication. Submit an original and one copy (double-spaced, with 1-in. margins on 8 ½ x 11-in. or A4 paper) of the manuscript. A manuscript submission form should accompany the manuscript.

Tables and figures should be separate from the manuscript copy and only high-quality figures will be published. Figures should be original line art or glossy photos. Special instructions are required if figures are submitted by electronic means. To receive complete instructions and the manuscript submission form, please contact the Peer Review Coordinator, Erin Adams, at (305) 443-9353, ext. 275; FAX 305-443-7404; or write to the American Welding Society, 550 NW LeJeune Rd., Miami, FL 33126.
Near Weld Interface Compositional Variations in Low-Alloy Steel Weldments

Both diffusion into the base metal and incomplete dilution into the weld metal pool create discontinuous composition gradients

BY D. B. KNORR AND J. J. McGEE

ABSTRACT

The forged low-alloy steel and weld consumable used in this study have compositions that differ enough to create a significant concentration gradient adjacent to the weld interface following welding. The major compositional differences between base metal and weld, respectively, are 3.4 vs. 0.95 wt-% Ni, 1.75 vs. 0.1 wt-% Cr, and 0.25 vs. 1.4 wt-% Mn. This study measures the concentration gradients and models their development based on the mass transport processes during solidification and cooling of the weld, which occurs over a time period of only about 5 s. The composition of the base metal heat-affected zone is altered by diffusion adjacent to the weld interface. Nickel and chromium diffuse out, and manganese diffuses in, where the extent is predicted by a simple diffusion model. In the weld metal, local maxima in nickel and chromium are attributed to unmixed zones that detach from the base metal but are not fully dissolved into the weld pool. These compositional maxima occur within 75 μm of the weld interface and are intermittent. Both compositional and microstructural evidence exists for these localized regions. The composition in the weld adjacent to the weld interface influences the fracture behavior, where the unmixed regions are susceptible to intergranular fracture.

Introduction

ASTM A508-95 Grade 4N Class 2 low-alloy steel welds that are made with a S3NiMo1 weld consumable typically display significant gradients in microstructure and chemistry. This low-alloy steel is characterized by a microstructure consisting of bainite and autotempered martensite. The nominal composition is Fe-0.20C-3.4Ni-1.75Cr-0.55Mo-0.25Mn. The S3NiMo1 weldment is composed of a microstructure of acicular ferrite and has a typical composition of Fe-0.10C-1.4Mn-0.95Ni-0.5Mo-0.2Si-0.1Cr, i.e., lower in nickel and chromium and higher in manganese than the base metal. The differences in composition between the base metal and the weld metal lead to complex microchemical variations near the weld interface, where diffusion in the heat-affected zone (HAZ) is rapid and convective mixing in the rapidly solidifying weld metal becomes limited. This study evaluates the near weld interface region in two automatic submerged arc (ASA) welds, one manual shielded metal arc (SMA) weld, and one automatic gas tungsten arc (GTA) weld. Electron probe microanalysis compositional profiles and elemental distribution maps were obtained from each weld. The goals of this study of the region near the weld interface are to examine and understand the chemical and microstructural gradients, to compare the composition profiles in automatic submerged arc, manual shielded metal arc, and automatic gas tungsten arc welds, and to examine the implications of these gradients on brittle fracture properties.

Materials and Experimental Procedures

Table 1 identifies the materials used in each weldment as well as key processing parameters. The automatic arc welds were made using a nominally neutral flux, Oerlikon OP 121TT. The heat input for the manual shielded metal arc weld could not be calculated but is estimated to be between the heat input of the automatic submerged arc welds and the automatic GTA weld. A comparison of the measured HAZ sizes supports this conclusion. Two heats of base metal material were procured as forged plate to ASTM 508-95 Grade 4N Class 2. The bulk chemical analyses of each heat are provided in Table 2. Each weldment received a post-weld heat treatment of 566°C for 50 h followed by a slow cool of 11.1°C/h. All welds were nominally 101.6 mm (4 in.) in thickness. The length and width of the weld assemblies were nominally 914 mm (36 in.) and 203 mm (8 in.), respectively. The weld assembly was spot welded to a strongback during weld deposition.

The weldments were sectioned to provide bulk chemistry samples and samples for metallography. Each bulk chemistry sample was taken from the middle of the weld, where dilution from the base metal was not a factor. Metallographic sections were cut to locate several beads that tie into the base metal, which included some bulk A508 Grade 4N, its HAZ, and the weld interface. The samples were mounted and polished to provide a very flat surface for electron microprobe analysis. Following the microprobe work, the same samples were etched in 2% Nital to examine the same regions by light optical microscopy.

Electron microprobe wavelength dispersive spectrometry (WDS) was utilized to obtain quantitative compositional
analyses of the base metal in the HAZ adjacent to the weld interface and the weld metal. The profiles started in the base metal ~75 μm from the weld interface and proceeded across the boundary, ~200 μm into the S3NiMo1 weld metal. These analytical profiles were measured using 5 μm step intervals, with a 5-μm-diameter analytical spot, essentially providing a continuous compositional traverse across the base-metal/weld-metal interface. The quantitative analysis profiles were set up approximately normal to the interface. The measurements were made with a JEOL 8200 microprobe operated at 15-kV accelerating voltage and 40-nAmps probe current.

Table 1 — Materials and Processing Details for Weldment Fabrication

<table>
<thead>
<tr>
<th>Weld Wire Heat</th>
<th>Weldment Designation</th>
<th>Welding Process(a)</th>
<th>Wire Dia. (mm)</th>
<th>Weld Layout</th>
<th>Heat Input (kJ/mm)</th>
<th>Base Metal Heat</th>
</tr>
</thead>
<tbody>
<tr>
<td>158526</td>
<td>ASA-CR-10</td>
<td>ASA</td>
<td>2.36</td>
<td>26</td>
<td>1.86</td>
<td>G1969</td>
</tr>
<tr>
<td>202504</td>
<td>ASA-CR-12</td>
<td>ASA</td>
<td>2.36</td>
<td>25</td>
<td>1.86</td>
<td>G1969</td>
</tr>
<tr>
<td>412W0131</td>
<td>SMA-CR-2</td>
<td>SMA</td>
<td>3.97</td>
<td>36</td>
<td>NA</td>
<td>27-3581</td>
</tr>
<tr>
<td>Lot 3004A</td>
<td>GTA-CR-8</td>
<td>AGTA</td>
<td>1.14</td>
<td>53</td>
<td>1.50</td>
<td>27-3581</td>
</tr>
</tbody>
</table>

(a) ASA = Submerged arc welding (automatic); SMA = shielded metal arc (manual); AGTA = gas tungsten arc welding (GTAW, automatic)

Table 2 — Chemistry of A508 Grade 4N Base Metals

<table>
<thead>
<tr>
<th>Element</th>
<th>G1969</th>
<th>Product 1</th>
<th>Product 2</th>
<th>Certification</th>
<th>27-3581</th>
<th>Overcheck</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.21</td>
<td>0.22</td>
<td></td>
<td>0.21</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>3.48</td>
<td>3.44</td>
<td></td>
<td>3.46</td>
<td>3.52</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>1.70</td>
<td>1.68</td>
<td></td>
<td>1.65</td>
<td>1.63</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.28</td>
<td>0.27</td>
<td></td>
<td>0.27</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>Mo</td>
<td>0.48</td>
<td>0.47</td>
<td></td>
<td>0.44</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>0.08</td>
<td>0.08</td>
<td></td>
<td>0.05</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>0.018</td>
<td>0.01</td>
<td></td>
<td>0.010</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.006</td>
<td>0.007</td>
<td></td>
<td>0.009</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>0.001</td>
<td>0.003</td>
<td></td>
<td>0.010</td>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td>Sn</td>
<td>0.002</td>
<td>NA</td>
<td></td>
<td>0.004</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>0.004</td>
<td>NA</td>
<td></td>
<td><0.01</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>Sb</td>
<td><0.001</td>
<td>NA</td>
<td></td>
<td><0.001</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>0.06</td>
<td>NA</td>
<td></td>
<td>0.05</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>0.0081</td>
<td>NA</td>
<td></td>
<td>0.0031</td>
<td>0.0039</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>0.0023</td>
<td>NA</td>
<td></td>
<td>0.0029</td>
<td>0.0030</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>bal</td>
<td>bal</td>
<td></td>
<td>bal</td>
<td>bal</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1 — Metallography showing MB and BJ locations.
Electron microprobe nickel maps showing analysis locations (decreasing concentration from green > light blue > dark blue). The resulting analyses had element detection limits on the order of 300 ppm (0.03 wt-%) and analytical uncertainty of ~2% relative for major elements (those present at >10 wt-%), ~5% relative for minor elements (1–10 wt-%), and 10–20% relative for elements present at concentrations below 1 wt-%. Pure metal standards were used for element calibrations. Element distribution maps were also acquired to qualitatively show compositional distributions of elements over larger areas of the sample. Note that the carbon analyses are higher than bulk levels and are considered unreliable due to surface contamination buildup on the metallographic mount as the beam impinges on the sample.

Multiple locations were selected for electron microprobe evaluation. The compositional profiles from the A508 Grade 4N across the weld interface into the weld bead were located at either mid-bead (MB) or the bead joint (BJ). The MB locations cross the weld interface in the middle section of the weld bead. The BJ locations cross the weld interface where two stacked beads meet. These locations are illustrated in the metallographic images of Fig. 1 and the nickel distribution maps in Fig. 2. In ASA-CR-10, an analytical profile was measured near the center of the weld to obtain quantitative microprobe data in a region removed from, and not influenced by, the dilution from the base metal to facilitate a direct comparison between the quantitative microprobe data and the wet chemistry data. Finally, two line traces were done within weld beads crossing the weld interface between beads as bead-to-bead (BB) locations; the beads were adjacent to the weld interface. These traces served to characterize the local variability in composition due to weld bead solidification without having to deal with the gradient in composition near the weld interface.

Compositional profiles were obtained from the following locations in the weld:
- ASA-CR-10: three MB locations, one BJ location, one BB location, one location in the weld away from the weld interface (reference to bulk metal composition measured by wet chemistry);
- ASA-CR-12: four MB locations, three BJ locations;
- SMA-CR-2: five MB locations, three BJ locations;
- GTA-CR-8: three MB locations, three BJ locations, one BB location.

Many of these locations are identified on Fig. 2. Subsequent results and discussion will excerpt representative data to illustrate specific points. Metallographic examination was done to relate the composition profiles to the microstructure, including the specific locations for composition analysis, which exhibited a metallographic etching response.

Results and Discussion

Nickel distribution maps indicating the locations for microprobe analytical profiles are shown in Fig. 2. The color scale assigns lower nickel to darker colors, i.e., the darkest blue is always the weld. The metallographic images, as exemplified by Fig. 1, are reversed compared to the microprobe elemental map due to the reversed optics of the metallograph.

The microprobe quantitative compositions have uncertainties of 5–10% relative for the minor elements, as noted above. The bulk chemical analyses for all welds are listed in Table 3. A comparison of wet chemistry results and microprobe results is given in Table 4 for the ASA-CR-10 weld metal. The microprobe compositions for Mn, Ni, and Cr tend to be slightly higher than the wet chemistry results, but the agreement for Mo and Si is good. The Cr composition is ~0.2 wt-% higher for the microprobe results, a bias that is also reflected in the base metal Cr levels. As noted above, carbon values determined by microprobe are considered unreliable due to sample surface contamination, so they are neither reported nor considered in the subsequent discussion.

Etching the weldments in 2% Nital following the microprobe data acquisition revealed both the microstructure of the weld/HAZ and the locations of the microprobe analyses. The electron microprobe beam generates a (carbon) contamination spot, which has an etching response at the individual analysis locations that is different from the surrounding material. Figure 1 shows examples of the locations of line scan profiles. Figure 3 demonstrates that individual analysis points can be resolved optically at higher magnification. The mi-
croprobe analysis locations are easiest to resolve in the HAZ but more difficult in the weld due to the refined acicular ferrite. This detail of information enables specific locations to be matched with the chemistry. The automatic submerged arc HAZ/weld is discussed initially. The manual shielded metal arc and automatic GTA HAZ/weld demonstrate a more refined microstructure, so they are considered in the context of the automatic ASA results.

Heat-Affected Zone Behavior

A key reference point is the location of the weld interface. Often, the weld interface is quite distinct in metallographic images, such as Fig. 3. The composition at the weld interface is located on the microprobe profile by matching points to individual compositional analyses. The distance from the weld interface for the microprobe profile in Fig. 3 reflects this locating process and reveals that the weld interface is positioned at a composition more representative of the weld metal than the base metal. Thus, the rapid change in nickel, manganese, and chromium compositions occurs in the base metal HAZ rather than in the weld metal. This behavior is observed for all types of welds (automatic SAW, manual SMAW, and automatic GTAW) and regardless of the complexity of the composition profile in the weld metal. Since melting in the HAZ is not involved, a solid-state diffusion mechanism is considered to be operating to produce these compositional gradients.

The composition profiles demonstrate that there is mass transport of nickel and chromium from the A508 Grade 4N into the weld and mass transport of manganese from the weld into the base metal. Little diffusion of molybdenum is involved, since the concentrations are comparable in both the base metal and the weld. Diffusion calculations for nickel transport were done using literature data (Ref. 1). The diffusion coefficients are as follows:

\[
D_{Ni,Fe} = D_0 \exp \left[-\frac{Q}{RT}\right] \text{cm}^2/\text{s}
\]

where \(Q\) is the activation energy and \(T\) is temperature in K.

Delta phase: \(D_0 = 9.7 \text{ cm}^2/\text{s}, Q = 267.5 \text{ kJ/mol}\)

Table 3 — Wet Chemical Analysis of Weld Deposits

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.11</td>
<td>0.11</td>
<td>0.07</td>
<td>0.12</td>
</tr>
<tr>
<td>Ni</td>
<td>0.94</td>
<td>1.16</td>
<td>0.97</td>
<td>0.94</td>
</tr>
<tr>
<td>Cr</td>
<td>0.11</td>
<td>0.13</td>
<td>0.05</td>
<td>0.10</td>
</tr>
<tr>
<td>Mn</td>
<td>1.38</td>
<td>1.44</td>
<td>1.42</td>
<td>1.59</td>
</tr>
<tr>
<td>Mo</td>
<td>0.53</td>
<td>0.57</td>
<td>0.41</td>
<td>0.52</td>
</tr>
<tr>
<td>Si</td>
<td>0.15</td>
<td>0.20</td>
<td>0.36</td>
<td>0.16</td>
</tr>
<tr>
<td>V</td>
<td>0.005</td>
<td>0.007</td>
<td>0.006</td>
<td>0.005</td>
</tr>
<tr>
<td>P</td>
<td>0.012</td>
<td>0.005</td>
<td>0.006</td>
<td>0.009</td>
</tr>
<tr>
<td>S</td>
<td>0.003</td>
<td>0.003</td>
<td>0.006</td>
<td>0.004</td>
</tr>
<tr>
<td>Sn</td>
<td>0.002</td>
<td>0.004</td>
<td>0.004</td>
<td>0.003</td>
</tr>
<tr>
<td>As</td>
<td>0.0050</td>
<td>0.0087</td>
<td>0.0087</td>
<td>0.0056</td>
</tr>
<tr>
<td>Sb</td>
<td>0.0001</td>
<td><0.0001</td>
<td>0.0003</td>
<td>0.0001</td>
</tr>
<tr>
<td>Cu</td>
<td>0.07</td>
<td>0.32</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>Al</td>
<td>0.014</td>
<td>0.016</td>
<td>0.004</td>
<td>0.023</td>
</tr>
<tr>
<td>Ti</td>
<td>0.004</td>
<td>0.006</td>
<td>0.012</td>
<td>0.003</td>
</tr>
<tr>
<td>N</td>
<td>0.005</td>
<td>0.003</td>
<td>0.008</td>
<td>0.004</td>
</tr>
<tr>
<td>O</td>
<td>0.022</td>
<td>0.020</td>
<td>0.027</td>
<td>0.001</td>
</tr>
<tr>
<td>Fe</td>
<td>bal</td>
<td>bal</td>
<td>bal</td>
<td>bal</td>
</tr>
</tbody>
</table>

Table 4 — Comparison of Wet Chemistry and Microprobe Results for ASA-CR-10

<table>
<thead>
<tr>
<th>Element</th>
<th>Wet Chemistry (wt-%)</th>
<th>Composition (wt-%)</th>
<th>Microprobe (25 point average)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni</td>
<td>0.94</td>
<td>1.05 ± 0.11</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>0.11</td>
<td>0.22 ± 0.02</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>1.38</td>
<td>1.53 ± 0.14</td>
<td></td>
</tr>
<tr>
<td>Mo</td>
<td>0.53</td>
<td>0.50 ± 0.06</td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>0.15</td>
<td>0.15 ± 0.013</td>
<td></td>
</tr>
</tbody>
</table>
Gamma phase: $D_o = 3.0 \text{ cm}^2/\text{s}, Q = 314.0 \text{ kJ/mol}$

Alpha phase: $D_o = 9.9 \text{ cm}^2/\text{s}, Q = 257.2 \text{ kJ/mol}$

Figure 4 shows the temperature history for solidification of a S3NiMo1 ASA weld bead near the melting point. These data were obtained by plunging an alumina sheathed thermocouple with a bare junction into a molten weld bead and following the cooling/solidification process. The compositional evolution in the adjoining HAZ occurs in response to this high-temperature excursion in the weld. The processes are described in Fig. 4. The calculations demonstrate that most diffusion occurs when the base metal HAZ is in the δ-phase near its melting temperature, i.e., when the weld is solidifying and immediately following solidification. Thus, most diffusion occurs over a very short time span, which is estimated to be less than 5 s (time in Regions 2, 3a, and 3b extended over the γ-phase of Fig. 4). A schematic representation showing the progressive development of the composition profile is presented in Fig. 5.

A model for the composition profile in the A508 Grade 4N across the weld interface into the S3NiMo1 weldment was developed based on an error function (erf) solution to Fick's second law of diffusion (Ref. 2). This semi-infinite solution is justified because the size of both the base metal and weld are large compared with the extent of the diffusion zone. However, the model is an approximation, since the solid/liquid interface is moving in Region 1 of Fig. 4 and the concentration at the base metal/weld interface is changing with time due to solidification of the weld. The form of the solution describing the nickel composition profile is

$$C = C_w + \frac{(C_{bm} - C_w)}{2} \left[1 + \text{erf} \left(-\frac{x}{2\sqrt{(Dt)_{sum}}} \right) \right]$$

where

- $C_w = \text{concentration of Ni in the base metal, assumed to be 3.6 wt-%}$
- $C_{bm} = \text{concentration of Ni in the S3NiMo1 weld bead adjacent to the weld interface, assumed to be 1.5 wt-% (higher than bulk due to dilution from the base metal)}$
- $x = \text{distance from the location where the nickel content is the mean of } C_{bm} \text{ and } C_w \text{ (2.55 wt-%)}$
- $(Dt)_{sum} = \text{a measure of the diffusion distance calculated by summing the incremental Dt contributions over Regions 2 and 3 in Fig. 4.}$

The fit between the simulation and the microprobe data is quite good for Ni, as shown in Fig. 6. Application of the model to Cr and Mn profiles produced model fits in agreement with the electron microprobe data. The simulation results are translated along the X-axis to align with the experimental microprobe data. The simulations accurately reproduce the experimental results, which corroborates the proposed diffusion mechanism. The data and model results are not symmetric about the weld interface, which would be expected in a completely solid-state diffusion process. More than half of the diffusion penetration is predicted to occur during weld bead solidification; no composition gradient is expected in the weld metal when it has a substantial liquid fraction, as shown schematically in Fig. 5.

The width of the compositional transition region in the HAZ will depend on the welding thermal history. The automatic GTA regions are narrower than those of the automatic SAW or manual SMAW. The lower heat input and resulting shorter time near the melting temperature reduce the extent of diffusion. If a location is reheated during subsequent weld pass(es), the transition is expected to be broader. This trend is confirmed by the BJ composition profiles for all three types of welds, where the bead joint region experiences more than one heating cycle.

Near Weld Interface Weld Composition in Automatic SAW

This section describes the composition profiles on the weld metal side of the weld interface. The discussion will concentrate on automatic SAW, which lays the groundwork for discussion of manual SMAW and automatic GTA compositions in the next section. The behavior of the near weld interface region in the weld during weld solidification is deduced based on correlation of the composition profiles with the microstructure.

Five weld composition archetypes have been identified, two of which have already been introduced. Figure 3 shows a relatively flat composition profile in the weld metal, which indicates no anomalous melting of base metal. In contrast, a commonly observed near weld interface weld metal composition profile has a local maximum for nickel and chromium in the weld metal less than 50 μm from the weld interface, as shown in Fig. 7. The following five composition profiles demonstrate the variants of the near weld interface composition. The nickel concentration is plotted,
since it best illustrates the trends. Figure 8 compares the nickel profiles that have increasing amounts of local enrichment:

A) Flat composition profile: extracted from Fig. 3;
B) Narrow plateau: ASA-CR-10 BJ1;
C) Small composition peak: ASA-CR-12 MB2;
D) Large composition peak: extracted from Fig. 7;

The origin of the local maxima in composition (e.g., Fig. 8, profiles C, D, and E) is the A508 Grade 4N base metal, which melted into the weld pool but is not fully mixed into the weld metal. The complementary Ni and Cr profiles are proof that the base metal is the origin, because elevated Cr in the weld metal can only originate in the A508 Grade 4N. The compositional peak is attributed to melted, but only partially mixed, base metal that was not washed away from near the weld interface by convective currents in the weld pool (Ref. 3). Microstructural evidence of unmixed material is often correlated with the composition peaks of Ni and Cr. The region in Fig. 7 delineated by the oval contains the secondary compositional peak and has a coarser microstructure than the surrounding weld metal. An example of an extended unmixed band is shown in Fig. 9. The coarser microstructure in the band correlates with the difference in chemistry compared with the surrounding weld metal. The bead joint (BJ) regions are somewhat more prone to unmixed zones compared with the mid-bead (MB) regions, which might be related to the reheat history from the subsequent weld bead. However, the absence of secondary peaks can be observed in BJ regions and peaks in MB locations (Fig. 7).

The unmixed regions can complicate the identification of the weld interface location. In the previous examples, the weld interface is distinctly evident in the microstructure as the transition between the coarse lath martensite in the A508 Grade 4N HAZ and the acicular ferrite in the weld. The weld interface noted in Fig. 3 is very distinct in this region where no unmixed zone is present. Examples of highly banded weld interface regions are shown in Fig. 10. These regions present alternating narrow bands of microstructure resembling S3NiMo1 weld and A508 Grade 4N, which might qualify them as partially melted zones. All bands and compositional discontinuities examined by microprobe were found to be partially mixed. Two bands, which have separated from the base metal into the weld metal, are shown in Fig. 11. No microprobe data are available for these specific regions, but sub-
Fig. 8 — Nickel composition profiles in weld metal. Arrows note the location of local composition anomalies attributed to unmixed regions.

Fig. 9 — Examples of extended unmixed regions. A — Arrows show unmixed band. (Note that the band is continuous and does not extend the length of the bead. The location of the microprobe trace is delineated by the line that crosses the weld interface.) B — Higher magnification view of region scanned by microprobe. The arrows denote a segment of the band noted in A. The weld interface and maximum concentration (Max.) correspond to the locations and compositions shown below. The peak concentration of Ni and Cr in the weld metal is approximately 50 µm from the weld interface. C — Microprobe profile across an unmixed band. Note the strong correlation between the nickel and chromium concentration profiles.

Welding Effects on Weldment Composition Profiles

The previous section presented the technical evidence for unmixed zones being responsible for compositional fluctuations (secondary peaks) in automatic submerged arc welds. The same processes are operative in manual shielded metal arc and automatic gas tungsten arc welds, but the composition profiles develop somewhat differently because of differences in welding process history. The automatic SA welds have the highest heat input, which is calculated to be 1.86 kJ/mm. The automatic GTA weld has the lowest heat input of 1.50 kJ/mm. Including arc efficiency will further separate the heat inputs for the automatic SA and GTA welds because the arc efficiency is greater for automatic SA welds. The effect of heat input is most evident in the HAZ microstructure. The automatic SA welds show substantial prior austenite grain growth in the base metal adjacent to the weld interface, as noted in Fig. 1 and also seen in Figs. 7, 9–11. The HAZs adjacent to the weld interface in the manual SMA and automatic GTA welds have not experienced grain growth to the same extent, as shown in Figs. 12 and 13, respectively. The HAZ grain size is smallest in the automatic GTA weld and somewhat larger in the manual SMA weld, but not as large as in the automatic SA welds. Consequently, the heat input for the manual SMA weld is probably between the levels for the automatic SA and GTA welds. The refined HAZ grain size in manual SMA and automatic GTA welds complicates the identification of the weld interface location because the refined microstructure resembles the fine acicular ferrite in the weld.
The manual SMA weld often demonstrates compositional fluctuations in the weld. The bead joint locations show significant fluctuations, which exceed the fluctuations measured in the automatic SA welds. Figure 12 shows the only significant mid-bead fluctuation in five locations that were sampled. The nature of manual welding is expected to lead to more complicated behavior near the weld interface. The welder's need to ensure good tie-in with the base metal leads to torch motion, local dwells, and reheats, which could be manifested as an increased prevalence of unmixed base metal and diffusion into the HAZ.

The automatic GTA weld showed little unmixed material, as seen in Fig. 13. The largest composition peak in the weld, even in the bead joint regions, was very modest in extent. The most significant feature in the bead joint regions was an extended diffusion profile into the A508 Grade 4N HAZ, which is attributed to reheats by subsequent beads that are quite close together due to the small bead size in automatic GTA welds.

Effects of the Near Weld Interface Composition Variations

The unmixed zones are believed to influence the fracture properties of the material near the weld interface. Charpy V-notch specimens were configured to test the HAZ in automatic SA welds, but the fracture path was found to jump from the HAZ to near the weld interface, as seen in Fig. 14. This behavior was prevalent in material that was intentionally temper embrittled by exposure at 427°C for 6–12 months, which is known to increase the ductile to brittle transition temperature in A508 Grade 4N (Ref. 10). This behavior is characteristic when brittle fracture modes were operative, i.e., for testing done on the lower shelf and in the lower portion of the transition region of the Charpy transition curve.

A low-magnification scanning electron microscope view of the fracture surface is shown in Fig. 15. The fracture surface is composed of alternating bands of intergranular and transgranular failure along the direction of crack propagation. Intergranular fracture along prior austenite grain boundaries has previously been identified as prevalent in temper embrittled A508 Grade 4N (Ref. 10). Cosegregation of nickel (not an embrittler) and phosphorus (a strong grain boundary embrittler) creates a localized prior austenite grain boundary chemistry with increased temper embrittlement susceptibility. Manganese, a weak embrittler, is also believed to cosegregate with the nickel and phosphorus.
The unmixed zones have locally elevated nickel content, as observed in Figs. 7-9, and 12. Local bands with elevated nickel content are believed to correspond to the intergranular bands seen in Fig. 15. The nickel content is locally increased, which, in the presence of manganese and impurity phosphorus in the weld metal, enhances the susceptibility to temper embrittlement in this local region. The data indicate that a local nickel level of ~1.5 wt-% is necessary. When no unmixed zones are present (e.g., Fig. 3), the local chemistry leads to significantly less temper embrittlement, so transgranular quasi-cleavage occurs, as exemplified by the right side of Fig. 15. The alternate banding of intergranular and transgranular cracking observed in thermally exposed welds is a manifestation of alternating mixed and unmixed regions. Effectively, the base metal has transferred temper embrittlement susceptibility to the weld metal through the presence of the unmixed zones. The evaluation of the microstructure and microchemistry shows that only local regions develop unmixed zones. Metallography and fractography demonstrate that the intergranular fracture is confined to the weld side of the weld interface. The metallography shows that the fracture path through the weld is displaced 50–75 μm from the weld interface, which corresponds with the local maximum in nickel content. The implication of this observation is that the steep concentration gradient in the HAZ is not associated with the fracture process.

Conclusions

The following conclusions are reached as a result of this study:

1) The steep gradient in Ni, Cr, and Mn compositions between the A508 Grade 4N base metal and the S3NiMo1 weld metal occurs in the base metal HAZ as a consequence of solid-state diffusion, primarily as the weld bead solidifies and shortly thereafter when the HAZ region adjacent to the weld interface is δ-ferrite.

2) Local enrichment of nickel and chromium and depletion of manganese in the weld metal are manifested as plateaus, peaks, and valleys within approximately 75 μm of the weld interface. The source of the nickel and chromium is the A508 Grade 4N base metal; where unmixed zones develop during weld solidification. Intermittent enrichment is observed to be favored in regions where two stacked beads meet the base metal.

3) Automatic and manual shielded metal arc welds are prone to unmixed behavior, but automatic gas tungsten arc welds are much less susceptible due to the lower heat input during welding and, therefore, shorter time near the melting temperature.

4) The local unmixed zones in the weld metal result in increased susceptibility to temper embrittlement due to the local
chemistry. Local bands of intergranular and transgranular crack propagation on
the weld side of the weld interface correlate with the local chemistry variations as-
associated with the unmixed zones.

Acknowledgments

The sample preparation and metallog-
raphy were done by Pat Krohn and Ed
Steinbiss.

References

1. Smithells, C. J. 1992. Smithells Metals Ref-

2. Shewmon, P. 1989. Diffusion in Solids,
Chapter 1. Warrendale, Pa.: The Minerals, Met-
als, & Materials Society.

Volume 1, p. 800. Miami, Fla.: American Weld-
ing Society.

boundary macrosegregation in dissimilar-filler
welds. Welding Journal 86(10): 303-s to 312-s.

Technical note: A mechanism for crack forma-
tion in HY-80 steel weldments. Welding Journal
46(2): 94-s to 96-s.

6. Savage, W. E., Nippes, E. F., and Szekeres,
E. S. 1976. A study of weld interface phenom-
ena in a low-alloy steel. Welding Journal 55(9):
260-s to 268-s.

zones in dissimilar metal welds for sour service.

8. Omar, A. A. 1998. Effects of welding pa-
rameters on hard zone formation at dissimilar

9. Rowe, M. D., Nelson, T. W., and Lippold,
J. C. 1999. Hydrogen-induced cracking along
the fusion boundary of dissimilar metal welds.
Welding Journal 78(2): 31-s to 37-s.

per embrittlement in A508 Grade 4N steel.
Proceedings, 9th International Symposium On Envi-
ronmental Degradation In Nuclear Power
Systems – Water Reactors. Ed. by S. Bruenmer,
P. Ford, and G. Was, pp. 845-851. Warrendale,
Welding Journal 2010 Editorial Calendar

<table>
<thead>
<tr>
<th>Month</th>
<th>Topics</th>
<th>Editorial Closing Date</th>
<th>Advertising Closing Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>• Distortion Control • Underwater Welding • Bonus: The American Welder</td>
<td>Nov. 20, 2009</td>
<td>Dec. 2, 2009</td>
</tr>
<tr>
<td>February</td>
<td>• 2009 FABTECH International & AWS Welding Show Recap • Focus on the Petroleum Industry</td>
<td>Dec. 21, 2009</td>
<td>Jan. 4</td>
</tr>
<tr>
<td>March</td>
<td>• Brazing and Soldering Today • Shielding Gas Selection</td>
<td>Jan. 22</td>
<td>Feb. 2</td>
</tr>
<tr>
<td>April</td>
<td>• Engine-Drive Power Sources • What’s New with Welding Chrome-Moly Steels</td>
<td>Feb. 19</td>
<td>March 2</td>
</tr>
<tr>
<td>May</td>
<td>• ABCs of Welding Stainless Steels • My Best/Challenging Project • Fabricating Wind Towers</td>
<td>March 22</td>
<td>April 2</td>
</tr>
<tr>
<td>June</td>
<td>• Pipe and Tube • Preheat and Postweld Heat Treatments • Bonus: The American Welder</td>
<td>April 21</td>
<td>May 4</td>
</tr>
<tr>
<td>July</td>
<td>• High-Precision Welding • Welded Art</td>
<td>May 21</td>
<td>June 2</td>
</tr>
<tr>
<td>August</td>
<td>• Advancements in Welding Robotics • Submerged Arc Welding</td>
<td>June 22</td>
<td>July 2</td>
</tr>
<tr>
<td>September</td>
<td>• Brazing and Soldering Today • Improving Infrastructure • Bonus: The American Welder</td>
<td>July 22</td>
<td>Aug. 3</td>
</tr>
<tr>
<td>October</td>
<td>• 2010 FABTECH International & AWS Welding Show Preview</td>
<td>Aug. 20</td>
<td>Sept. 2</td>
</tr>
<tr>
<td>November</td>
<td>• Keeping You Safe on the Job • What Can Your Welding Salesperson Do for You?</td>
<td>Sept. 20</td>
<td>Oct. 1</td>
</tr>
<tr>
<td>December</td>
<td>• Know Your Resistance Welding Processes • Money Saving Tips for Your Operation</td>
<td>Oct. 22</td>
<td>Nov. 1</td>
</tr>
</tbody>
</table>

Closing Dates for Advertisers:
- Nov. 20, 2009
- Dec. 2, 2009
- Dec. 21, 2009
- Jan. 4
- Jan. 22
- Feb. 2
- Feb. 19
- March 2
- March 22
- April 2
- April 21
- May 4
- Free Readership Survey for Advertisers
- May 21
- June 2
- June 22
- July 2
- July 22
- Aug. 3
- Bonus Distribution: FABTECH International & AWS Welding Show
- Sept. 20
- Oct. 1
- Oct. 22
- Nov. 1
Arcos, The Standard of Excellence in Covered Electrodes and Bare Wire, offers two outstanding welding products designed to withstand critical temperature extremes.

Arcos 625 and Arcos 1N12 (625) are nickel-chromium-molybdenum products which are designed to be virtually immune to chloride-ion stress-cracking. They feature moderate strength, good fabricability and excellent oxidation resistance. Each is military-approved and provides superior corrosion resistance, over a range of temperatures from cryogenic to extremely elevated (up to 1,800°F).

Arcos 625 is ideal for welding alloys 625, 601, 802 and 9% nickel. This wire is well suited for welding piping systems and reactor components in the power generation industry and for high temperature service in a wide variety of other engineering applications.

Arcos 1N12 (625) is utilized for welding alloys such as 625, 800, 801, 825 and 600. This covered electrode is the smart choice for applications including petrochemical plants, reactor components, furnace equipment, heat exchangers and offshore marine environments.

To learn about the many advantages of specifying Arcos 625 and Arcos 1N12, call us today at 800-233-8460 or visit our website at www.arcos.us.

Arcos Industries, LLC
One Arcos Drive • Mt. Carmel, PA 17851
Phone: (570) 339-5200 • Fax: (570) 339-5206

For Info go to www.aws.org/ad-index
SEE THE CAR AND A WHOLE LOT MORE AT:
THE FABTECH INTERNATIONAL AND
AWS WELDING SHOW IN BOOTH 36043

- New Welding Product Innovations
- Application Assistance
- Welding Demonstrations
- Joe Gibbs Racing® #18 Kyle Busch M&M® NASCAR® Race Car
- Daily Prizes

www.lincolnelectric.com
© The Lincoln Electric Co. All Rights Reserved.

I CHOOSE LINCOLN™
FOR QUALITY WELDING PRODUCTS.

Kyle Busch, Driver for Joe Gibbs Racing Team