• Future Nuclear Plants Will Depend on Welding Technology
• Processes and Preparation Are Keys to Pipe and Tube Welding
Select-Arc, Inc., a leader in advancing metal cored technology, has expanded its comprehensive line of premium metal cored electrode products to better serve your growing demands.

Whatever your critical welding application – from automotive exhaust systems to construction equipment, power generation plants to earthmoving machinery, railcars to shipbuilding, and many more – Select-Arc offers just the right metal cored product to meet your exacting specifications. The Select carbon steel and low alloy metal cored wires and our extended family of SelectAlloy stainless steel, metal cored electrodes are designed to enhance your productivity and increase your profitability.

Select-Arc metal cored electrodes provide these significant benefits:

- High travel speeds
- Reduced fume generation
- Ability to handle poor fit-up
- Very smooth spray transfer
- Superb bead geometry
- No spatter or slag to clean up
- Elimination of cold lap
- Reduction of subsurface porosity

For more information on finding the Select-Arc metal cored electrode that is ideal for your specific application, call us at 1-800-341-5215 or visit our website at www.select-arc.com.
Get the clean, green, smart weld wire you need. National Standard wire produces less smoke and fumes for a cleaner, safer workplace and less spatter for less rework and cleanup. Recyclable packaging and CopperFree® weld wire help you create a greener environment.

Proprietary engineered matte, textured finish holds the right amount of lubricant for smoother feeds and higher productivity. It produces cleaner welds and more arc stability. And it reduces wear and tear to your welding equipment for a smarter operation.

National Standard weld wire exceeds AWS specifications. Manufactured in the USA with precise alloy chemistries, it’s drawn to exact diameter for maximum consistency and strength.

Use the cleanest, greenest, smartest weld wire and make things better for the environment ... and for your business. Contact your National Standard distributor or visit www.nationalstandard.com.
Built TOUGH in the USA by CMI for Welders around the WORLD.

Your best source for Semi-Automatic and Automatic MIG welding guns, including air and water cooled, Push-Pull, and Smoke Extractors.

With us, customer support comes first: from custom designed MIG guns and consumables to rapid delivery.

For a complete range of our products, visit us online at cmindustries.com or call us toll free. 1-800-530-0032

CM Industries has a full line of Robotic Nozzle Cleaning Stations, Wire Cutters, and Replacement Reamer Blades to choose from. Make robotic nozzle cleaning operations easier with CMI.
Welding for New Nuclear Power Plants: Building on Experience
Advanced welding processes and practices will be instrumental in extending the design life of the next generation of nuclear power plants to 60 years and beyond
S. McCracken et al.

Friction Stir Process Now Welds Steel Pipe
Technology breakthroughs in tool design and portability make friction stir welding capable of welding steel pipe
J. Defalco and R. Steel

Proper Preparation: The Key to Successful Pipe Welds
Proper joint preparation is crucial in producing high-integrity welds on pipe
M. Leska

Automation Optimizes Nuclear Component Fabrication
Laser vision systems, robotic integration, and “intelligent” welding machines are just some of the automation technology that is now available for the fabrication of future nuclear plants
J. Noruk and J. Boillot

New Technology Doubles Contractor’s Pipe Welding Output
A fabrication shop reveals how a welding process change improved production time and minimized rework
N. Peterson

Welding Research Supplement

Influence of Nanoscale Marble (Calcium Carbonate CaCO₃) on Properties of D600R Surfacing Electrode
The addition of nanoscale marble particles in the flux coating improved electrode are stability, deposit efficiency, and wear resistance
B. Chen et al.

The Effect of High-Temperature Eutectic-Forming Impurities on Aluminum 7108 Weldability
The circular patch test was adapted to evaluate the effect of impurities on cracking susceptibility of cast 7108
M. G. Mousavi et al.

Mathematical Modeling of Electrode Cooling in Resistance Spot Welding
Based on modeling of resistance heating and heat transfer between electrode and cooling water, a new cone-fin design on the underside of the cap is proposed
Z. H. Rao et al.

On the cover: The Olkiluoto Unit 3 nuclear power plant under construction in Finland. (Photo courtesy of TVO.)
SkillsUSA Offers Online Welding Assessment

SkillsUSA, Leesburg, Va., introduced a new online, technical assessment to help candidates prove entry-level welding proficiency at www.workforcereadysystem.org. The Welding Skill Connect Assessment evaluates entry-level knowledge and skills in flux cored arc welding, gas tungsten arc welding, oxyfuel cutting, and shielded metal arc welding through interactive questions. Videos and animations enable a more accurate evaluation of practical knowledge. These are hosted on the patented LearnMate system. Also, SkillsUSA created an employability assessment to evaluate soft skills.

Industry experts participating in its development came from various organizations including the American Welding Society.

All assessments align with Perkins IV accountability measures as issued by the U.S. Department of Education. Additionally, each assessment was developed with industry and education leaders working together to identify the appropriate criteria and testing methodology. Once developed, they were evaluated by psychometricians for reliability in comparison to field test data before becoming available for purchase.

Each assessment consists of approximately 50 items and takes about an hour to complete. Items are delivered randomly from an item bank, as are the possible answers to each question according to the assessment blueprint defined. Assessments cost $5 for SkillsUSA members or $20 for nonmembers.

Florida Power & Light Proposes Natural Gas Pipeline

Florida Power & Light Co. has filed a proposal with the Florida Public Service Commission for the construction of a new underground natural gas pipeline in Florida. It is planned for construction in the eastern portion of the state from Palm Beach County to Bradford County and will be approximately 300 miles in length.

The Florida EnergySecure Line is expected to deliver the following four benefits: an increase in the supply of clean natural gas to meet planned needs; diversification of the source of natural gas production beyond offshore Gulf of Mexico sources to other onshore sources; addition of a third major natural gas pipeline route into the Florida peninsula to help protect access to the supply of natural gas and the electric generation it supports in the event any of these routes are disrupted; and creating demand for 7500 jobs, including 3500 construction jobs, as well as generation of more than $400 million in additional property taxes across 14 counties over the lifetime of the project, according to an economic impact analysis.

The company’s proposal calls for this line to enter into service as early as 2014. Plus, the project is expected to provide an opportunity for Florida companies to participate in fabrication, supply, and construction support roles.

Shaw Renews Nuclear Maintenance Contract with Entergy

The Shaw Group Inc., Baton Rouge, La., recently announced the Maintenance Division of its Power Group has renewed an existing contract with Entergy Nuclear, a subsidiary of Entergy Corp. Nuclear maintenance services will be provided to 11 nuclear units at nine power stations. Shaw’s scope of work includes routine maintenance/modifications, refueling outage services, and capital construction. The value of this six-year contract was not disclosed.

John Wood Community College Board Approves Grant Submission for Welding Equipment

The board of trustees for John Wood Community College, Quincy, Ill., has authorized the submission of a grant application for funds to purchase more equipment for a welding lab as part of the college’s new Workforce Development Center. The $40,000 grant is being submitted to the U.S. Department of Agriculture.

College officials are hopeful the first welding classes will be offered by early summer. The total cost to establish the welding lab will be approximately $80,000. In addition, the college has already received gifts and pledges from local manufacturing firms totaling more than $25,000 in cash and equipment.
making darkness disappear.

When you use ESAB products, amazing things happen.

In the harsh environments of the power generation world, even everyday jobs aren’t simple. Fortunately, your choice of a welding and cutting manufacturer is. As the global authority on welding and cutting, ESAB offers the broadest selection of world-class products that meet the tough demands of the industry. From turbine plants to nuclear containment vessels, choose ESAB for powerful solutions.
A Bulletproof Way to Make Successful Spot Welds

Let’s say you are hired to operate a complex computer-controlled machining center. You have no training on this system, have never worked with any similar equipment, don’t know anything about machining, and the company does not offer any training. To make matters worse, you don’t have an instruction book on the equipment and have no idea how to read drawings.

So you come to your first day of work and stare at the control panel for a clue. A box of 5000 parts to be machined is rolled into the department with a set of detailed drawings. In desperation, you ask one of the operators in the department for help and he shows you what he remembers from jobs that have been run over the years. You push buttons and make random settings until the machine starts to work, and you hope usable parts will be produced.

Sound crazy? Of course it is. *But that is exactly how most spot welding machines are set up.*

As a result, millions of spot welds are made every day that range widely in quality and consistency. In addition, lack of knowledge about the resistance welding process can lead to excessive electrode dressing, unacceptable weld indentation, and danger to the operator from metal expulsion (flash). And setup time for new jobs that should take just a few minutes ends up taking ½ hour or more.

It turns out that a lot of knowledge about this process is readily available. Resistance welding is not a “black art” but can actually be done by the numbers. Unfortunately most people in our industry are unaware of how easy it is to find information and education on this process.

Resources. There are very good texts available that cover the entire subject. One of the best is the *Resistance Welding Handbook* Edition 4 available through the Resistance Welding Manufacturing Alliance (RWMA) at www.rwma.org. The book includes proven welding schedules for a large range of metals and processes including spot, projection, and seam welding. I would also recommend RWMA Bulletin 5, which covers all of the process names and types of welding sequences.

Great Career Path. If you are interested in an education that includes a good base of resistance welding knowledge, Ferris State University offers an extensive curriculum combining classroom and hands-on education in its two-year associate Welding Technology and four-year BS Welding Engineering Technology programs (www.ferris.edu). The university reports that 100% of the students from these programs find jobs in this industry immediately after graduation.

RW School. An excellent two-day school on resistance welding is offered by the RWMA (www.rwma.org). This course includes a copy of the RWMA *Handbook* as well as some hands-on experience. This Emmet A. Craig resistance welding school is held one or two times a year in various cities and has limited enrollment.

In-Plant Training. Several companies offer in-plant training schools. These seminars can be customized to focus on the particular type of resistance welding being done in your facility. There are also companies that specialize in establishing welding schedules for unusual parts or two times a year in various cities and has limited enrollment.

Professional RW Technician. Being a resistance welding technician can lead to a secure future. The RWMA is just completing the design of a program that will offer training, testing, and certification for several RW technician levels. This will be run in a similar manner to the AWS are welding certification program. Having this certificate can be the key to getting a good quality job and offers opportunities for both young people entering the workforce as well as those looking for retraining. Information on many of the resources I have mentioned is available on the RWMA pages of the AWS Web site at www.aws.org.

Going back to our poor computer-controlled machine center guy, think of how successful he would be if he were trained on the equipment, understood the technology, and had access to documentation. The same success can be achieved in the resistance welding department with basic knowledge of the process, use of readily available welding schedules, and access to quality textbooks.

Roger B. Hirsch
Chair, RWMA
It’s part discipline, part pride and all passion that fuels Shane ‘Cajun’ Guidry, a native of New Orleans, Louisiana. “If you take pride in your work, then welding is for you,” he says. “Because every weld you make is your signature.” Shane’s passion for welding runs deeper than your average metalworker.

His work has brought him from Russia to the 40-below temperatures of Alaska. Today he works as an AWS Certified Welding Inspector, where his ‘no shortcuts’ attitude has made him a reliable team member. “For every weld I inspect, I pretend a member of my family will depend on it,” he says.

SHANE GUIDRY
AWS Certified Welding Inspector
PM Testing Inc.

Shane carries the torch – will you?

THERMADYNE, a global cutting and welding leader, joins the American Welding Society in encouraging individuals to practice the art, craftsmanship and professions of welding, metalworking and fabrication. Victor, Thermal Dynamics, Thermal Arc, Arcair, Tweco, Stoody, Cigweld and TurboTorch are among the Thermadyne family of brands that you can count on for safety, reliability and quality.

For more information visit www.thermadyne.com/tweco or call Thermadyne Customer Care at 1-800-426-1888

www.thermadyne.com
Zachry Offers Free Training at its New Houston Welding Academy

Zachry, an engineering, construction, and maintenance provider, opened the Houston Regional Craft Employment and Development Center on March 18. It serves the greater Houston, Tex., area by offering free welding training along with job opportunities to those interested in joining the company’s nearly 20,000 employees across the country.

The Zachry Academy is housed at the 30,000-sq-ft building. This academic and hands-on learning center is designed to instruct first-time craft workers in the welding, electrical, pipe, millwright, and instrumentation trades. Bill Cherry, the first and only person to receive a Master Craft Instructor in Welding certificate from the National Center for Construction Education and Research, is the welding manager. Continuing education for existing employees is provided, too.

“Even though the economy is in a downturn, we are preparing ourselves for the future as well as providing improved industry employment and training capabilities,” said Steve Hoech, senior vice president of employee relations.

Students receive academic and practical training in welding through an on-site instructor, educational materials, and on-the-job simulations — all of which are free to participants. Specifically, they learn the facets of industrial welding and company standards including shielded metal arc welding (SMAW) on plate/pipe along with gas tungsten arc welding (GTAW) on pipe.

Its goal is to train qualified welders who will function safely and productively on Zachry job sites. According to Greg Sizemore, senior craft development manager, this program is an “open entry and open exit,” meaning although the training consists of approximately 300 hours, the students are trained until the instructors believe in their abilities and are confident with their level of knowledge and performance. A test must be completed to graduate from the program and move on to employment. Cherry administers this to ensure proficiency in structural welding.

The facility further includes computer kiosks, online capabilities, and necessary equipment. The selective-enrollment program conducts training during the day, while employed craft workers may gain certifications and upgraded training during evening hours. Once an employee has successfully upgraded their skills, they are given the opportunity to perform those on their current and succeeding assignments.

The lab contains 25 welding booths. Twenty booths are dedicated to SMAW and GTAW. Four booths have multiprocess machines capable of gas metal arc welding (GMAW), flux cored arc welding, GTAW, SMAW, and gouging. Other equipment includes a plasma arc cutting machine and machines for aluminum GTAW and GMAW.

“It’s all about the people,” said Tammy Prescher, director of craft employment and development. “The new Houston facility is part of Zachry’s continuing effort to boost investments in our company, our craft workers, and our community.”

The program is still growing, and Zachry would like to continue training and employing structural welders from the Houston area, as the industry is lacking in experienced welders nationwide, according to Glen O’Mary, craft development manager and academy manager. “We want to get people in on the ground floor, and we want to do it right. At the cost of the company, we are putting people to work,” he said. O’Mary hopes this training will continue indefinitely, and there is a possibility of program expansion due to the shop’s large configuration.

Applicants must go through an initial screening and attend an on-site interview. Approximately ten students are chosen in each training group. Upon successful completion, students are prepared to enter the workforce as structural welders. Those showing welding proficiency will be given an employment offer on one of the nationwide company job sites. Applications will be accepted from May 1–29 for its second session. Individuals interested in completing the training program may visit www.zhi.com and click on the Zachry Academy link.
URS Joint Venture Awarded Nuclear Component Replacement Contract

URS Corp., San Francisco, Calif., recently announced SGT LLC, a 50-50 joint venture between URS’s Washington division and AREVA NP Inc., has been awarded a contract by Tennessee Valley Authority. Project management, engineering, and construction services are to be provided for the replacement of four steam generators at the Sequoyah Nuclear Power Plant Unit 2 in Tennessee. The 4-year contract has a maximum value of $130 million. Engineering and planning activities will begin immediately with installation scheduled for fall 2012.

In addition, the replacement services will include management and outage planning, design engineering, construction and craft management, and rigging and handling of the old and new steam generators. SGT will be responsible for large-bore pipe cutting and welding, heavy haul transportation, and fit-up metrology. Each generator is more than 67 ft long and weighs nearly 350 tons.

TRUMPF Receives Daimler Key Supplier Award

Daimler AG honored TRUMPF with its Key Supplier Award in the Innovation category recently in Stuttgart, Germany, as part of its Key Supplier Meeting and the 2009 Daimler Supplier Awards Ceremony. In doing so, the automobile manufacturer acknowledged TRUMPF’s contribution to the development of the robot-driven laser welding system RobScan (as seen above). This consists of a programmable focusing optics and scanner optics for laser welding integrated into a robotic arm. Also, mirrors position the laser beam on each area within the processing field quickly. Spot and seams can be welded without having to move the workpiece or the focusing optics. The center of this process at Daimler are TRUMPF disk lasers from the TruDisk Series.

Gene Haas Foundation Funds Machining Technology Scholarships

The Gene Haas Foundation has provided a $200,000 grant to the SME Education Foundation, Dearborn, Mich., to assist qualified students interested in machine operation and maintenance courses.

High school seniors, graduates, or GED recipients are eligible for a one-year scholarship, ranging from $1000 to $5000. Ap-
The process of making Dallas Area Rapid Transit light rail door frames requires certified welding in one of many precision weld fixtures built by New England Welding. Component Engineers is helping with this manufacturing job. (Photo courtesy of New England Welding.)

Component Engineers Inc. (C.E.I.), Wallingford, Conn., and New England Welding, Inc. (N.E.W.), Avon, Mass., are collaborating to complete the metal fabrication of lightweight aluminum door panels for Dallas Area Rapid Transit (DART) superlight rail vehicles in Dallas, Tex. DART is a Dallas-based public transit system providing public transportation by train and bus throughout Dallas and 12 nearby metropolitan areas.

N.E.W. has expertise in door assembly and intricate welding to strict requirements, while C.E.I. is proficient in engineering, design, and fabrication of demanding metal stampings. In this case, large forming dies shape the aluminum to the exact specifications of the customer.

Lincoln Electric Starts Green Initiative Awareness Program

The Lincoln Electric Co.’s Green Initiative Awareness Program upholds the company’s initiatives to reduce the environmental impact of its manufacturing processes and products. This investment in technological advancement for its welding products has resulted in lower environmental impacts and underlines its support to creating products that help reduce welding costs and adhere to environmental standards.

To help identify these products, the company is labeling them with a new “Green Initiative” logo stating the green advantage. A Web site has also been created at www.lincolnelectric.com/green.

Rogue Community College’s Welding Classes Provide Job Opportunities

In Jackson County, Ore., Rogue Community College’s (RCC) welding classes and a fully equipped shop are up and running.
The college began offering its Welding Technology program winter term at the U.S. Department of Veteran’s Affairs Rehabilitation Center and Clinics, White City, Ore. Welding has long been offered on the Redwood Campus, Grants Pass, Ore., and many Jackson County students are taking classes at both sites.

This expansion is in response to requests by an industry advisory committee, according to Jeanne Howell, RCC associate dean of Workforce Training. Much of the region’s manufacturing and industrial base is located in the White City area.

“It is truly open entry,” said Todd Giesbrecht, a recently hired instructor. “I really like my trade and teaching. I like seeing people come in without a lot of knowledge and leave with the competency level to get a job. I enjoy seeing graduates who have jobs and are supporting their families.”

Long term, job prospects for welders are good, Howell added. According to an Oregon Employment Department forecast, the need for welders — both regionally and statewide — ranks near the top through the year 2016, with more than 2100 projected openings in Oregon and more than 120 locally for welders, solderers, cutters, and brazers.

Jackson County students, such as Talent resident Jesse Holcomb and Tom Boyd of Shady Cove, are taking welding classes at both RCC sites. Holcomb has been building tables and racks for the new shop; he hopes to remain in the Rogue Valley after finishing the program. Boyd, laid off after working 12 years in a local lumber mill, is attending college under the Federal Trade Adjustment Act. “I’d been a welder’s helper in the oilfields, and I always wanted to be the welder. When I got a chance for school, I jumped on it,” Boyd said.

The Aluminum Association Sets up Building and Construction Committee

The Aluminum Association, Arlington, Va., has established the Building and Construction Committee for its membership. This group, which became active in March, is led by newly elected chairman Eddie Bugg, director of sustainable solutions at Kawneer Co., Alcoa.

Created to support the association’s Sustainability Working Group, it will aid sustainability messaging through end-of-life recycling rates and use-phase environmental benefits of aluminum in building and construction applications. Founding members include Alcoa, Hydro Aluminum North America, Indalex Aluminum Solutions, Jupiter Aluminum Corp., Novelis Inc., Nichols Aluminum, and Rio Tinto Alcan.

ESSEN WELDING SHOW
14–19 SEPT. 2009, GERMANY

Over 1,000 international exhibitors will be presenting their innovations from all fields of joining technology. Experience close-up the world innovations in modern joining processes and in cutting and surfacing for apparatus and tank construction, bridge-building, vehicle construction, the aerospace industry, offshore technology, pipeline construction, rail vehicle construction and ship-building.

YOUR BRANCH IS MEETING IN ESSEN IN 2009. BE THERE!

MESSE ESSEN GmbH
Tel. +49(0)201-3101-339
visitor@essen-welding.com
www.essen-welding.com

For info go to www.aws.org/ad-index
Technical College Enrollment Increases in Georgia and Louisiana

Enrollment is up at two technical college systems, showing just how important various types of skills are to meet future work opportunities and needs. In winter quarter 2009, the 33 Technical College System of Georgia colleges enrolled 88,294 students, representing a 9.4% system increase over the same time last year.

Plus, enrollment has risen at colleges within the Louisiana Community and Technical College System, and the schools are serving as an essential part of the solution to address the state’s current economic situation. Based on 14th day class credit enrollment figures, system-wide, enrollment is up by 12.8%, from 51,798 students in spring 2008 to 58,426 students in spring 2009.

Nuts, Bolts & Thingamajigs Foundation to Join Forces with FMA

The Nuts, Bolts & Thingamajigs Foundation (NBTF), founded by actor, director, and producer John Ratzenberger, is collaborating with the Fabricators & Manufacturers Association (FMA) Foundation to create one charitable organization called Nuts, Bolts & Thingamajigs, The Foundation of the Fabricators & Manufacturers Association, Int’l (NBT), based in Rockford, Ill.

Directing the new organization will be former FMA Foundation executives Gerald Shankel and Terrence Egan, serving as president and director, respectively. Ratzenberger will continue to serve on the governing board and lead the foundation’s national public policy and media campaigns.

A new entity, Nuts, Bolts & Thingamajigs, The Foundation of the Fabricators & Manufacturers Association, Int’l (NBT), is intended to inspire America’s youth to consider careers in manufacturing. As pictured above, John Ratzenberger (center) oversees a young student operating a drill press at the Women of Today’s Manufacturing/Techworks summer camp in Rockford, Ill.

— continued on page 103
The robotic welding solution for small batch production

- Off-the-shelf welding automation system
- Quick implementation of only a few weeks
- Flexible and modular working envelope
- Turnkey solution integrates software and hardware components
- Innovative software automates robot programming

OUR PROMISE – fast & flexible short run production of welded parts.
Find out how, call 1.248.994.1041 for a custom demo.

SmartTCP
Automatic Welding

www.smarttcp.com

For Info go to www.aws.org/ad-index
GE Oil & Gas to Supply Large Reactors to Italian Refinery

GE Oil & Gas recently received a major contract to supply Italian energy company Eni S.p.A. with what it believes to be the largest refinery reactors of their type ever manufactured. The reactors will be a critical part of Eni’s project to boost production at its refinery in Sannazzaro, Italy. Financial terms of the contract were not disclosed. Heavy-wall reactors are used for high-pressure and high-temperature refinery processes including hydrocracking, hydrotreating, and desulfurization.

GE’s components production facility in Massa, Italy, will manufacture the heavy-wall, slurry reactors, which will weigh approximately 2000 tons each. It will utilize advanced manufacturing techniques such as welding of Cr-Mo-vanadium materials, which resists corrosion in refineries and other harsh environments.

Due to their size, and the refinery’s location in a densely populated area, the units cannot be delivered completely assembled. Forged rings for the reactors will be welded at GE’s Massa facility, then delivered to the refinery on specially designed trucks. GE will set up a temporary facility to complete construction on site. The two reactors are scheduled for delivery early in 2011, with commercial operation in 2012.

They will be the centerpiece of a new process designed to produce more middle distillates from each barrel of feedstock. A proprietary process called Eni Slurry Technology enables increased efficiency in unconventional oils, heavy oils, and residues distillation. The process produces no residues, unlike other heavy oil cracking processes.

Linde Group and Samsung Engineering to Build Ethylene Plant in India

A contract valued at about $1.3 billion to build a turnkey ethylene plant in Dahej, India, has been awarded to The Linde Group and Samsung Engineering, Korea. The plant will be the largest of its kind in India and one of the largest ethylene plants in the world.

OPAL, a subsidiary of the state-owned Oil and Natural Gas Corp., commissioned the plant, which is part of a new petrochemical complex being built in the Indian state of Gujarat. It is expected to produce 1.1 million tons of ethylene, 400,000 tons of propylene, 150,000 tons of benzene, and 115,000 tons of butadiene per year. These products are used as source materials in the plastics industry.

Strategic Marine Opens Shipyard in Vietnam

Strategic Marine recently held the official opening of its $18 million shipyard in Vietnam. Company Chairman Mark Newbold told the several hundred dignitaries and guests attending the grand opening that the Vietnamese yard had already won more than $68.3 million in orders. The 33.6-acre yard has the capability of constructing large steel and aluminum vessels.

He also announced the company had pioneered and funded an apprenticeship program, a first by any company in Vietnam, which would see 55 Vietnamese workers undertake a two-year course in a range of specialized shipbuilding skills. “This scheme is expected to boost the national government’s plans to expand and modernize its shipbuilding industry, while helping us to upgrade skill levels,” Newbold said.

He said the shipyard, located in the Dong Xuyen Industrial Zone in Ba Ria Vung Tau province, could not have been built without the support of the Vietnamese authorities and local businesses, “and the sheer hard work of the yard’s 1100 employees.”

To date, the facility has completed construction of the 103- x 50-m steel pontoon base for the Australian Marine Complex’s floating dry dock, which was shipped to western Australia last year.

The yard has nearly 5 acres of machinery and workshop space, including five large fabrication workshops, five specialist workshops, a 1.2-acre stores area, and a 16,000-sq-ft paint shop.

Magnatech Building New Orbital Welding System Center in The Netherlands

Magnatech International is constructing a 16,400-sq-ft facility in Dronten, The Netherlands. It will be used as a distribution center for the company’s line of orbital pipe welding systems. The building is expected to be completed in late summer.

“With our rapid expansion in all areas of mechanized pipe welding, particularly in the pipeline industry, we need space for customer demonstrations, training, and service,” said Wyn Wijnholds, company president.
For Welding Protection

A leader in powered and supplied air and auto-darkening filter (ADF) technologies for over 30 years, 3M is excited to introduce a new line of Speedglas™ combined systems and helmets. We’ve paired the legendary Speedglas ADF with our best-in-class powered air purifying respirator and our L-Series hard hat to provide you with unparalleled comfort and protection in the most demanding welding and grinding environments.

3M continually strives to develop adaptable welding and grinding products that meet your changing needs. You wanted a hard hat with Adflo™ and we listened. We are pleased to provide you with new 3M™ Speedglas™ Helmets with Powered and Supplied Air Protection—including 3M™ Adflo™—for applications where hard hats are required.

For more information on Speedglas helmets, please contact your local 3M representative, call 1-800-328-1667, or visit www.speedglas.com.

For Info go to www.aws.org/ad-index
Friends and Colleagues:

I want to encourage you to submit nomination packages for those individuals whom you feel have a history of accomplishments and contributions to our profession consistent with the standards set by the existing Fellows. In particular, I would make a special request that you look to the most senior members of your Section or District in considering members for nomination. In many cases, the colleagues and peers of these individuals who are the most familiar with their contributions, and who would normally nominate the candidate, are no longer with us. I want to be sure that we take the extra effort required to make sure that those truly worthy are not overlooked because no obvious individual was available to start the nomination process.

For specifics on the nomination requirements, please contact Wendy Sue Reeve at AWS headquarters in Miami, or simply follow the instructions on the Fellow nomination form in this issue of the Welding Journal. Please remember, we all benefit in the honoring of those who have made major contributions to our chosen profession and livelihood. The deadline for submission is July 1, 2009. The Committee looks forward to receiving numerous Fellow nominations for 2010 consideration.

Sincerely,

Nancy C. Cole
Chair, AWS Fellows Selection Committee
GEDIK WELDING TECHNOLOGY

FORGET THE REST
TRY THE BEST

STICK ELECTRODES

WELDING WIRES

WELDING MACHINES
MIG/MAG & Rectifiers; conventional and inverter type of welding machines such as TIG, AC/DC TIG, DC TIG, Pulsed MIG/MAG, Synergic MIG/MAG, AC/MIG-MAG and air plasma cutting

THE LARGEST SUPPLIER IN WELDING

GEDIK WELDING INC.
Ankara Caddesi No: 306 Seyhli 34913 Pendik - ISTANBUL / TURKEY
Call: +90 216 378 50 00 (Pbx) Fax: +90 216 378 79 36 - 378 20 44
US OFFICE Call: 1 - 800 - 468 - 0855
Web: www.gedikwelding.com E-mail: gedik@gedik.com.tr

For Info go to www.aws.org/ad-index
Readers Question Article on Fillet Weld Measurements

We are writing with our areas of concern about an article in the February 2009 Welding Journal. The article is “How to Accurately Measure Fillet Welds,” by Joe Pavilanis.

The article states that “Woolf Aircraft needed a tool . . . traceable to NIST . . . therefore, the company developed an inspection tool/system that it can use to measure a leg length, as well as the actual weld throat.” According to AWS A3.0:2001, Standard Welding Terms and Definitions (see Fig. 25A, B), convex fillet weld and concave fillet weld on page 83, it is impossible to measure the actual throat with the mentioned tool. As illustrated below, the actual throat in a convex weld is measured from the weld root (point at which weld metal intersects the base metal and extends farthest into the weld joint) to the most convex portion of the weld. In addition, for a concave weld the actual throat is measured from the weld root (point at which weld metal intersects the base metal and extends farthest into the weld joint) to the most concave portion of the weld. Because you cannot see the weld root without cutting a piece out and etching it, we believe the author may be referring to the theoretical throat.

Figure 5 of the article states, “By knowing the actual throat reading, we also know the actual leg length of this side of the triangle.” We are suggesting that this also is incorrect according to AWS A3.0:2001. In a convex weld, the leg size is determined by measuring from the joint root to the toe of the weld. If the horizontal leg measurement equals the vertical leg in measurement, this will give you fillet weld size. If the leg measurements are different, you use the length of the shortest leg. We believe the author may be referring to the theoretical throat. In a concave fillet weld the leg is still measured the same way only in this case, the leg of the fillet weld will

--- continued on page 103 ---
Digital Tandem: Performance X 2 = Perfection and Speed

The Fronius Tandem System is a true “ready to weld” package for both high deposition steel, stainless and aluminum welding. The perfect marriage of a compact 900A/100% duty cycle torch, digital power source and optimized synergic lines for Pulse-Pulse, Pulse-CV and CV-Pulse. Let Fronius provide you the perfect solution today.

FRONIUS USA, LLC
10421 Citation Drive, Suite 1100, Brighton Michigan 48116, USA
Tel: 1-810-220-4414, Fax: 1-810-220-4424
e-mail: sales.usa@fronius.com, www.fronius-usa.com

For Info go to www.aws.org/ad-index
What defines **excellence in welding sales**?

The American Welding Society announces the first and only certification program for welding sales representatives

2009 AWS Certified Welding Sales Representative Seminar/Examination Sites

- Miami: Oct. 21-23 (at AWS headquarters)
- Chicago: Nov. 16-18 (at the FABTECH Int'l & AWS Welding Show)

Visit www.aws.org/certification/CWSR
If you are among the best and most successful sales professionals in the welding industry, it’s because you provide value-added expertise to your customers.

You are there for them when they want to try new solutions. You are there when they struggle to improve their welding quality and productivity. You are there to help provide a safe workplace.

You have years of expertise that back up every recommendation and every sale you make. And you never stop soaking up all the knowledge you can – because you strive to be among the best.

For you, there is a new certification stating that you exemplify excellence in sales professionalism.

The AWS Certified Welding Sales Representative program tells the industry that you have what it takes to add value to every sale.

If you meet the program’s requirements, you can take a two-hour exam to establish your credentials. Convenient examination sites are scheduled throughout the country. In addition, AWS offers three-day preparation seminars with the examination on the afternoon of the third day. The seminar can be taken at certain AWS-scheduled sites, or at your workplace for groups of sales personnel.

Examination topics will establish your level of knowledge concerning five arc welding processes, brazing and soldering, cutting, safety in processes and gas cylinder handling, AWS filler metal classifications, shielding gas applications, welding terminology, ventilation, electrical requirements for power sources, and welding procedures and their qualification.

The optional seminar will not only prepare you for the exam, it can also enhance your professional knowledge, especially as you network with your peers in a stimulating, interactive classroom environment. You’ll receive a study guide and valuable reference books that you can keep: *Welding Handbook* volumes 1 & 2, AWS A5.32 Specification for Welding Shielding Gases, and ANSI Z49.1 Safety in Welding, Cutting, and Allied Processes.

Prerequisites for the AWS Certified Welding Sales Representative program include a high school diploma or equivalent and at least five years’ experience in an occupational function in direct relation to the sales of welding equipment, cutting equipment, and supplies and other related services; OR at least two years’ of the same experience PLUS a training certificate of completion for welding processes.

Completion of the AWS Certified Welding Sales Representative seminar fulfills this training certificate requirement...so by taking the seminar, a sales representative with between two and five years’ relevant experience would be qualified to take the exam.

For more information and application forms, visit www.aws.org/certification/CWSR. For information about applying, call 1-800-443-9353 ext. 273. To learn more about the exam-preparation seminar, call 1-800-443-9353 ext. 455. Or for customized training and examination at your workplace, call 1-800-443-9353 ext. 219.

You are among the elite in welding sales. Now you can prove it, as an AWS Certified Welding Sales Representative.
Q: I need to make a series of lap fillet welds of 304L stainless steel, ¼ to ½ in. thick, on mild steel sheet and plate that are anywhere from ¼ to ½ in. thick. In every case, the stainless steel thickness will be less than or equal to the mild steel thickness. I am considering making these welds by GTAW without filler metal. Is this an acceptable approach?

A: Depending upon how long the welds are, there can be significant risks in this approach. An autogenous weld (no filler metal) will be composed entirely of a mixture of the two base metals. In an autogenous lap fillet weld, as sketched in Fig. 1, the majority of the weld metal composition comes from the overlapping piece, which, from your description, would be the 304L stainless steel piece. It would be reasonable to assume that the fused metal will be somewhere between 60 and 90% stainless steel, with the remainder being mild steel. If the welding is done manually, as I expect, the dilution is likely to vary all across that range, so we need to consider all of the possible compositions in that range.

For estimating fusion zone solidification mode and microstructure, only the carbon, chromium, nickel, and nitrogen contents are of interest. The 304L stainless composition might typically be 0.02% C, 18.5% Cr, 10.5% Ni, and 0.03% N, with a calculated Ferrite Number (FN) of about 4, and solidification in the primary ferrite mode. It is very common for steel producers to aim for about 4 FN in 304L base metal. The mild steel composition might typically include 0.15% C, with no significant chromium, nickel, or nitrogen.

There are two concerns: what will be the solidification mode of the fusion zone, and what will be the alloy content (austenite stability) of the fusion zone. The solidification mode bears directly on the likelihood of solidification cracking in the weld metal. The austenite stability bears directly on the likely mechanical properties of the fusion zone and the possibility of cold cracking.

Given that the fusion zone is expected to consist of 60 to 90% 304L stainless, the composition range of the fusion zone can be easily calculated, as is shown in Table 1. The chromium equivalent (Cr_{eq}) and nickel equivalent (Ni_{eq}) for each composition, calculated according to the WRC-1992 Diagram (Fig. 2), are also included in Table 1. The actual fusion zone composition is likely to vary between the 60% and 90% 304L limits.

Figure 2 has been slightly modified from its original published form to emphasize the dashed line that forms the boundary between the region labeled “AF” (in which solidification occurs in the primary austenite mode and in which solidification cracking is quite likely) and the region labeled “FA” (in which solidification occurs in the primary ferrite mode and in which solidification cracking is highly unlikely). Then the locus of all possible fusion zone compositions for the case of an autogenous GTA weld between typical 304L and mild steel has been added to the WRC-1992 Diagram. The locus of all possible fusion zone compositions is marked as “mild steel” on the lower-left end and “304L” on the upper-right end, to indicate where those compositions lie. Then the composition corresponding to a fusion zone of 90% 304L and the composition corresponding to 60% 304L are indicated on this locus of all possible compositions in Fig. 2. Compositions between these two dilutions will lie between these two points on the WRC-1992 Diagram.

From Fig. 2 it can be seen that the point labeled “90%” is barely inside the region of primary ferrite solidification, which would indicate that solidification cracking of such a composition would be highly unlikely. However, traversing slightly downward and to the left (less 304L and more mild steel in the fusion zone) along the locus of all possible fusion zone compositions would cross over into primary austenite solidification at slightly less than 90% 304L. For such compositions, solidification cracking becomes a distinct possibility.

Furthermore, it can be seen that the locus of all possible fusion zone compositions crosses the shaded region labeled “Martensite Boundary @ 1% Mn” at Table 1 — Typical Composition of Mild Steel and 304L Stainless, and Diluted Fusion Zone

<table>
<thead>
<tr>
<th></th>
<th>Mild Steel</th>
<th>304L Stainless</th>
<th>90% 304L</th>
<th>60% 304L</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.15</td>
<td>0.02</td>
<td>0.03</td>
<td>0.072</td>
</tr>
<tr>
<td>Cr</td>
<td>—</td>
<td>18.50</td>
<td>16.650</td>
<td>11.100</td>
</tr>
<tr>
<td>Ni</td>
<td>—</td>
<td>10.50</td>
<td>9.450</td>
<td>6.300</td>
</tr>
<tr>
<td>N</td>
<td>—</td>
<td>0.03</td>
<td>0.027</td>
<td>0.018</td>
</tr>
<tr>
<td>Cr_{eq}</td>
<td>0.00</td>
<td>18.50</td>
<td>16.650</td>
<td>11.100</td>
</tr>
<tr>
<td>Ni_{eq}</td>
<td>5.25</td>
<td>11.80</td>
<td>11.15</td>
<td>9.18</td>
</tr>
</tbody>
</table>

Fig. 1 — Sketch of autogenous GTAW lap joint of 304L on mild steel.

Fig. 2 — WRC-1992 Diagram with typical 304L and mild steel. The boundary between the AF and FA solidification modes is emphasized as the heavy dashed line.
slightly less than 90% 304L. Compositions below and to the left of this boundary are predicted to transform to martensite. Compositions within the shaded boundary may or may not transform to martensite — there is a degree of uncertainty in the precise location of the boundary, which is the reason it is shown as a shaded region rather than a distinct line. If the fusion zone transforms extensively to martensite, it will be brittle and could be subject to cold cracking. This is where the weld length issue comes in — the longer the weld is, the more likely that occurrence of cold cracking becomes due to greater longitudinal restraint. The GTAW process normally produces very little diffusible hydrogen, so the tendency to cold cracking of martensite is likely to be low, but not negligible.

In conclusion, it is feasible to do what you propose, but it is not without risk. Probably the greatest risk is of crater cracking if the fusion zone solidifies in the primary austenite mode. To combat that, I suggest that you train your welders to employ current downslope control and run the arc up on the 304L when terminating each weld, as this can minimize crater cracking tendencies. You also need to assess the mechanical property requirements of the joints. In particular, is ductility necessary in the fusion zone? If not, then you can probably accept some martensite in the fusion zone, but you should also take into account the possible consequences of a failure in case a given weld cracks or fractures. You should also recognize that it is difficult, in an autogenous GTAW procedure, to get a fillet weld throat large enough to make the weld strength equal the 304L base metal strength without a lot of penetration into the mild steel, so the load-bearing ability of the fillet is likely to be limited. Finally, I suggest that you plan for extensive visual examination of the joints to look for cracks and any evidence of excessive penetration into the mild steel.

DAMIAN J. KOTECKI is president, Damian Kotecki Welding Consultants, Inc. He is a past president of the American Welding Society, currently treasurer and a past vice president of the International Institute of Welding, and a member of the AWS ASD Subcommittee on Stainless Steel Filler Metals, and the AWS D1K Subcommittee on Stainless Steel Structural Welding. He is a member and past chair of the Welding Research Council Subcommittee on Welding Stainless Steels and Nickel-Base Alloys. E-mail your questions to Dr. Kotecki at damian@damiankotecki.com, or send to Damian Kotecki, c/o Welding Journal, 550 NW LeJeune Rd., Miami, FL 33126.
Building Momentum for Long-Term Jobs

BY CHRISTINE TODD WHITMAN

Christine Todd Whitman served as governor of New Jersey and head of the U.S. Environmental Protection Agency before becoming cochair of the Clean and Safe Energy Coalition.

During my tenure as New Jersey’s governor, I learned a great deal about labor markets. One lesson was that worker shortages often point to a perception problem.

We know from talking to high school kids that such is the case with welding and other highly skilled trades. More than a third of American high school students recently surveyed about their employment plans said they were not pursuing a career in skilled tradesmen.

Electric utility companies are under increasing pressure to derive more of their electricity supplies from clean energy sources. Nuclear energy is the only largescale electricity source that is emissions-free, produces power around the clock, and is expandable today. Using nuclear energy plant technology developed in the United States and uranium fuel from domestic sources or friendly trading partners like Canada, it will also greatly reduce our dependence on foreign energy sources. For all of these reasons, utilities have filed permits to build 26 new reactors.

This pending wave of nuclear energy plant construction will provide tremendous opportunity for welders seeking long-term, high-paying positions. If all 26 plants now pursuing licenses are built, they would create up to 62,000 construction jobs. Each new reactor project will employ as many as 2400 construction workers at peak periods. In the southeastern part of the country, where many of these facilities will be built, energy producers predict they will need more than 115,000 skilled tradesmen, including 22,000 boilermakers and tube welders, and 38,000 pipefitters and combination welders, according to a report released by the Clean and Safe Energy Coalition, which I chair along with Greenpeace co-founder Patrick Moore.

Many companies already are hiring in anticipation of the building boom. Over the past three years, the prospect of nuclear plant construction has created 15,000 jobs, including many in the manufacturing industry. Westinghouse, for example, announced last April that it added 3000 jobs in the past three years, and it expects to add 400 to 500 per year to meet expected demand from new nuclear plant construction.

Indirectly, economic benefits will spread to hundreds of suppliers of commodities and components manufacturers, spurring much-needed relief for local communities hard hit by the economic slowdown. Depending on its design, a new nuclear reactor could require up to 3 million cubic yards of concrete, 50,000 tons of reinforcing steel and related parts, as much as 150 miles of pipe, more than 11,000 valves, and as many as 2200 pumps.

These messages are resonating with attendees at regional workshops, but those attending these forums represent a sliver of the young Americans who are eager to find jobs. That’s why I am extremely encouraged by the American Welding Society’s proactive and innovative efforts to manage its workforce transition through programs like welding “boot camps” run by local colleges to gaining training grants. These efforts are clearly bearing fruit.

Welders were involved in the greatest engineering feats in our nation’s history, from our railroads to our skyscrapers to our dams. Now, as we prepare to embark on yet another infrastructure challenge, they are being called on again.

At a time when many in our society are lamenting the decline of America’s zeal for building infrastructure, this transformation will create an abundance of opportunities for Americans of all ages to leave their mark on America’s rich landscape.

Growth industries aren’t easy to come by these days. Those workers who stake their claim now can be secure in the knowledge that they will be needed for decades to come. ♦
The Perfect Bond.

TRUMPF lasers and laser systems supply the flexibility and the reliability necessary for demanding industrial welding applications.

Superior quality welds are produced with minimal heat input and virtually no distortion of the workpiece. High welding speed and uptime result in greater throughput compared to conventional joining techniques. Sharing or splitting the laser beam is simple, allowing each TRUMPF laser to service multiple workstations or multiple welding points on a single component for maximum utilization.
The most complete event on weld cracking
Learn different types... Understand the causes... Discover solutions.

The most perplexing problem in the welding industry has to be weld cracking. Back by popular demand, this one-day conference is for those who want or need to get a handle on any weld cracking situation. The 2009 conference will also provide networking opportunities where you can talk to welding cracking experts and others in the industry who face the challenges of weld cracking.

For the latest conference information visit our website at www.aws.org/conferences or call 800-443-9353, ext. 455.

Hosted by:
American Welding Society®

Earn PDH’s toward your AWS recertification or renewal when you attend the conference!

November 16, 2009 - Chicago

WELD CRACKING
"THE HEAT AFFECTED ZONE" CONFERENCE
When it comes to the utmost in weld preparation excellence, companies around the world depend on Tri Tool® equipment to get the job done right.

Over the years, Tri Tool’s wide range of BevelMaster® ID mounted portable beveling equipment has earned a rock solid reputation with people who make pipe their profession, as the best built and best performing beveling equipment they can get their hands on. (We couldn’t agree with them more!)

TRI TOOL INC.
888-TRITOOL • 916-288-6100
www.tritool.com
ACGIH Intends to Reduce Respirable Manganese Limit

The American Conference of Governmental Industrial Hygienists (ACGIH) recently announced its intention to reduce the threshold limit value (TLV) for manganese. The new TLV is 0.02 mg/m³, a tenfold reduction from the previous limit of 0.2 mg/m³. This reduction is intended to reduce exposure to manganese fume based upon the ACGIH TLV, engineering controls will be essential in any area where welding activities are performed.

The reduction in TLV means that if you control exposure to manganese fume based upon the ACGIH TLV, engineering controls will be essential in any area where welding activities are performed. Additional information about this development can be found on the ACGIH Web site at www.acgih.org/TLV/DevProcess.htm.

Additional details regarding the TLV development process are located on the ACGIH Web site at www.acgih.org. The ACGIH invites public comment upon intended changes to TLVs, and the deadline for comments on this change is July 31, 2009. If you have information that may influence the ACGIH on this matter, you are urged to provide it by the above deadline.

WONDER GEL
Stainless Steel Pickling Gel

Achieve maximum corrosion resistance to stainless steel. Surface contamination may drastically reduce the life of stainless steel. Wonder Gel removes (pickles) stubborn impurities, cleans the toughest slag, scale and heat discoloration and restores (passivates) the protective oxide layer.

BRADFORD DERUSTIT CORP.
21660 Waterford Drive
Yorba Linda, CA 92887
International ph: 503.691-9721
International fax: 503.692.1634
e-mail derustit@albany.net

Weld-Ed Workshop for Welding and Materials Joining Educators

June 15-26, 2009 – Texas State TC – Waco, Waco, TX
July 13-24, 2009 – Penn. College of Technology, Williamsport, PA
August 3-14, 2009 - Yuba College, Marysville, CA

Participants will receive information on the growing need for welding technicians and a curriculum for use in training them. Weld-Ed staff will discuss the opportunities for attendees to create new AAS programs in welding technician education and/or to infuse welding and materials joining instruction into existing technician or technology programs. Attendees will also learn about Weld-Ed materials and services that are available for planning and implementing welding and materials joining education at their institutions. Participants will receive three semester credit hours on completion of the course.

Weld-Ed is a National Science Foundation ATE National Center of Excellence with the stated mission of promoting welding education and training and assisting secondary and post secondary schools around the country in developing and implementing educational programs that support the creation of welding and materials joining technicians.

Fee: $500, participants are responsible for any travel, evening meals, and weekend lodging and meals.

For registration information, go to www.weld-ed.org/workshops, or call 440-366-7036.

For info go to www.aws.org/ad-index

For info go to www.weld-ed.org/ad-index

For info go to www.weld-ed.org/ad-index
services a wide variety of industries in the ENERGY SECTORS of hydro, petro chemical, atomic, gas, oil, wind, etc. in addition to those in heavy manufacturing, steel, pulp & paper, mining, marine, forestry, etc. Hodgson’s commitment to providing customers superior products and personalized professional service has earned itself a reputation for excellence, making the name HODGSON synonymous with “paramount quality and workmanship”.

Hodgson Custom Rolling Inc. is one of North America’s largest plate rolling, forming, section rolling and fabricating companies.

PLATE ROLLING & FLATTENING

Hodgson Custom Rolling specializes in the rolling and flattening of heavy plate up to 7” thick and up to 12 feet wide. Cylinders and segments can be rolled to diameters ranging from 10” to over 20 feet. Products made include ASME pressure vessel sections, Crane Hoist Drums, thick walled pipe, etc.

PRESS BRAKE FORMING & HOT FORMING

Hodgson Custom Rolling’s brake department processes all types of steel sections and plate up to 14” thick. Developed shapes such as cones, trapezoids, parabolas, reducers (round to round, square to round) etc.

STRUCTURAL SECTION ROLLING

Hodgson Custom Rolling has the expertise to roll curved structural sections into a wide range of shapes and sizes (angle, wide flange beam, l-beam, channel, bar, tee section, pipe, tubing, rail, etc.). We specialize in Spiral Staircase Stringers, flanges, support beams, gear blanks, etc.

FABRICATING

Hodgson Custom Rolling combines expertise in rolling, forming, assembly and welding to produce various fabrications including kiln sections, rope drums, heavy weldments, ladles, pressure vessel parts, multiple Components for Heavy Equipment applications etc.

Hodgson Custom Rolling Inc.

5580 Kalar Road Telephone: (905) 356-8132 U.S. Address: M.P.O. Box 1526
Niagara Falls Toll-free: (800) 263-2547 Niagara Falls, N.Y.
Ontario, Canada Fax: (905) 356-6025
L2H 3L1 E-mail: hodgson@hodgsoncustomrolling.com
Canada Website: www.hodgsoncustomrolling.com

ASME Certified
ISO 9001:2000

HODGSON CAN HELP SOLVE YOUR PROBLEMS

For Info go to www.aws.org/ad-index
Q: My company is relatively new to resistance spot welding, and we are looking at efficiency improvements that would require running multiple part combinations on a single tool. With an eye toward minimizing potential changeover miscues, we would like to utilize a single welding electrode for all of our spot welds, if possible. Unfortunately, after a review of the many electrode combinations that might work, we came away slightly concerned about the wide variety available. Are there any rules or guidelines that could aid us in this endeavor?

A: This is a fairly common question within the industry as companies look to standardize and/or minimize the number of welding consumables, including electrodes, they stock for a given process. To help determine an answer, it will be helpful to consider the function of the electrode within the resistive welding process and then attempt to provide a few basic guidelines on proper selection.

The successful execution of any resistance welding operation, however simple or complicated, is dependent upon the proper functioning of the electrodes. The high level of development that has occurred (and is still occurring) with the various resistive joining processes has made it more evident than ever that good welding is a precision process. A properly designed welding machine includes a capable electrical system, robust mechanical system, and precise control system. The function of the electrodes is to conduct the current and withstand the high forces so as to maintain a uniform contact area, thus ensuring the proper relationship of current, time, and force required for a successful weld.

To answer your question regarding electrode selection and whether or not it is possible for one size to fit all, it is beneficial to start by discussing the basic parameters that affect every weld: current, time, and force. Other themes important to the discussion are electrode materials and contact face geometry. As you did not detail the specifics of the substrates involved, this discussion is generic in nature but should provide enough information on the selection of resistance spot welding electrodes to reach the correct conclusion for your particular application.

Weld Force. The force required for a particular weld influences many aspects of electrode design and construction, particularly the electrode taper size, body diameter, and cooling cavity to contact face distance. The welding operation subjects the electrodes to stresses that are often of considerable magnitude, and they must be capable of withstanding these stresses at elevated temperatures without excessive deformation. This is a difficult task when one considers that many resistance spot welds are made between 500 and 1700 pounds. The majority of the electrode design requirements have been proven over time and subsequently incorporated as industry standards. Specifically, AWS D8.6, ISO-5821, and RWMA Bulletin 16 may be referenced for the recommended or standardized designs. The electrode design constraints mandated by force are a critical area where a compromise in the electrode selection process may occur. For example, if one application requires a higher weld force than another, the electrode selected must be capable of withstanding the greater force condition.

Weld Current and/or Weld Time. The secondary welding current and time required to achieve a spot weld are rarely, if ever, considered when selecting an electrode. The primary reason for this is that the vast majority of spot welding electrodes are cooled in some fashion, thus rendering them with excellent electrical and thermal capacities. This results in the required weld force being a much larger factor in electrode design selection than either current or time.

Electrode Material. An in-depth discussion on the proper selection of electrode materials should be left for another time as this is potentially a very application-specific area of resistance welding. There are many excellent sources of information on this topic and a good place to start is the Resistance Welding Manual or one of the many electrode suppliers listed in the RWMA Directory (files.aws.org/rwma/docs/webdir-09.pdf). One point to keep in mind is that electrodes generally have a higher thermal conductivity than that of the metals being welded, so for a starting point consider electrodes constructed of RWMA Class-1 and Class-2 copper as these alloys compose the majority of the usage within the industry.

Electrode Geometry. The selection of the contact face geometry is the most critical aspect of electrode selection that must be considered. To help facilitate this selection, several aspects of the weld must be considered. These include the required weld size, substrate gauge, and surface quality requirements. One important physical characteristic to remember is that the contact face geometry, weld size, and substrate gauge should all trend in the same direction. More to the point, a welding process that attempts to utilize a larger contact face to weld both a thick and thin section will most likely struggle on this stack-up. This is a very important point to keep in mind when selecting the electrode for your application. Other items such as substrate type and coating, while important for determining the actual weld schedule (force, etc.) and influencing the potential life of the electrode, do not have the impact on achieving the initial weld that the required weld size, substrate gauge, and surface quality do.

Figure 1 illustrates six of the many standard electrode nose geometries available.
Each of these geometries has its own benefits and limitations, and supporters and detractors. Type A, B, and E geometries are most commonly used for general welding applications. Type C and F geometries are typically used where minimal surface marking is required. Type D geometry permits access in limited spaces. The following general guidelines should help with the selection process:

- **Type A.** Good general design. The selection of the contact face diameter is important so that it is compatible with the desired weld size and the substrate gauge. The design is able to support weld sizes larger than 4VGMT (governing metal thickness) when a properly sized contact face is utilized for a particular substrate gauge.

- **Type B.** Also a good general design. Type B will typically result in more indentation than Types A or E due to its spherical shape; it is not able to support very large weld sizes. As a rule of thumb, do not expect to sustain weld sizes larger than 4VGMT. It is a good candidate for robotic dressing.

- **Type C.** Utilized for improved weld surface quality. Has the potential to wear quickly when welded on coated materials and should be dressed off-line in order to renew properly.

- **Type D.** Utilized when a weld has to be made close to an upturned flange or corner. The offset loading associated with the Type D design is hard on the electrode taper. The basic rules regarding Types A and E contact face diameters also apply to the Type D electrode contact face.

- **Type E.** Another good general design available in different rake angles. The 30- and 45-deg designs are the most popular. These designs are also a good candidates for robotic dressing. As with the Type A electrode, the selection of the contact face diameter is important so that it is compatible with the desired weld size and substrate gauge.

- **Type F.** Utilized for improved weld surface quality. May also be used when welding very thick stack-ups or aluminum, depending on the face radius specified. A properly sized Type F can support very large weld sizes (>5.5vGMT) when used with robust schedules and capable equipment. Also while possible, this geometry is not a good candidate for robotic dressing.

For further information on electrode selection, AWS Cl.1:2000, *Recommended Practices for Resistance Welding*, may also be a beneficial reference. So to attempt to answer your question: Are there industry standard electrode designs available that are very versatile and capable of welding many different stack-ups? The answer is yes if due considera-

Acknowledgment

The author would like to thank the Resistance Welding Manufacturing Alliance (RWMA) for allowing the use of information from the *Resistance Welding Manual*, revised 4th Edition, to answer this question. This resource is available at www.rwma.org in the publication section.
Multiprocess Welding Machine Designed for Use in Pipe Fabrication Shops

The PipeWorx™ welding system provides good pipe-welding performance with quick, one-button changeover between processes. Its SMA, GTA, GMA (including the company’s RMD™ [Regulated Metal Deposition] and ProPulse™ technologies that provide welding from root to fill and cap passes), and flux cored processes have been optimized for pipe fabrication. Also, switching between the processes is almost instantaneous, with no need to manually switch polarity, cables, or hoses. Setting up a new process requires a few simple steps, resulting in quicker training times and reducing the chance for input errors. Users select the desired process and, as applicable, the electrode or wire, and wire feed speed. Up to four programs can be stored for each process, and processes can be shared among different machines via a memory card. The front panel, which was designed with input from pipe welders, is clearly labeled and provides only the controls necessary for the task at hand. To eliminate confusion, only backlit controls are adjustable. Quick Set technology automatically sets the correct polarity and returns to the last settings for that process. A storage system keeps cables organized when not in use and helps eliminate the potential for incorrect/loose connections.

Miller Electric Mfg. Co.
www.MillerWelds.com
(800) 426-4553

Saw Speeds Power Plant Maintenance

The Esco APS-438 air-powered saw features a 3-hp motor that requires 80 ft³/min @ 90 lb/in.² to drive a fiberglass reinforced blade for cutting Inconel®, stainless steel, and other hard tubes. It can be supplied with a track that attaches using weld tabs for removing old panels and a quick-clamp track system for trimming new panels. In addition, the product eliminates the need for eye rework before end prepping because it produces a square cut with ±¼-in. accuracy and no heat-affected zone. This saw, weighing 28 lb, is available with fiberglass- or carbide-tipped steel blades 8 to 12 in. OD. It glides along both types of rigid tracks to ensure a clean cut.

ESCO Tool
www.escotool.com
(800) 343-6926

Tube and Pipe Bender Equipped with Quick-Change Tooling

The Giga Bender mandrel Model GB90 is useful for bending tube, pipe, square, and rectangular profiles to centerline radius as tight as 1D centerline radius. Its features include programming multiple bend angles to 180 deg with independent material springback setting for each bend. A USB port is provided for unlimited program memory storage with multiple USB memory. The interactive touch screen display offers ABS or INC modes. Easy-to-use controls offer access to auto and manual operating modes, system diagnostics, and multiple language capability, and it calculates material requirements, and programs the bend from simple xyz programming. Extra programmable components include mandrel positioning, clamping, pressure die, and boost die. The hand-held remote bending control is certified Class 3 safety. Machines are available up to six-axis numerical control.

CML USA Ercolina®
www.ercolina-usa.com
(563) 391-7700

Abrasives Provide High-Quality Finishes

The company’s abrasive belts include ceramic aluminum oxide and alumina zirconia, both lubricated and nonlubricated, and aluminum oxide with a variety of backings and grit ranges. Other products include a full line of flap discs, fiber discs, flapwheels for stationary and hand-held machines, as well as a full line of quick
disc connect type discs with various attachment options. A large variety of PSA and Velcro®-type discs are available for everything from metal removal to fine polishing work.

Klingspor
www.klingspor.com
(800) 645-5555

Coating Offered for Boiler Erosion and Corrosion

Super Hard Steel® alloy, SHS 8000, handles coating applications in the power-generation industry. It improves reliability and availability as well as increases the lifetime of pressure parts. In the photo, this TWAS cored wire is applied as a coating to boiler tubes to be installed inside a coal-fired power-generation station in central California. (Photo courtesy of The NanoSteel Co., Inc.) A cored wire for twin wire arc thermal spraying, it excels in the elevated-temperature environments of pulverized coal and fluidized bed boilers. Features include an ultrarefined crystalline microstructure, resulting in good corrosion, erosion, and wear resistance; a high hardness-toughness combination; and high bond strength without the necessity of a bond coat.

The NanoSteel Co., Inc.
www.nanosteelco.com/product/8000_twars.html
(877) 293-6266

X80 Pipeline Wire Offers Fast-Freezing Slag

The Hobart® Fabshield X80 self-shielded flux cored welding wire ensures consistent chemical and mechanical properties when welding on critical X80 pipeline applications. It creates welds with high tensile strength and good Charpy V-notch (CVN) impact toughness that remain ductile at low temperature. Classified under AWS A5.29, Class E81T8-Ni2-J, the wire provides a typical tensile strength of 94,000 lb/in. ² and a yield strength of 84,000 lb/in.². In addition, the wire provides CVN impact values from 107 ft/lb at −20°F to 96 ft/lb at −40°F. It is available in ⁷⁄₈ in. diameter in a range of packages and weights. The wire further features a fast-freezing slag that is nearly self-peeling, making it useful for welding in all positions and helping to reduce post-weld cleaning time. It can be used for single- or multipass welding on fillet, lap, or deep groove butt joint welds, especially those exposed to low temperatures.

Hobart Brothers Co.
Hobartbrothers.com
(800) 424-1543
Owning an H&M Pipe Cutting and Beveling Machine Makes Good $ and €.

H&M's Patented Cuboid Spacers and exclusive features save thousands of dollars in downtime and lost parts during the first year of operation:

- **7F Blow Hole Eliminator** (No more grinding to eliminate notches)
- **Patented Cuboid Spacers** (No more lost spacer bolts)
- **2DH Boomer Strap Eye Assembly** (No more lost boomer assemblies)

The competition may pipe up with cheap imitations, but H&M's 70 years of experience reap greater savings. Go to www.hmpipe.com for more information.

H&M Pipe Beveling Machine Company, Inc.
311 East Third Street / Tulsa, Oklahoma 74120-2417 / (919) 582-9984 / Fax (919) 582-9989
E-mail: info@hmpipe.com / www.hmpipe.com

For info go to www.aws.org/ad-index

Extension Cords for Welders Feature STW Jacket

The company's Welder Extension Cords bring portability to welding machines. These 8/3 STW extension cords are available in 25- and 50-ft lengths and deliver 40 A at 250 V. Additionally, they feature a STW jacket with molded ends for heavy-duty performance and a lighted receptacle for safety. These cords are useful for new commercial construction, MRO industrial, and general welding applications.

Coleman Cable Inc.
www.colemcable.com
(800) 323-9355

SYNETIK design

WELDING CHAIRS!

IMPROVE SAFETY COMFORT & PRODUCTIVITY

WELD IN A STAG4!

- IDEAL FOR CONSTRIC TED SPACES
- REDUCES INJURY AND IMPROVES POSTURE
- RELIEVES PRESSURE AND FATIGUE IN LOWER BACK, KNEES AND ANKLES
- INCREASE MOBILITY IN A SAFE POSITION

- 3 POSITIONS

VISIT US ONLINE FOR ALL OF YOUR ERGONOMIC NEEDS!

www.synetik-di.com
info@synetik-di.com, P: 514.488.7045, F: 450.839.1032

For info go to www.aws.org/ad-index
Pipe Welding Machine Employs Push-Pull Feeder

The all-digital Pipeliner utilizes a push-pull feeder for positive electrode delivery, while allowing use of standard 15-kg wire spools. The FCAW process allows heavier-wall pipe to be welded as it does not require a special narrow root opening joint geometry. The weld head is adaptable to pipes for 6–60 in. Also, the digital model allows programming by position (degrees of rotation). A hand-held control pendant allows the user to make changes in all parameters during welding to meet field fit-up conditions. The system is sealed to IP23 rating for waterproof and dust proof operation on the pipeline right-of-way. It is suitable for use on pressure and process piping as well as structural projects.

Magnatech LP - USA
www.magnatech-lp.com
(860) 653-2573

Manual Plasma Cutting Inverters Offer Easy Mobility

The CUTi 40, CUTi 70, CUTi 90, and CUTi 120 models are suitable for cutting all electrically conductive materials. Due to the inverter technology, they operate with little power. The four models cover the entire range of material thicknesses up to 50 mm. The inverter technology also offers another advantage — the machines can be transported and used easily due to their low weight. All models operate with the plasma torches PHT 15 or PHT 31. The series has been supplemented with a plasma cutting machine equipped with an integrated compressor; no compressed air supply is needed for operating the CUTi 35C, which can be used for cutting up to

For info go to www.aws.org/ad-index

Come to the BTC Campus and Watch the Sparks Fly!
Bellingham Technical College's

WELDING RODEO 2009

May 15th, Friday
8:00am-5:00pm

May 16th, Saturday
8:00am-6:30pm

www.btc.ctc.edu

For info go to www.aws.org/ad-index
Model 200 Positioner
3 models available:
100 pound, 200 pound and
500 pound capacity.

6-mm-thick material. If compressed air is supplied externally, it can cut up to 10-mm-thick material. Various tools allow circle cutting as well as straight and bevel cutting with all models.

Kjellberg Finsterwalde Plasma und Maschinen GmbH
www.kjellberg.de
+49 3531 500 0

UV Borescopes Come in Three Types

The company’s line of three ultraviolet (UV) borescopes is designed to be used in nondestructive examination dye penetration tests. The products can remotely detect surface flaws and cracks in hard-to-reach areas of mechanical components normally inaccessible to visual inspection. Borescopes are commonly used for quality control, maintenance, and finished product evaluation to identify cracks or defects in many areas like nuclear power plants, aerospace/automotive parts, military applications, and chemical or refining plants. They are available in three types including rigid borescope, flexible videoscope, and section borescope. In addition, they can be used to identify details and flaws as small as 0.001 in. With a variety of probes (direct, forward oblique, to the side, or retrospective), magnifications, and fields of view available, any type of cavity can be easily and effectively viewed. The borescopes feature stainless steel construction and are available in diameters from 4 to 10 mm, and lengths from 17.8 to 160 cm.

Lenox Instrument Co., Inc.
www.lenoxinst.com
(800) 356-1104

Consumables Meant for Downhill Pipe Applications

Three electrodes have been added to the company’s line of Pipeliner® products — the Pipeliner® LH-D80 (recom— continued on page 103
We Can Meet Yours, Too!

When critical welding conditions necessitate performance without compromise, you can depend on Arcos to provide you with a comprehensive line of premium quality high alloy, stainless and nickel electrodes to conform to your stringent requirements.

You can be assured of our commitment to superior welding products because Arcos quality meets or exceeds demanding military and nuclear application specifications. Arcos’ dedication to excellence has earned these prestigious certifications:

- ASME Nuclear Certificate # QSC448
- ISO 9001: 2000 Certificate # GQC230
- Mil-I 45208A Inspection
- Navy QPL

To learn more about the many reasons you should insist on Arcos high alloy, stainless and nickel electrodes for your essential welding applications, call us today at 800-233-8460 or visit our website at www.arcos.us.

Arcos Industries, LLC
One Arcos Drive • Mt. Carmel, PA 17851
Phone: (570) 339-5200 • Fax: (570) 339-5206

For Info go to www.aws.org/ad-index
Welding for New Nuclear Power Plants: Building on Experience

Lessons learned from the existing fleet of nuclear plants provide the foundation for new welding guidelines aimed at reducing the risk of degradation mechanisms

BY STEVE McCracken, ERIC WILLIS, AND JEFFREY HAMEL
Pressures to meet the growing demand for reliable, around-the-clock electricity and to reduce greenhouse gas emissions have revived interest in nuclear power in the United States. Several U.S. utilities are actively planning to build advanced nuclear power plants, and these plants could come on line by 2016 or 2017. The Nuclear Regulatory Commission has received 17 applications to build 26 new U.S. nuclear reactors and expects applications for up to 7 more reactors by the end of 2010.

A key reason for the renewed interest in construction of new nuclear plants is the existing nuclear fleet’s strong record of safe and reliable operation. In 2008, for example, U.S. nuclear power plants achieved an average 91% capacity factor, which indicates that plants were on line and generating electricity more than nine out of every ten hours.

The welding community has contributed to this commendable fleet performance through technically sound welding practices supported by stringent engineering codes and standards, and will continue to contribute to the success of the next generation of nuclear plants. High-quality, reliable welds are critical to safe nuclear plant operation. Because of the safety significance of welds in many critical systems, structures, and components, the nuclear power industry must be confident in the quality and integrity of welded joints.

The next generation of nuclear power plants will likely have a design life of 60 years or more. Improved welding and fabrication practices will be essential in achieving this increased life expectancy and minimizing the potential for unexpected and costly repairs and maintenance.

To ensure the reliability and longevity of future nuclear plants, the Electric Power Research Institute (EPRI) is working with utilities and equipment manufacturers to develop welding and fabrication “best practice” guidelines for new nuclear plant construction. Such guidelines will equip the welding community and utility engineers with practical tools for identifying and implementing the most efficient, timely, and cost-effective methods to reduce the risk of degradation mechanisms such as stress corrosion cracking.

As an independent, nonprofit research and development organization, EPRI

STEVE McCRACKEN (smccracken@epri.com), **ERIC WILLIS** (ewillis@epri.com), and **JEFFREY HAMEL** (jhamel@epri.com) are senior project managers with EPRI’s Nuclear Program. More information on EPRI’s Advanced Nuclear Technology Program can be found at www.epri.com/ant.

Machine gas tungsten arc welding of a closure joint on a 14-in.-diameter pipe.

Machine gas tungsten arc welding of a pipe-to-nozzle joint.
does not attempt to advocate or dictate any particular process for reducing the risks inherent in welding and fabrication practices. Rather, the Welding and Fabrication Best Practices project aims to provide multiple ways of achieving risk-reduction goals, so users can choose among several options and select the most practical or cost-effective approach in a given situation.

The ongoing project includes the following key steps:

- Evaluate welding and fabrication practices in operating plants to identify lessons learned
- Identify the relative susceptibility of critical welds in new nuclear plant designs to known degradation mechanisms
- Develop a systematic process that identifies the key factors influencing the susceptibility of high-risk welds to degradation mechanisms
- Provide recommendations for reducing the propensity of welds to degradation mechanisms.

Learning from Experience

The 104 nuclear generating units now operating in the United States offer a wealth of information about welding and fabrication practices, materials failure, and component degradation. The lessons learned from the existing nuclear fleet can help the industry identify practices that contribute to failures, and apply improved practices to increase the reliability and extend the life of new nuclear plants.

In 2008, as a first step in the best practices project, EPRI assembled a team of welding and fabrication experts to survey welding and fabrication practices in nuclear plants and in other industries. The survey team reviewed and documented practices that contributed, or could contribute, to the premature failure of critical components.

The researchers confirmed that most material failures in operating plants occur in or near welds. Root cause evaluations showed that many of these failures resulted from less than optimum welding, fabrication, or surface-conditioning practices. For example, residual stresses induced by welding and uncontrolled grinding on reactor coolant piping are known contributors to stress corrosion cracking. Weld repairs in particular can induce high weld residual stresses that increase susceptibility to cracking mechanisms. However, optimized welding and fabrication processes along with properly controlled repair practices can reduce susceptibility to known cracking mechanisms.

Closing the Gaps

Operating experience from the current fleet of nuclear power plants can be analyzed to identify and manage materials performance issues for advanced light water reactor designs currently being considered for new nuclear power plants. In many cases, evaluation of operating plant
issues and implementation of mitigation or management technologies can significantly reduce operating costs over the life of these new plants. Potential benefits include prevention of degraded conditions, more efficient and accurate inspections, and reductions in repair and replacement costs.

The EPRI Advanced Nuclear Technology Program has initiated a materials management matrix (MMM) initiative to meet this need. Among the key gaps identified through the MMM initiative is that currently there are no industry guidelines for new nuclear power plants plant fabrication and construction that identify practices that influence (positively or negatively) susceptibility to known degradation mechanisms.

Practical Information and Guidance

Building on the information matrix, the project team will meet with the original equipment manufacturer (OEM) for each new reactor design to review and document welding and fabrication practices. The team will then identify critical welds and assign a relative risk ranking to a known degradation mechanism. The risk ranking considers the influence of welding, machining, repair, and mitigation processes identified by the OEM and considers weld material, system service conditions, and operating experience. This information will be compiled in a Welding and Fabrication Addenda to the MMM for each new reactor design.

The team will also determine the welding, machining, repair, and mitigation factors that influence degradation mechanisms for specific materials. This information will be evaluated and documented in a Welding and Fabrication Critical Factors document. Utility engineers can use this report to identify specific processes or process parameters that can be implemented to reduce the identified susceptibility and risk. Together, these documents will enable users to identify welds with a high relative risk for degradation, and then systematically determine methods and ways to minimize and reduce susceptibility with specific welding and fabrication practices.

For example, the Welding and Fabrication Addenda to the matrix for a new pressurized water reactor design may rank the dissimilar metal nozzle-to-safe-end welds in the reactor coolant system high for relative risk to primary water stress corrosion cracking. A high relative risk ranking may be based on the critical nature of the system, materials, specific reactor design, service conditions, and on the influence of the welding, fabrication, and surface conditioning specified by the OEM.

The materials, design, and service conditions of the new reactors most likely cannot be changed. However, the welding, fabrication, or surface-conditioning processes can possibly be modified slightly or significantly to reduce the relative risk ranking of the dissimilar metal welds, which would increase the reactor coolant system life and reliability. For example, a number of processes have recently been developed to mitigate the tensile residual stresses that are produced by welding. These residual stress mitigation processes were not available during the construction of the original U.S. nuclear power plant fleet, but hold significant potential for application in the new fleet. For those cases where it is not cost effective or feasible to modify the welding process to reduce the residual tensile stresses, residual stress mitigation processes can be used to lower the propensity to degradation mechanisms. The Welding and Fabrication Critical Factors report will provide background information and specific guidelines on which processes or process parameters would effectively reduce the relative risk ranking.

The Payoff

Optimizing welding, fabrication, or surface-conditioning practices in the susceptible areas of critical components can significantly improve the life and reliability of new nuclear power plants, preventing forced shutdowns and reducing outage maintenance costs.

The best practices project is an ambitious collaborative effort to develop information and tools that will enable project participants to build reliability into new nuclear power plants. Working together, utilities, equipment manufacturers, vendors, and the welding community can seize the opportunity to apply improved welding and fabrication practices to ensure that new nuclear plants will operate reliably over their designed 60-year lifetimes.

Change of Address? Moving?

Make sure delivery of your *Welding Journal* is not interrupted. Contact the Membership Department with your new address information — (800) 443-9353, ext. 217; smateo@aws.org;
Friction stir (FSW) is a relatively new joining process that has exhibited many advantages over traditional arc welding processes, including greatly reducing distortion and eliminating solidification defects. Because melting does not occur and joining takes place below the melting temperature of the material, a very-high-quality weld can be created with low heat input, minimal distortion, no filler material, and no fumes. Friction stir welding is also highly efficient and more environmentally friendly than traditional welding methods.

For the pipeline industry in particular, FSW is advantageous because, compared to conventional fusion welding processes such as arc and laser beam welding, FSW is highly energy efficient, with reduction in energy usage of 60 to 80% not uncommon. Friction stir welding offers better weld quality because it is immune to the welding defects caused by solidification in fusion welding. It offers high weld joint strength, is a highly productive method of welding, and can join dissimilar materials and composites.

Until recently, applications for FSW have been limited mostly to aluminum and other low-melting alloys, and because FSW equipment is not inherently portable, it was not applicable for on-site construction of large and complex structures such as pipelines, bridges, and refinery vessels. Recent technology breakthroughs in tool composition and technology, however, have increased FSW’s joining capability to include high-strength steels and other high-melting-temperature materials. Also, portable equipment...
specific to FSW orbital welding can now perform girth welds in the field. This further enables this useful technology to be applied for pipe welding.

Friction stir welding of ferrous alloys is particularly useful in production environments where welding repair and direct costs are high. From a mechanical capability standpoint, FSW of up to $\frac{3}{4}$ in. (19 mm) maximum on steels is very repeatable, and development is currently underway to expand this capability up to $\frac{3}{4}$ in. (19 mm). The world currently has an estimated 6000 miles (10,000 km) of onshore pipelines used to transport oil and gas, with capital expenditure estimated as exceeding $16 billion. More than half of the world’s undeveloped hydrocarbon reserves are remote from potential users, and very large pipelines, up to 56 in. (1.42 m) diameter are required to transport the fuel to market. The welding process used to make the site girth welds has a significant bearing on the total cost of the pipeline. FSW offers significant cost improvements over the current practice of using mechanized or automated gas metal arc welding (GMAW) processes.

The FSW process is relatively easy to control in the presence of adverse environmental conditions, and the weld parameters are robust. Because it is capable of single-pass welds, FSW saves time and reduces the pipeline welding logistics considerably. This equipment can also be operated by a nonwelder, which can save labor cost but, more importantly, addresses the current shortage of qualified welders.

The Friction Stir Weld Process

The FSW process was patented in 1991 by The Welding Institute (TWI) for use with low-melting-temperature materials such as aluminum, brass, and copper. FSW is a solid-state welding process in which a non-consumable tool is rotated along the interface between two materials to be joined. The tool consists of a protruding pin, which is plunged into the workpieces, and a larger concentric “shoulder” that is maintained on the surface of the joint. The concave surface of the shoulder produces a mixture of frictional heating and forging pressure. Frictional heating created by the shoulder and pin rotation in contact with the base material produces a local plasticized region around the tool. As the tool moves along the weld joint, the plasticized material is displaced. Under the heat and forging pressure of the tool, a fully consolidated metallurgical bond is produced — Figs. 1, 2.

Welding parameters for FSW consist of the travel speed of the tool with respect to the base material, the rotational speed of the tool, and the forging pressure applied by the tool. These parameters are governed by the tool geometry (i.e., shoulder and pin diameter), mechanical properties of the material to be joined (i.e., flow stress), and material thickness.

The process was originally limited to low-melting-temperature materials because initial tool materials could not hold up to the stress of “stirring” higher temperature materials such as steels, stainless steels, and nickel-based alloys. This problem was recently solved with the introduction of new tool material technology using very hard materials such as polycrystalline cubic boron nitride (PCBN), tungsten rhenium, and ceramics. The use of a liquid-cooled tool holder and telemetry system has further refined the process and capability — Fig. 3.

Tool materials required for FSW of high-melting-temperature materials requires high “hot” hardness for abrasion resistance, along with chemical stability and adequate toughness at temperature. Material developments are advancing rapidly in different tool materials, each material having specific advantages for different applications. Shown in Fig. 4 are tool profiles of a 6-mm pin tool before and after more than 100 ft of friction stir welding in A36 steel. Little tool wear is present, without tool fracture or cracking.

During the FSW process, microstructurally distinct regions are characterized much like those found in arc welds. These include the following (Fig. 5): A) the unaffected base material, B) heat-affected zone (HAZ), C) thermal mechanically affected zone (TMAZ), and D) the stir zone (SZ) or weld nugget. The SZ consists of fine equiaxed grains. Recrystallization has occurred in order to relieve the high amount of plastic strain introduced by the FSW process. Adjacent to the SZ are the TMAZ and HAZ regions. The TMAZ is distinguished by an elongated plastically deformed grain structure. The HAZ, just as in an arc weld, is the region that has experienced an elevated thermal cycle but has not undergone any deformation.

An advancing and retreating side of the weld occurs with FSW. The side of the weld in which the tool rotation and the travel direction is in the same direction is considered the advancing side. The side of the weld in which the tool rotation is opposite to the travel direction is considered the retreating side. Distinct microstructural features are present in these
areas depending upon the material being joined, FSW tool geometries, and the welding parameters. Also, because of impinging heat and mechanical variations between the advancing and retreating sides, different alloys can be joined together.

Weld Characteristics in FSW Steel Applications

Friction stir welding produces a refined microstructure compared to that of the original base metal. Materials such as stainless steels and nickel-based alloys exhibit a fine equiaxed grain structure on the order of 5–10 μm. This is typically the case with ferritic steels as well; however, ferritic steels undergo an allotropic phase transformation, and the resulting as-welded microstructure is quite unique and not fully understood. These microstructures are dependent upon the welding parameters selected. Excellent welds have been produced in API Grades X65, X80, and X100, along with traditionally unweldable L80 steels. Stringent pipeline qualifications require mechanical testing along with impact testing for specified toughness. Further tests, including crack tip opening displacement (CTOD), are required for strain-based pipeline design. API Grade X65 steel ½-in.-thick girth welds have shown excellent mechanical properties, including overmatched weld and HAZ, and Charpy impact properties with significant improvements using FSW — Fig. 6.

Excellent CTOD tests have been reported in various API grades of steel with weld nuggets showing significantly higher values that that of the base metal, while some reports have shown unsatisfactory results while exhibiting high Charpy impact values. As the FSW technology develops for pipeline applications, a firm understanding of the effects of steel chemistry, welding parameters, and tool design is required for field implementation.

Traditionally nonweldable API Grade L80 used for well casings has also shown excellent weld properties with mechanical properties equivalent to the base metal and maintaining 21% elongation through the weld.

For example, in welding trials of API Grade X80 steel, a single weld pass was made at partial penetration due to the small amount of material available. Weld penetration was 0.187 in. (5 mm) of the full 0.787 in. (20 mm) thickness. The material exhibited excellent weldability, producing fully consolidated welds under parameters of 550 rev/min and 4 in. (100 mm)/min.

Advantages of High-Melting-Temperature FSW

The low heat input and lack of solidification defects in the weld provide friction stir welding with a number of important advantages over fusion welding. These include the following:

1. No filler metal is used, providing significant cost savings in materials
2. The process can be fully automated
3. The energy input is efficient as all heating occurs at the tool/workpiece interface
4. Minimum postweld inspection is required due to the solid-state nature and extreme repeatability of FSW
5. Depending on the target alloy, FSW is tolerant to interface gaps and requires little preweld preparation
6. No weld spatter needs to be removed
7. The postweld surface finish can be exceptionally smooth with very little to no flash
8. No solidification-related cracking, porosity, or oxygen contamination occurs
9. Little or no distortion is found in the base metal
10. No operator protection is required as there are no harmful emissions
11. Weld mechanical and fatigue properties are improved
12. The joint can be joined in a single pass

In addition, FSW offers these advantages over traditional welding methods in pipelines:

1. Single-pass welds reduce time and money related to weld schedules, consumables, and propensity of weld failures.
2. Lower consumable costs. New FSW tool material and geometry designs promise even longer tool life than currently promised.
3. Friction stir welding is a reproducible, machine tool welding process...
Where wire chemistry and power supply variances are not issues.

4. Does not require direct involvement/supervision, nor does the operator need to be a skilled welder.

5. Very low degrees of distortion, leading to greater precision in assembly and reduced rectification.

6. Reduce number of welding stations due to faster completion rates.

7. Fewer weld parameters to monitor, making it less cumbersome in the field.

8. All-position welding facilitating orbital or other out-of-position scenarios.

9. Has been used on many associative grades of steel up to API 5L-X100.

10. Significant economic advantages over current GMAW practices.

11. Able to perform full circumferential welds without stopping. Start and stop overlap quality is very high quality as the process will weld over itself.

12. Able to operate in the wide temperature swings inherent to global field operation without special modifications to the equipment.

13. Very low energy consumption, mostly related to driving the welding spindle.

14. Promises to greatly reduce weld-related rework by further reducing field defects.

Beyond the Linear Weld

Until recently, FSW has been typically utilized in linear butt and lap joint configurations. To make this technology applicable for on-site applications, such as pipeline welding, a portable, rotating machine needed to be developed. In addition to the advantages mentioned earlier, FSW on pipe can be completed in a single out-of-position pass that is not affected by gravity. Load data and process parameters developed on flat plate were used to facilitate the design of rotary pipe welding fixtures and operation parameters.

This portable pipe welding machine was designed to be a field-ready, stand-alone machine that was capable of friction stir welding stationary pipe typical of that found in the assembly of a pipeline. This machine was designed to produce single-pass, complete joint penetration welds on 12 in. (305 mm) ID pipe with a wall thickness up to 0.5 in. (13 mm). The machine is designed to weld butt joints in pipe segments using a spindle head that traverses the joint with the FSW tool on the outside while an expandable mandrel supports the backside of the weld on the inside of the pipe.

In a typical linear weld, as welding occurs, specific loads act on the FSW tool. These consist of the force that opposes the travel direction of the weld (X axis load) and the force acting against the tool shoul-
der (Z axis load). The tool depth into the plate is controlled through the Z axis load, which can be set to a specific value depending upon the tool design and material thickness. The X axis loads were monitored at various welding parameters on typical horizontal welds to establish important design criteria such as load capacities, tool holder concentricity requirements, tool offset parameters, and rigidity requirements of the system. This information was then extrapolated to suit a rotary application.

As one would expect, the portable orbital welding machine adds a W-axis to drive the spindle and FSW head assemblies circumferentially around the pipe. A clamping fixture clamps and holds the two segments of pipe together for butt joint welding — Fig. 7. To provide the internal pipe support to prevent wall collapse due to the high pressures exerted by the FSW process, an internal, expandable anvil was designed.

An inherent problem with FSW is the presence of an extract hole after the weld is completed. On linear joints such as in plate, a run-off tab is often used. This tab is removed after the weld is completed. The same solution was used for removing the exit hole for pipe welding. For a full circumferential weld, a run-off tab was fixtured over a joined portion of the pipe near the starting point of the weld after the weld had begun. The joint consists of the weld overlapping at the beginning and then moving off-axis on a run-off tab to complete the weld. After the weld is completed, the entire assembly unclamps for removal from the finished weld joint.

The FSW pipe machine is designed to function in a field environment and requires only one operator — Fig. 7. Additional people may be required to attach, detach, and move the machine to the next joint. This basic machine design can also be configured to weld pipe in a vertical position and for a variety of diameters. It can also be used for bead welds. Large-diameter pipes can also be retrofitted for multiple welding heads for increased productivity.

Technology Development

Friction stir welding is a technology in constant development. This technology becomes more and more attractive as the tool technology allows for thicker section welding. Currently the thickness is limited, but single-pass welding of API grades of steel is being developed for thicknesses up to 1 in. Tool designs needed for welding tubular geometries are more complex than those used for linear welding and the control systems needed require a higher level of sophistication, such as control algorithms that vary parameters to maintain a specific tool temperature.

Trends in pipe development have moved toward the development of higher-strength steels for use in pipelines. These new high-strength grades provide cost savings; however, they also introduce difficulties in welding while using conventional welding methods. Although FSW has many advantages over its fusion welding counterparts, careful parameter development is needed to understand the essential variables that are required for friction stir welding in these special grades of steel.

Summary

Friction stir welding of out-of-position welds such as that involved for pipe welding offers tremendous advantages in productivity and cost savings for the pipeline industry. This disruptive technology has the potential to significantly alter the way this industry does business in the coming decades.◆

Acknowledgments

The authors want to acknowledge the support provided by Dr. Zhili Feng of Oak Ridge National Laboratory by his providing the Charpy V-Notch results for X65.
NEW FIBER DISCS FROM PFERD
CHANGE FASTER ...
LOVE AT FIRST CLICK

Here's a time saver and work saver you're going to love. COMBICLICK® fiber discs mount so much faster and easier than other quick-change systems, that you'll have to try it to believe it. Unlike other discs that require substantial pressure to get locked on, COMBICLICK® just clicks into place with one slight, effortless clock-wise turn. A quick flick of the wrist, and you and your angle grinder are back in business ... with no disc curling problems.

YOU’LL GRIND COOLER ...
AND FASTER

Quicker is better, and so is cooler. Besides being designed to minimize change-up time, COMBICLICK®'s mounting pads also effect cooler grinding. Special grooves and slots channeled on the pad surface promote a strong outward airflow between pad and disc. This cooling action greatly reduces the thermal load on the abrasive material and your workpiece. Actually 30% cooler while still delivering a 25% higher stock removal rate, and 25% longer life.

ADVANTAGE ...
FLAT, FLEXIBLE, DAMAGE-FREE

COMBICLICK®'s patented design also has no metal parts protruding from the pad through the disc. This lets you grind a work surface at nearly a flat angle without any risk of damaging it. And because the pads are so soft, flat and flexible, you can easily follow contours when surface grinding.

You maximize the use of the abrasive area on the disc with no worry of scratching your workpiece. COMBICLICK® comes through at every angle.

CHANGE FOR THE BETTER

Learn more about this better quick-change and cool grinding system today. Call 1-800-342-9015 for a free COMBICLICK® brochure, or email: solutions@pferdusa.com. You'll find complete information along with thousands of new, innovative and proven solutions on PFERD's website: pferdusa.com.

For Info go to www.aws.org/ad-index
Proper Preparation: The Key to Successful Pipe Welds

Properly machining the weld prep will enhance the efficiency of your welding operation and minimize defects and rework

BY MARK LESKA

In today’s economic, regulatory, and legal environment, proper weld prep procedures are more critical than ever to ensure your firm is producing high-integrity welds. To remain competitive, it’s important that your welding throughput remains high, yet welders today are facing increasing headwinds caused by inexpensive imported materials and products, short staffing, and increasingly stiff welding regulations. Ultimately your failure to comply with these regulations, or producing marginal or substandard welds, can open your company up to substantial liability and legal issues.

Following are some of the challenges encountered in the welding sector today:

- An influx of inexpensive imported materials and tools
- The appearance of low-cost, low-quality tubing, pipe, and fittings
- Poor tolerances in wall thickness, out of roundness, and material composition
- Unflaging demand for reliable, skilled welders and trained new welding entrants
- More stringent welding codes, with ever-higher standards and specifications
- Specialized requirements for the power-generation field including nuclear, hydro, and coal, as well as petrochemical and refining
- Critical requirements for high-purity environments in the aerospace, biopharmaceutical, semiconductor, and nanotechnology industries.

As a supplier of portable weld prep machine tools, E.H. Wachs believes the key to effective welding is in the weld preparation. Without it, even the most skilled welder using the most sophisticated welding equipment cannot produce the repeatable, high-integrity welds required for your bottom line.

To illustrate, automatic orbital welding is now being specified on many new projects. Depending on the type of orbital system required, it can involve a substantial capital investment that, if well managed, can produce a substantial return on investment. However, the consensus among today’s manufacturers of orbital welding equipment is that users appear reluctant to properly prep (machine) the tube or pipe to be welded. This leads to a lack of success with this equipment, which is preventable by simply following the recommended prep procedures.

Often the welder will attempt to thermal (oxygen or plasma) cut and grind the desired bevel, either 30 or 37.5 deg. Hand grinding is often used after cutting as a shortcut or rough substitute for the proper weld prep. Compound bevels or the “J” bevel typically recommended by the manufacturers of automatic welding systems are impossible to produce without machining. In addition, thermal cutting has the major drawback of changing the metallurgical properties of the pipe in the area around the cut.

Regardless of whether the welds are being made manually or automatically, properly machining the weld prep will enhance the efficiency of your welding operation and minimize or totally eliminate defects and rework. By contrast, not tak-

Fig. 1 — Accessories are available as part of a complete machining system. Shown here is a counterbore module machining the inside surface of the weld prep area.

MARK LESKA (MLeska@ehwachs.com) is marketing coordinator, E.H. Wachs, Lincolnshire, Ill.
Fig. 2 — OD-mounted split frame machine tool with air drive shown simultaneously parting (cutting) and beveling a standard 37.5-deg weld prep. Note the lathe-quality finish ready for welding.

ing steps to properly machine the required weld prep can cause gaps and mismatches, and may result in either overwelding or poorly executed, unsuitable welds. In the best case this leads to increases in material spoilage and higher labor costs (due to reworking). In the worst case it can lead to contamination considerations or a catastrophic failure, all with high potential liability risks.

When looking for increased welding throughput, the weld prep is often overlooked as a likely place to create efficiencies. In fact, some may think of it as a production bottleneck. However, it offers a great opportunity for savings since a proper prep offers a substantial decrease in consumables and arc times. Portable machining equipment will consistently outperform hand grinding in labor costs and time savings as well. In addition, the consistency and repeatability of properly machined pipe and tube preps allow your welding team to move quickly without “customizing” each weld to an erratic prep. This is true regardless of whether your team is using manual or automated welding.

Choosing a Machine

Field-portable machine tools provide the capability to part (cut), bevel, and compound bevel and counterbore pipe, leaving a lathe-type finish that in years past was only available in a well-equipped machine shop. When looking for the best machines for your organization, the following are important points to consider:

- Build quality and rigidity
- Size range and capabilities
- Speed of operation
- Feed rate
- Mounting system
- Tooling availability and quality
- Parts and service availability
- Rental options
- Amount of training needed for operation.

Portable machine tools mounted on either the outside or inside of the pipe are available, with a large range of sizes and capabilities suitable for most any tube, pipe, or fitting application. Inside diameter (ID) mounted machines are intended for pipe already cut to length. These utilize a mandrel and chuck assembly, and this mounting method offers the advantage of being automatically self centering. They can face, bevel, compound bevel, counterbore, and, with optional accessories, be used for flange facing — Fig. 1.

Outside diameter (OD) mounted machines include split frames that are designed to split in half for mounting to the outside of inline pipe, and can be used for parting, beveling, counterboring, and flange facing — Fig. 2.

COR™NICKEL
Flux Cored Welding Wire
AWS A5.34

N82 FC-G
ENiCr3T0-1/4

N100A FC-G
ENiCrFe2T0-1/4

N182 FC-G
ENiCrFe3T0-1/4

N625L FC-G
ENiCrMo3T0-1/4

N276 FC-G
ENiCrMo4T0-1/4

N22 FC-G
ENiCrMo10T0-1/4

N117 FC-G
ENiCrCoMo1T0-1/4

COR-MET, INC.
12500 Grand River Rd.
Brighton, MI 48116
PH: 810-227-3251
FAX: 810-227-9266
www.cor-met.com
For info go to www.aws.org/ad-index
Automation Optimizes Nuclear Component Fabrication

The new generation of nuclear power plants need to be welded with the latest generation of intelligent, automated welding systems

BY JEFFREY NORUK AND JEAN-PAUL BOILLOT

After a hiatus of almost 30 years, the U.S. nuclear industry is coming back to life. Manufacturing structural components like pressure vessels, piping, tube sheets, pumps, valves, etc., needs to be done in a way far different than was in place in the past. Nowhere is this more important than in the welding production areas. Thirty years ago, more than 95% of the welding was done manually or in a mechanized fashion with operator control. Although the components produced worked, the productivity was far too low and the repair level way too high to be acceptable in today’s leaner production environment.

Now with the digital convergence of sensors, motion devices, welding equipment, “smart cameras,” and other modules distributed over a network in the welding cell, one can achieve a much higher level of optimization. This article explains how things have improved and what is required to take advantage of this new technology.

Levels of Automation

A quick review of the levels of automation available for the arc welding processes is shown in Fig. 1. The shift to more intelligent machines begins when the device is either fully programmable (teach and play or offline programmed) and/or guided by an intelligent device like a laser vision system. Figure 2 shows laser vision joint tracking systems integrated to both a robot and a hard automation machine. This type of equipment is available and successfully used in general industry. It can be transitioned over to the welding of nuclear power plant components with proper technology transfer and training. What is really necessary to achieve the required quantum leap in productivity, while at the same time maintaining excellent first-pass yield, is a systematic total quality approach to welding automation.

Figure 3 explains how one needs to approach this goal by measuring what happens before, after, and at the welding arc location. If one waits to inspect the welded part after it is completed, it is too late. Capabilities now available, which were just dreams 30 years ago when production of nuclear power plants was at its peak, include the following:

- Initial joint validation to make sure the component is fit up correctly per the approved procedure and, if not, the ability to prevent the start of the welding process until this is corrected.
- Real-time robust laser joint tracking to maintain perfect torch-to-joint alignment independent of the welding process.
- Continuous automated visual inspection pass by pass and layer by layer to find any unacceptable conditions before further welding is done thus preventing costly repairs or even the potential of scrapping an expensive part.
- Adaptive welding capability to compensate for joint variability thus minimizing wasteful overwelding and costly distortion. This capability can also help maintain correct heat input control so the metallurgical and mechanical integrity of the welded joint meets the design intent. Note these algorithms are the ones that were developed during the procedure development and qualification phase.
- Automatic postweld inspection capability to measure the weld geometry and to detect defects in a much faster and more reliable manner than using human inspectors. This capability optimizes the component fatigue life and structural performance.
- The ability to have a variety of networked sensors that can monitor the welding system to ensure the welding procedure is being followed. These sensors can also aid in the programming and real-time monitoring of the welding process itself.
- Portable robots that can be programmed and operated from a distance due to the onboard sensor control thus potentially removing the operator from harmful and unsafe areas.
- Real-time digital communication between all components in the welding cell to facilitate high-speed closed-loop control.

Using the Systematic Total Quality Control Approach

All these new capabilities will allow one to get closer to the ideal optimized welding performance. Until now, the disconnect has been that the welding procedure was developed in a laboratory under perfect conditions and then when it was transferred to the production floor it was not successful due to all the variables in material, joint fitup, equipment, and personnel. By adding the right level of intelligence into the welding system, this limitation can be overcome to a great extent.

Specifically, the laser vision sensors can help develop the welding procedure more quickly because no longer does the
welding engineer need to worry about trying to keep the wire in the joint or manually compensate for changes in his test plate geometry. This can all be managed automatically and the actual data stored so the same welding parameters can be repeated for subsequent tests. The exact effect of changes in welding parameters can also be immediately measured with the process monitoring and postweld inspection capabilities built into the system. This will ensure one is staying within the tolerance range allowed for heat input and for individual parameter (current, voltage) variations.

Success Stories
Demonstrating the Systematic Total Quality Control Approach

Welding, Inspection, and Repair in Remote Applications

A laser vision joint-tracking system from Servo-Robot is an important component for the applications that require robotic operation developed by Idaho National Laboratory (INL), including the Yucca Mountain Nuclear Waste Closure System and the DOE Standardized Canisters (Refs. 1, 2). System designers realized early on the necessity of accurately mapping the trajectory of the weld to allow the robotic system to place the automated welding, inspection, and repair tools necessary for a completely remote operation. The integration of the joint-tracking system provides this as well as weld profile measurements of completed and partially filled weld joints important for process parameter decisions. The eyes of a visual inspector are also replaced with the profile measurements from the system’s camera, validating workmanship and geometry requirements of the weld before other nondestructive examination (NDE) methods (leak, eddy current, and ultrasonic testing) are applied. Figure 4 offers an overview of the robotic welding system, and Fig. 5 shows a close-up of the laser vision camera system and the welding head.

Following are the key features of this system:

• The tracking system ensures the gas tungsten arc welding (GTAW) tungsten electrode and the cold wire feed are precisely maintained in the joint so that the resulting weld pool achieves optimum penetration, fusion, and soundness.

• The adaptive capability allows for the joint measurement to automatically call different preapproved weld schedules if features like the root opening, mismatch, or area vary by more than the preset allowable values. Process parameters like current, travel speed, and wire feed speed can be changed.

• The postweld automated weld inspection is part of the overall NDE plan. The automated inspection done using the laser vision camera system not only can measure the critical weld geometry features such as leg size and convexity, but it can also find and measure defects like undercut and porosity and report if they are outside acceptable tolerance limits. In addition to go/no-go status, the system also provides a date and time stamp for all the results so statistical analysis can be done to determine if there is any significant trending information that could help troubleshoot reoccurring problems.

Intelligent Portable Robot

One advantage manual welders still maintain over most forms of automation is that they are extremely flexible with respect to the fact that the part to be welded can either be brought to them or they can go to the work. Automation used for nuclear power plants has historically been relegated mainly to the welding done in the fabrication plants and has not been used very much for the onsite installation itself. In fact, even inside the factory the limited portability of advanced programmable welding systems has required using the inflexible strategy of having to bring large components, such as complete modules, to the welding cell. Thus, the automation equipment carried to the part has been mainly “dumb” tractors having

![Fig. 1 — Level of arc welding automation.](image1)

![Fig. 2 — Laser vision controlled welding machines in hard and flexible automation.](image2)
no capability to be programmed or interfaced to sensors, thus greatly limiting their usefulness and increasing the cost of welding. The key differentiators separating a “dumb” welding tractor from a robot are as follows:

- Ability to teach and play back the path on the part by the welding operator himself
- No need for careful setup of the rail because the path is now programmed or alternatively a laser vision sensor takes control and adjusts for the deviation

The ability to override the programmed path via the teach pendant and then save the modified values for subsequent passes
- Very precise motion control leading to more repeatability from weld to weld
- Precise coordination of the torch motion and welding parameters, e.g., during weaving the pulsing parameters can be synchronized precisely
- Simultaneous computer control of both the motion and welding process to enable intelligent process control such as when joint tracking and real-time adaptive control are used

- Robot welding program can be memorized and downloaded to other robots from the common database ensuring the latest correct welding parameters are being used
- Inspection of the welds for both defects (undercut and porosity) and geometry (leg size, convexity, entry angle, and toe radius) can be correlated to the exact position of the robot on the joint thus facilitating more efficient additional NDE or repair, if needed.

The operator interfaces with the portable robot via a teach pendant as shown in Fig. 6. The benefits of using a portable robot include the capability for the operator to do other tasks because he no longer needs to adjust the arc position on a continuous basis. In addition, a dramatic increase in travel speed is possible because it is not limited to the response time and skill of the operator. Plus, the perfectly placed wire or tungsten electrode will greatly improve weld quality and consistently achieve the product performance the product design engineer planned.

Narrow Groove Submerged Arc Welding

When welding heavy-walled pipe or a pressure vessel with a narrow groove, it is critical that the wire be positioned precisely in the root of the joint. The automated system employing a laser vision real-time tracking system shown in Fig. 7 will provide the exact offset information to maintain perfect cross-joint positioning as well as consistent standoff. This ensures the deep penetrating process will achieve the root pass quality that is required if one hopes to have a chance to achieve a sound weld. In addition, the built-in ability to measure the changing joint geometry (due to inconsistent fitup or part preparation) will provide the ability to change any of the welding parameters in real time to optimize the multipass weld placement. One can create multiple weld schedules and then the system will automatically select the correct one based on the strategy developed during the procedure development phase.

‘Near’ Future State

While tremendous capability is already in place and proven that it can be applied to the welding of all the critical and standard components inside a nuclear reactor, there are exciting new developments that will be available soon to add even another layer of “smart control” onto the automated welding systems. This new capa-
The reintroduction of nuclear power, along with the use of other alternative energy sources, will help put us on the path to energy independence. To achieve this in a timely and efficient manner, we need to use welding automation systems that are themselves efficient, flexible, and green in nature. Flexible self-teaching welding heads utilizing hybrid sensor technology can dramatically improve the productivity, quality, and safety associated with the various welding processes. Laser vision and other sensors can play a big role in achieving this goal thanks to the latest high-speed networked process control.

References

Correction
There were errors in the boxed item titled Tips for Proper Torch Usage that appeared on page 51 of the article by Jerry Arnold, Earl Miller, and Greg Mitchell in the April issue of Welding Journal.

The authors state these tips refer to hand-held torches for use only with MAPP® (which has been discontinued), MAP//PRO™, or propane gases.

In the Don’t section where it said “don’t reduce the flame,” the article should have stated “Don’t reduce the flame to the point where it is burning back inside the tip.”

In the Dos section, the item that said “the acetylene regulator should always be turned full on” is wrong. The correct statement is as follows: “Remember that when using a TurboTorch hand torch with MAP//PRO that has a flow valve, you should always start with the flow valve in the full open position. If the flame is flaring after startup, slowly regulate the gas flow by closing the valve until the proper flame is obtained.”
New Technology Doubles Contractor’s Pipe Welding Output

A process change produces significant improvements in work quality and uniformity plus savings in time and reduced consumables inventories

BY NICK PETERSON

Darwin Terpstra and Mike Mackintosh (Fig. 1), engineering and production managers for Bel-Aire Mechanical, Inc., Phoenix, Ariz., often faced the familiar challenge to produce the highest-quality pipe welded product in the shortest amount of time, with minimal rework, using a labor force of various skill levels.

And, as with other supervisors in this position, they sought to overcome the limitations of the shielded metal arc welding (SMAW) process — including its relatively slow travel speed — by using gas metal arc welding (GMAW), which is faster and also easier for welders to master. Unfortunately, standard GMAW isn’t ideally suited for pipe welding; its higher travel speed can be offset by the cleanup time required along with a 10% or higher rework rate.

Also, as is done in other pipe-fabrication shops, Mackintosh brings in additional welders when the workload demands it, thus creating a workforce with a diverse range of skill levels and operator styles. Each weld could look as unique as the welder’s signature.

These challenges are not unique to Bel-Aire — all pipe fabricators must face them — and the company had done well, growing to be one of the top mechanical contractors in the state. In 2006, when Bel-Aire purchased a new building, Mackintosh and Terpstra took the opportunity to reevaluate the entire pipe welding operation. In addition to examining the work flow through the pipe shop and eliminating bottlenecks, they took a closer look at the GMA and SMA welding processes they had been using. Once they evaluated the new technologies and equipment that were available, they mothballed the existing welding equipment. In its place, they brought in welding systems that use a modified short circuit process for the root pass and an advanced pulsed spray transfer process for the fill and cap.

The result of this change allowed the shop to double its production. Three welders now do what formerly required six welders to accomplish. Moreover, the welders now were able to produce more uniform and nearly identical welds — Fig. 2.

The company now performs two distinctly different welding processes using the same welding machine, gas, and wire for the root, fill, and cap passes, thus reducing the inventory of wires, gases, and other consumables. This has shortened training times and nearly eliminated weld rework all equating to considerable cost savings.

Mackintosh said, “Previous rework rates could be as much as 10%, depending on the application and testing parameters. Now, rework is no longer a factor.”

Bel-Aire Gets Its Start

James Dinan and John Sapien founded the company in 1986 after recognizing a need for a mechanical contractor to provide both solid HVAC capabilities and pri-
mary contractor-related services. The company started off with the smaller jobs, and today, with more than 300 employees, it is actively involved in mechanical construction, renovations, upgrades, and re-models throughout Arizona. Its projects range from multimillion-dollar mission-critical facilities to turnkey, fast-track retrofits.

It excels in many areas, including building information modeling (BIM), which allows Bel-Aire’s design department to create a virtual fly-through to ensure there will be no collisions with piping, plumbing, electrical conduits, sheet metal, and fire-protection systems. The company works with architects, engineers, and other contractors within a collaborative environment to provide a coordinated, collision-free model prior to fabrication.

Opportunity Knocks

“When Bel-Aire purchased its new facility, we were provided a great opportunity,” Mackintosh said. “We were able to start over from the beginning. We had time, because the building wasn’t quite ready for us to move into yet, and I had tremendous amount of support from Jim Dinan, our CEO, and John Sapien, our chairman. We took the opportunity to look at the entire work flow.”

Some of the changes Mackintosh and Terpstra implemented included the addition of a computerized pipe cutting machine, which allows one operator in a few hours to equal the work previously done by two workers in eight hours.

“That was a tremendous change,” Mackintosh noted. “We looked at everything needed to make a high-quality weld. We added a bead blaster to ensure that pipe and fittings were free of paint and other contamination. We made sure we had the proper bevels. The best welder in the world cannot overcome poor preparation.”

One of the most significant changes came when Mackintosh replaced the existing SMA and standard GMA welding equipment with equipment that offered RMD* (regulated metal deposition), a modified short circuit GMAW process optimized for root pass welding, and ProPulse™, an advanced pulsed GMAW process optimized for the fill and cap passes. These would change the nature of Bel-Aire’s welding operations.

Out with the Old

The firm works in accordance to ASME Section 9. Prior to adopting the new processes, the company had been using SMAW, primarily 6010 electrodes, and standard GMAW processes. To get the advantages GMAW promised in other applications, such as increased travel speed and less operator training compared to SMAW, Bel-Aire had acquired four 300-A GMAW machines.

“The GMAW equipment worked fine,” Mackintosh said. “I’m sure they have their place, but not in the pipe world. The weld time was quicker than SMAW, but the time required to clean between passes offset those savings. With GMAW, we would occasionally have lack of fusion or inclusions, which could lead to leaks.”

He added, “If you’re not skilled with standard short circuit GMAW, the tendency is to trap inclusions or get porosity in the weld. Then you have to remove it, grind it until you have good material, and start over again. That’s costly and time consuming.” Including the time to discuss the issue with the inspector, reload the pipe into the positioner, grind down to good metal and reweld, reworking a weld could cost twice that of the original weld.

“With SMA or GMAW, if you put three welders under the hood, you’ll have three completely different looking welds,” said Mackintosh. “They would all be acceptable, but you could tell which welder was more experienced.”

The issue, of course, wasn’t with the operators. They are skilled, trained welders. Nor was it with the equipment, which worked as well as the day it was manufactured. The issue was that the welding equipment and processes were not designed for pipe welding.

In with the New

The welding equipment Mackintosh brought in was specifically optimized for pipe welding.

The RMD modified short circuit transfer process precisely controls welding current during all phases of metal transfer to eliminate excess weld pool agitation. This results in a calm weld pool that is easier for the operator to manipulate and eliminates incomplete fusion, which occurs when molten metal splashes against the sidewall of the pipe and “freezes” on top if it. The process is highly tolerant of high-low mis-alignment because it has a faster-freezing pool that stays where it’s put.

Pro-Pulse™ technology is an advanced pulsed GMAW process that controls both current and voltage to stay within the optimum range for a specific wire type and diameter, wire feed speed, and gas combination. Optimized specifically for pipe
The issue was that the welding equipment and process were not designed for pipe welding.

welding, the technology provides a much cooler weld pool that is ideal for out-of-position welds. The user only needs to adjust a few settings, and the result is shorter arc lengths and a more focused arc column. This provides a weld pool that is easier to control. Operators learn the process faster and make higher-quality welds with lower reject rates. The process also is more tolerant of contact tip-to-work-distance variations and provides improved fusion and fill at the toes of the weld, which helps to ensure quality welds are achieved on the first try with a lower overall heat input, that reduces interpass cooling time and weld cycle time. Mackintosh immediately saw the benefits.

“One of the first things I noticed was that welders don’t have to be as highly skilled,” Mackintosh stated. “After three or four hours of coaching, a less-skilled operator would be consistently producing high-quality welds. When the work load increases and we bring in new welders, I now can feel comfortable that the time to get up to speed will be short.”

With both processes in one machine, using the same gas and wire, it eliminates the need to have separate machines, wires, or welding processes for root and fill passes. Operators only need to push a switch to change processes and utilize the preprogrammed parameters. One of the things Mackintosh has to teach experienced GMA welders is to not try adjusting the parameters. “We use the same RMD program on 2-in. pipe as we do on 24-in. pipe, and we use two programs for ProPulse, depending on the configuration,” Mackintosh said. “I can assure our customers that each welder is using the same wire feed speed and voltage, and that all of the welds we make are of the same quality, and we’ll have the same high quality for chilled water pipe as we do on process piping.”

The new processes eliminate incomplete fusion, inclusions, and the other issues associated with using standard GMAW for pipe welding.

“Rework is now almost nonexistent,” Mackintosh stated.

“With three welders welding all day long, I’m saving about 60 hours a week,” Mackintosh noted. “On a 6-in. joint, time has decreased by 50%, and we’re using half as many machines to do twice as much work.”

Put Saving Time and Money On Welding Documentation at the TOP of your List!

New from Computer Engineering, Inc.

WeldDocs™

First release covers documents compliant with the API 1104 and BS/EN/ISO Welding Codes. Initial language pack includes English, Spanish, French, and Italian.

For More Details:
www.computereng.com/products/welddocs

For info go to www.aws.org/ad-index
The Smartest Way To Manage Your Welding Documentation

WPS PQR WPQ NDE

ASME IX AWS D1.1 ISO
automated code compliance

Industry standard QA/QC Software for automatic creation and management of Welding Procedures, Welder Qualifications and NDE reports. Designed and supported by welding engineers and codes & standards committee members.

Thousands of companies worldwide depend on WeldOffice software. Impress your boss and your clients with superior knowledge and productivity by delivering accurate professional welding documentation in seconds.

Call 877-977-7999

Superior Software...
Superior Support...

“... It's like having a full-time welding engineer plus a code expert on your staff ...”

Download free demo from:

www.weldoffice.com
A panel of aluminum industry experts will survey the state of the art in aluminum welding technology and practice. You will also have the opportunity to network with speakers and other participants, as well as visit an exhibition showcasing products and services available to the aluminum welding industry.

Aluminum lends itself to a wide variety of industrial applications because of its light weight, high strength-to-weight ratio, corrosion resistance, and other attributes. However, because its chemical and physical properties are different from those of steel, welding of aluminum requires special processes, techniques, and expertise.

The experts will be at Weld Cracking VII. You will obtain answers to your current problems and will be better prepared to come into use the problem comes back in different forms to haunt the welding metallurgist. A crack costs money, takes time to repair, and interrupts production. So where does one go for help? The experts will be at Weld Cracking VII. You will obtain answers to your current problems and will be better prepared to solve cracking problems in the future. You can also learn about the latest equipment including induction heating, a wireless heat-treat system, and portable X-ray diffraction equipment. The use of fracture mechanics will be explored. Descriptions will be given on the heat-affected zone and on the many types of cracks that accompany welding. Base materials covered will include various steels, the stainless steels, aluminum, and titanium.

For more information, please contact the AWS Conferences and Seminars Business Unit at (800) 443-9353, ext. 455. You can also visit the Conference Department at www.aws.org/conferences for upcoming conferences and registration information.
If the downturn snuck up on you, don’t be unprepared for the recovery.

After 55 years of welding shows in good times and bad, one fact never changes. There are always more productive ways to do things, tremendous bargains to be found, and rewards for the company that is most prepared for what’s coming around the corner.

The American Welding Society invites you to a special preview of economic recovery: the 2009 Fabtech Int’l & AWS Welding Show including Metalform at Chicago’s McCormick Place. About 1,000 exhibitors will be there. So will your competition. Don’t miss out.

Chicago
November 15–18, 2009

www.aws.org/show
High-Frequency Welding of Pipe and Tube

High-frequency welding offers a number of advantages. It can be used to weld a wide range of commonly used metals, including low-carbon and alloy steels, ferritic and austenitic stainless steels, and many aluminum, copper, titanium, and nickel alloys. It can produce welds at very high speeds and with high energy efficiency. Welds are produced with a very narrow and controllable heat-affected zone and with no superfluous cast structures, which often eliminates the need for postweld heat treatment. Oxidation and discoloration of the metal and distortion of the workpiece are minimal.

Induction Seam Welding

The predominant application of high-frequency induction welding is welding of continuous-seam pipe and tubing. The pipe or tube is formed from metal strip in a continuous-roll forming mill and enters the welding area with the edges to be welded slightly separated. In the weld area, the open edges of the pipe or tube are brought together by a set of forge pressure rolls in a V shape until the edges touch at the apex of the V, where the weld is formed. The weld point occurs at the center of the mill forge rolls, which apply the pressure necessary to achieve a forged weld.

An induction coil, typically made of copper tubing or sheet with attached water-cooling tubes, encircles the tube (the workpiece) at a distance equal to one to two tube diameters ahead of the weld point. This distance, measured from the weld point to the edge of the nearest induction coil, is called the V length. The induction coil induces a circumferential current in the tube strip that closes by traveling down the edge of the V through the weld point and back to the portion of the tube under the induction coil — Fig. 1.

Contact Seam Welding

The high-frequency contact welding process provides another means of welding continuous seams in pipe and tubing. The process is essentially the same as that for induction welding and is illustrated in Fig. 2. The major difference is that sliding contacts are placed on the tube adjacent to the unwelded edges at the V length. With the contact process, the V length is generally shorter than that used with the induction process. This is because the contact tips can usually be placed within the confines of the forge rolls where the induction coil must be placed sufficiently behind the forge rolls, so that the forge rolls are not inductively heated by the magnetic field of the induction coil. Because of the shorter V lengths achievable with the contact process, an impeder is often unnecessary, particularly for large-diameter tubes.

Comparison of the Two Processes

High-frequency contact welding is a more efficient process than induction welding because of the shorter lengths and because there are no losses in the induction coil or the tube under it. For seam welding of large-diameter pipe, the contact process can use as little as half the power required by the induction process.

Induction welding has the disadvantage that it is strictly a continuous process and the roll form mill generally has an accumulator to ensure a continuous supply of strip to the mill. Large-diameter tube is often welded coil to coil, requiring the roll form mill to be rethreaded between each coil run. In this situation, contact welding is preferred because the strip does not have to be threaded through the tight induction coil each time a tube is produced.

The major disadvantage of the contact process is contact wear. This requires replacement of the contact tips at regular intervals, generally once every shift. In addition, when using the contact process under some conditions, arcing between the sliding contacts and the tube can occur. This may cause surface marking or “arc marks.” In applications such as the manufacture of pipe to API standards for oil and gas transport, any arc marks must be removed by grinding.

The choice between the two processes is often resolved by employing dual welding machines that allow operation with both the contact and induction processes.

AN OBSERVATION FROM THE AMERICAN WELDING SOCIETY

Where else in the country will you find all the metalworking equipment running at full capacity?

The American Welding Society invites you to a special preview of economic recovery: the 2009 Fabtech Int’l & AWS Welding Show including Metalform.

This year, we are filling two halls in McCormick Place with acres and acres of metal forming, fabricating and welding machinery, all up and running at full tilt, partying like it’s 1999.

So stop whining, cowboy up, and get yourself to Chicago to see the technologies and solutions you are going to need to meet tomorrow’s demand.

Chicago
November 15–18, 2009

www.aws.org/show
COMING EVENTS

NOTE: A DIAMOND (*) DENOTES AN AWS-SPONSORED EVENT.

JOM-15, 15th Int'l Conf. on the Joining of Materials, and 6th Int'l Conf. on Education in Welding. May 3–6, Helsingør, Denmark. Organized by JOM Institute, supported by Dansk Metal, Danish Welding Society, DSLF FORCE Technology. Send e-mail inquiries to jom_aws@post10.tele.dk.

♦ Robotic Arc Welding Conf. and Expo. May 11–13, Milwaukee Area Technical College, Milwaukee, Wis. Cosponsored by the AWS Milwaukee Section and D16 Committee on Robotic and Automatic Welding. Includes tour of Caterpillar’s facility in Aurora, Ill. Contact Karen Gilgenbach at karen.gilgenbach@airgas.com, or call (262) 613-3790.

SERIOUS AIR FOR SERIOUS PLACES

Perfect For:
- WELDING
- MAN COOLING
- ENGINE ROOMS
- DUST REMOVAL

CONFINED SPACE AIR VENTILATORS

8", 12", and 20" MODELS
PORTABLE
LIGHTWEIGHT
848-9000 CFM
110/220v
12V
PNEUMATIC

Americ Corporation
785 Bonnie Lane, Elk Grove Village, IL 60007
800-364-4642 • Fax: 847-364-4655 • www.americ.com

For info go to www.aws.org/ad-index

Mark With Solid Paint

T he smooth writing Nissen® Solid Paint Markers are solid sticks of paint protected by an unbreakable plastic case. The markers can conveniently and cleanly be carried in your pocket. They make permanent marks on metal, wood, plastic, glass, cardboard, etc. They write on any surface: rough or smooth, wet or oily; even marks underwater. The plastic case prevents the paint from drying out so it always writes easily and smoothly. The case also allows you to use the entire stick without needing a separate holder.

The markers are available in two sizes: Standard and Jumbo and four fast-drying, lead-free colors: white, yellow, red and black.

Call, Fax, or Write for Additional Information.

J.P. Nissen Co.
P.O. Box 339 • Glesside, PA 19038
(215) 886-2025 • Fax: (215) 886-0707 www.nissenmarkers.com

For info go to www.aws.org/ad-index
Emerging Technologies for High-Productivity Heavy Fabrication, EWI Workshop. June 3, 4, EWI, Columbus, Ohio. Visit www.ewi.org/events.

AeroMat® 2009 Conf. and Expo. June 7–11, Dayton Convention Center, Dayton, Ohio. Call ASM (800) 336-5152, ext. 6; visit http://asmcommunity.asminternational.org/content/Events/aeromat 09/ or e-mail customerservice@asminternational.org.

Let Phoenix protect your electrodes for a high quality weld.

- Safety yellow color enhances visibility
- Rugged construction and powder coat withstands field abuse
- Wire-Wrapped heating element provides uniform heat within oven chamber
- Optional calibrated digital thermometer
- One year product warranty
- Union made in the U.S.A.

Phoenix DryRod™ ovens. Don’t risk weld cracking, porosity, spatter and costly rework.

Phoenix International, Inc.
Milwaukee, WI 53224 USA
www.dryrod.com

For info go to www.aws.org/ad-index

SOUTH-TEC. Oct. 6–8, Charlotte Convention Center, Charlotte, N.C. Contact Society of Mfg. Engineers, (800) 733-4763; or visit www.sme.org/southtec.

ICALEO®, 28th Int'l Congress on Applications of Lasers & Electro-Optics. Nov. 2–5, Hilton in the Walt Disney World Resort®, Orlando, Fla. This conference is where researchers and end-users will meet to review state-of-the-art laser materials processing and project what lies in the future. Laser Institute of America’s goal for ICALEO® is to bring both academic and industrial people together who may benefit from laser technology. E-mail Laser Institute of America at conferences@laserinstitute.org; or visit www.icaleo.org.

FABTECH International & AWS Welding Show now including METALFORM. Nov. 15–18, McCormick Place, Chicago, Ill. This show is the largest event in North America dedicated to showcasing the full spectrum of metal forming, fabricating, tube and pipe, welding equipment, and technology. Contact American Welding Society, (800/305) 443-9353, ext. 455; or visit www.aws.org.

GRIND TUNGSTEN PRECISELY
with the Piranha III Tungsten Grinder

For info go to www.aws.org/ad-index

Weld Cracking VII. Nov. 16, Chicago, Ill. Held during the FABTECH International & AWS Welding Show. Contact American Welding Society, (800/305) 443-9353, ext. 455; or visit www.aws.org.

Educational Opportunities

WEARTECH INTERNATIONAL

HARDFACING & WEAR RESISTANT ALLOYS

COBALT & NICKEL BASE BARE CAST RODS, ELECTRODES, CAST COMPONENTS, WIRES AND POWDERS.
Cobalt Alloys 1, 3, 4, 6, 6H, 12, 20, 21, 25, 32, 190, 694, 800.
Nickel Alloys 40, 50, 56, 60, 69.
Rod Dia. .037” (1.0mm) - .250” (6.35mm)
Meets AWS/SFA 5.13
MILITARY SPECIFICATIONS

ISO 9001 W CERTIFIED

World Headquarters
13032 park Street
Santa Fe Springs, CA 90670, USA
Tel: 562-896-7847 • Fax: 562-945-5884
Internet: www.weartech.net
Made in USA

For info go to www.aws.org/ad-index

http://catalog.asme.org/Education/ShortCourse/BPV_Code_Section_IX_Welding.cfm.

Boiler and Pressure Vessel Inspectors Training Courses and Seminars. Columbus, Ohio. Call (614) 888-8320; visit www.nationalboard.org.

CWI/CWE Prep Course and Exam and NDT Inspector Training. Courses. An AWS Accredited Testing Facility. Courses held year-round in Allentown, Pa., and at customers’ facilities. Contact: Welder Training & Testing Institute, (800) 223-9884, info@wtti.edu; visit www.wtti.edu.

CWI Preparatory and Visual Weld Inspection Courses. Classes presented in Pascagoula, Miss., Houston, Tex., and Houma and Sulphur, La. Contact: Real Educational Services, Inc., (800) 489-2890, info@realeducational.com.

Environmental Online Webinars. Free, online, real-time seminars conducted by industry experts. For topics and schedule, visit www.augustmack.com/Web%20Seminars.htm.

EPRI NDE Training Seminars. EPRI offers NDE technical skills training in visual examination, ultrasonic examination, ASME Section XI, and UT operator training. Contact Sherryl Stogner, (704) 547-6174; stogner@epri.com.

Hellier NDT Courses. Contact Hellier, 277 W. Main St., Ste. 2, Niantic, CT 06357; (860) 739-8950; FAX (860) 739-6732.

AWS Certification Schedule

Certification Seminars, Code Clinics and Examinations

Application deadlines are six weeks before the scheduled seminar or exam. Late applications will be assessed a $250 Fast Track fee.

Certified Welding Inspector (CWI)

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>SEMINAR DATES</th>
<th>EXAM DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nashville, TN</td>
<td>May 10-15</td>
<td>May 16</td>
</tr>
<tr>
<td>Jacksonville, FL</td>
<td>May 10-15</td>
<td>May 16</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>May 10-15</td>
<td>May 16</td>
</tr>
<tr>
<td>Long Beach, CA</td>
<td>EXAM ONLY</td>
<td>May 30</td>
</tr>
<tr>
<td>Detroit, MI</td>
<td>May 31-Jun. 5</td>
<td>Jun. 6</td>
</tr>
<tr>
<td>Miami, FL</td>
<td>May 31-Jun. 5</td>
<td>Jun. 6</td>
</tr>
<tr>
<td>Albuquerque, NM</td>
<td>May 31-Jun. 5</td>
<td>Jun. 6</td>
</tr>
<tr>
<td>Spokane, WA</td>
<td>Jun. 7-12</td>
<td>Jun. 13</td>
</tr>
<tr>
<td>Oklahoma City, OK</td>
<td>Jun. 7-12</td>
<td>Jun. 13</td>
</tr>
<tr>
<td>Birmingham, AL</td>
<td>Jun. 7-12</td>
<td>Jun. 13</td>
</tr>
<tr>
<td>Hartford, CT</td>
<td>Jun. 14-19</td>
<td>Jun. 20</td>
</tr>
<tr>
<td>Pittsburgh, PA</td>
<td>Jun. 14-19</td>
<td>Jun. 20</td>
</tr>
<tr>
<td>Beaumont, TX</td>
<td>Jun. 14-19</td>
<td>Jun. 20</td>
</tr>
<tr>
<td>Corpus Christi, TX</td>
<td>EXAM ONLY</td>
<td>Jun. 20</td>
</tr>
<tr>
<td>Kansas City, MO</td>
<td>Jun. 21-26</td>
<td>Jun. 27</td>
</tr>
<tr>
<td>Knoxville, TN</td>
<td>EXAM ONLY</td>
<td>Jun. 27</td>
</tr>
<tr>
<td>Miami, FL</td>
<td>EXAM ONLY</td>
<td>Jul. 16</td>
</tr>
<tr>
<td>Fargo, ND</td>
<td>Jul. 12-17</td>
<td>Jul. 18</td>
</tr>
<tr>
<td>New Orleans, LA</td>
<td>Jul. 12-17</td>
<td>Jul. 18</td>
</tr>
<tr>
<td>Sacramento, CA</td>
<td>Jul. 12-17</td>
<td>Jul. 18</td>
</tr>
<tr>
<td>Phoenix, AZ</td>
<td>Jul. 19-24</td>
<td>Jul. 25</td>
</tr>
<tr>
<td>Orlando, FL</td>
<td>Jul. 19-24</td>
<td>Jul. 25</td>
</tr>
<tr>
<td>Milwaukee, WI</td>
<td>Jul. 19-24</td>
<td>Jul. 25</td>
</tr>
<tr>
<td>Cleveland, OH</td>
<td>Jul. 26-31</td>
<td>Aug. 1</td>
</tr>
<tr>
<td>Los Angeles, CA</td>
<td>Jul. 26-31</td>
<td>Aug. 1</td>
</tr>
<tr>
<td>Louisville, KY</td>
<td>Jul. 26-31</td>
<td>Aug. 1</td>
</tr>
<tr>
<td>Denver, CO</td>
<td>Aug. 2-7</td>
<td>Aug. 8</td>
</tr>
<tr>
<td>Philadelphia, PA</td>
<td>Aug. 2-7</td>
<td>Aug. 8</td>
</tr>
<tr>
<td>San Diego, CA</td>
<td>Aug. 9-14</td>
<td>Aug. 15</td>
</tr>
<tr>
<td>Miami, FL</td>
<td>Aug. 9-14</td>
<td>Aug. 15</td>
</tr>
<tr>
<td>Charlotte, NC</td>
<td>Aug. 16-21</td>
<td>Aug. 22</td>
</tr>
<tr>
<td>San Antonio, TX</td>
<td>Aug. 16-21</td>
<td>Aug. 22</td>
</tr>
<tr>
<td>Bakersfield, CA</td>
<td>Aug. 16-21</td>
<td>Aug. 22</td>
</tr>
<tr>
<td>Rochester, NY</td>
<td>EXAM ONLY</td>
<td>Aug. 22</td>
</tr>
<tr>
<td>Portland, ME</td>
<td>Aug. 23-28</td>
<td>Aug. 29</td>
</tr>
<tr>
<td>Salt Lake City, UT</td>
<td>Aug. 23-28</td>
<td>Aug. 29</td>
</tr>
<tr>
<td>Seattle, WA</td>
<td>Aug. 23-28</td>
<td>Aug. 29</td>
</tr>
<tr>
<td>Corpus Christi, TX</td>
<td>EXAM ONLY</td>
<td>Aug. 29</td>
</tr>
<tr>
<td>Pittsburgh, PA</td>
<td>Aug. 30-Sep. 4</td>
<td>Sep. 5</td>
</tr>
<tr>
<td>Houston, TX</td>
<td>Aug. 30-Sep. 4</td>
<td>Sep. 5</td>
</tr>
<tr>
<td>Minneapolis, MN</td>
<td>Aug. 30-Sep. 4</td>
<td>Sep. 5</td>
</tr>
<tr>
<td>St. Louis, MO</td>
<td>Sept. 20-25</td>
<td>Sept. 26</td>
</tr>
<tr>
<td>Miami, FL</td>
<td>Sept. 20-25</td>
<td>Sept. 26</td>
</tr>
<tr>
<td>New Orleans, LA</td>
<td>Sept. 20-25</td>
<td>Sept. 26</td>
</tr>
<tr>
<td>Anchorage, AK</td>
<td>EXAM ONLY</td>
<td>Sept. 26</td>
</tr>
<tr>
<td>Tulsa, OK</td>
<td>Oct. 4-9</td>
<td>Oct. 10</td>
</tr>
<tr>
<td>Long Beach, CA</td>
<td>Oct. 4-9</td>
<td>Oct. 10</td>
</tr>
<tr>
<td>Newark, NJ</td>
<td>Oct. 4-9</td>
<td>Oct. 10</td>
</tr>
<tr>
<td>Miami, FL</td>
<td>EXAM ONLY</td>
<td>Oct. 15</td>
</tr>
<tr>
<td>Portland, OR</td>
<td>Oct. 18-23</td>
<td>Oct. 24</td>
</tr>
<tr>
<td>Roanoke, VA</td>
<td>Oct. 18-23</td>
<td>Oct. 24</td>
</tr>
<tr>
<td>Cleveland, OH</td>
<td>Oct. 18-23</td>
<td>Oct. 24</td>
</tr>
<tr>
<td>Atlanta, GA</td>
<td>Nov. 1-6</td>
<td>Nov. 7</td>
</tr>
<tr>
<td>Dallas, TX</td>
<td>Nov. 1-6</td>
<td>Nov. 7</td>
</tr>
<tr>
<td>Sacramento, CA</td>
<td>Nov. 1-6</td>
<td>Nov. 7</td>
</tr>
<tr>
<td>Spokane, WA</td>
<td>Nov. 1-6</td>
<td>Nov. 7</td>
</tr>
<tr>
<td>Corpus Christi, TX</td>
<td>EXAM ONLY</td>
<td>Nov. 21</td>
</tr>
<tr>
<td>St. Louis, MO</td>
<td>EXAM ONLY</td>
<td>Dec. 5</td>
</tr>
<tr>
<td>Syracuse, NY</td>
<td>Dec. 6-11</td>
<td>Dec. 12</td>
</tr>
<tr>
<td>Reno, NV</td>
<td>Dec. 6-11</td>
<td>Dec. 12</td>
</tr>
<tr>
<td>Miami, FL</td>
<td>Dec. 6-11</td>
<td>Dec. 12</td>
</tr>
</tbody>
</table>

For information on any of our seminars and certification programs, visit our website at www.aws.org/certification or contact AWS at (800) 443-9353, Ext. 273 for Certification and Ext. 455 for Seminars. Please apply early to save Fast Track fees. This schedule is subject to change without notice. Please verify the dates with the Certification Dept. and confirm your course status before making final travel plans.

©AWS 2009 CER1324-5
LEARN THE LATEST DEVELOPMENTS FOR WELDING IN SHIPYARDS AND THE MARITIME ENVIRONMENT.

Welding is the most vital and fundamental manufacturing process in the construction of ships and metal hull boats. Keeping in tune with the progress of new innovative developments, as well as their potential value and impact to the industry, is essential for those in the shipbuilding community.

The 2009 Shipbuilding Conference will address the critical importance of welding in the shipbuilding industry by providing current information on new and emerging technologies being developed for shipbuilding applications.

In addition to the formal sessions being presented, the conference will provide several opportunities for you to network informally with experts from academia and industry, as well as with conference participants. An exhibition showcasing products and services available to the shipbuilding industry will also be featured during this two-day conference.

For the latest conference and exhibitor information or to register for the conference visit our website at www.aws.org/confereces or call 800-443-9353, ext. 455.

To secure tabletop exhibit space or for questions about exhibiting at the conference, please call 800-443-9353, ext. 223.
AWS Announces New Certification Program for Sales Representatives and Member Benefits for Welders

On March 10, the American Welding Society announced the inauguration of its certification program for welding sales professionals. The certification serves to recognize experience, knowledge, and excellence in welding sales expertise.

“The AWS welding sales representative certification will set apart the elite sales professionals from the rest of the pack,” said Cassie Burrell, AWS deputy executive director. “It drives home the dedication that sales professionals have to their customers because it shows their commitment to help customers find new solutions and ways to improve their welding quality and productivity, as well as help provide a safer workplace.”

Sales professionals interested in being the best and most successful in the industry and who meet the program’s requirements can take a two-hour exam to establish their credentials. Convenient examination sites are scheduled throughout the country. In addition, AWS offers three-day preparation seminars with the examination held on the afternoon of the third day. The seminar can be taken at certain AWS-scheduled sites, or at the workplace for groups of sales personnel.

The examination topics will establish the sales person’s level of knowledge concerning five arc welding processes, brazing and soldering, cutting, safety in process and gas-cylinder handling, AWS filler metal classifications, shielding gas applications, welding terminology, ventilation, electrical requirements for power sources, and welding procedures and their qualification.

The optional seminar serves to prepare sales professionals for the exam and also to enhance professional knowledge, as candidates gain insight alongside their peers in a stimulating, interactive classroom environment. Those enrolled in the seminar will receive a study guide and valuable reference books that they can keep: *Welding Handbook* volumes 1 and 2, AWS A5.32/A5.32M-97(R2007), *Specification for Welding Shielding Gases*, and ANSI Z49.1:2005, *Safety in Welding, Cutting, and Allied Processes*.

Prerequisites for the AWS Certified Welding Sales Representative program include a high school diploma or equivalent and at least five years of experience in an occupational function in direct relation to the sales of welding equipment, cutting equipment, and supplies of other related services; or at least two years of the same experience plus a training certificate of completion for welding processes. Completion of the AWS Certified Welding Sales Representative seminar fulfills this training certificate requirement. Therefore, by taking the seminar, a sales representative with between two and five years of relevant experience would be qualified to take the exam.

Visit www.aws.org/certification/CWSR for more information and application forms. For information about applying for certification, call (800) 443-9353, ext. 273; call ext. 455 with questions about the exam-preparation seminar; and call ext. 219 for information about customized training and examination conducted at your workplace.

Major Membership Benefits for Welders Announced

Also in March, a new American Welding Society membership program was inaugurated that will empower welders who are AWS members to take advantage of instant discounts at dozens of Gases and Welding Distributors Association (GAWDA) member stores nationwide.

Welder members can also benefit from hefty discounts on insurance, welding books and training, and other services. “AWS has negotiated on behalf of its 56,000 members so that welder members can receive significant discounts from participating GAWDA member welding supply distributors,” Burrell said. “We have also arranged access to AWS health insurance and dental plans, plus discounts on auto and home insurance for welders.”

With the upcoming changes in the economy, many welders are moving into high-growth industries such as green energy and infrastructure. For their new job environments, welders often need to purchase new protective equipment. They also want to maintain their access to health care insurance. This new membership program addresses both of these needs, by providing the opportunity for savings on safety apparel, welding helmets, tools, and other gear, as well as access to customized insurance coverage.

As AWS members, welders also can attend the regular meetings of more than 200 local AWS chapters, called “Sections,” where they can network to find the best career opportunities and share their expertise with others. Each local AWS Section works to improve the professionalism of its members while providing scholarships and mentoring to the next generation of welders in its community.

Welders who join AWS to receive these benefits will also receive a subscription to the monthly *Welding Journal* magazine and discounts on hundreds of welding books and educational programs.

Other benefits of joining AWS include up to an 87% discount on a choice from 28 welding books and CDs, access to the “Welders Exchange Bulletin Board” and “JobFind” on the AWS Web site, and members-only discounts on car rentals, cell phone plans, FedEx shipping, plus additional benefits.

The cost of a one-year AWS membership is $80 plus a one-time initiation fee of $12, but new members can save more by signing up for a two-year AWS membership for $147. For more information on the AWS Welder Membership and to sign up, visit www.aws.org/membership or call (800/305) 443-9353, ext. 260.
New AWS Supporters

New Sustaining Company

JV Industrial Companies, Ltd.
Western Region Headquarters
1515 Kona Dr.
Rancho Dominguez, CA 90220
Representative: Tony J. Barraza
www.jvic.com

JV Industrial Companies (JVIC) is an integrated engineering, construction, turnaround, fabrication, and specialty services company serving the refining, chemical, power, pulp and paper, alternative fuels, and other industrial clients. JVIC offers the industrial process plant community a variety of services to build, refurbish, expand, and maintain plant assets and provide continuing services to its clients by combining its many services as required under one company to assure safety, quality, and productivity in all project deliveries.

Affiliate Companies

Amerect Inc.
1110 Seventh Ave.
Newport, MN 55055

Supporting Companies

Holaday Parks, Inc.
1820 Marika St.
Fairbanks, AK 99709

Johnson Systems, Inc.
18999 U.S. Hwy. 27 N.
Marshall, MI 49068

Moran Iron Works, Inc.
11739 M-68/33 Hwy.
Onaway, MI 49765

Educational Institutions

Oklahoma Technical College
4444 S. Sheridan
Tulsa, OK 74145

Potomac Sr. High School
3401 Panther Pride Dr.
Dumfries, VA 22026

Soldadura de Arco S. De R.L. M.I.
Sindicato de Marina #203
Colonía López Mateos
Villahermosa, Tabasco 86000, Mexico

Tazewell County Career and Technical Center
100 Advantage Dr.
Tazewell, VA 24651

Wylie High School
2550 W. FM 544
Wylie, TX 75098

Membership Counts

<table>
<thead>
<tr>
<th>Membership Type</th>
<th>As of Grades</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sustaining Member</td>
<td>4/01/09</td>
<td>518</td>
</tr>
<tr>
<td>Supporting Member</td>
<td></td>
<td>314</td>
</tr>
<tr>
<td>Educational Member</td>
<td></td>
<td>495</td>
</tr>
<tr>
<td>Affiliate Member</td>
<td></td>
<td>469</td>
</tr>
<tr>
<td>Welding Distributor Member</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>Total Corporate Member</td>
<td></td>
<td>1,840</td>
</tr>
<tr>
<td>Individual Member</td>
<td></td>
<td>50,577</td>
</tr>
<tr>
<td>Student + Transitional Member</td>
<td></td>
<td>5,502</td>
</tr>
<tr>
<td>Total Membership</td>
<td></td>
<td>56,079</td>
</tr>
</tbody>
</table>

Ridgeway Earns AWS Student Chapter Member Award

Thomas Ridgeway, Canton South High School Student Chapter, has been selected by Chapter Advisor Art Baughman to receive the AWS Student Chapter Member Award. Thomas, a member of the National Technical Honor Society, has served as the Student Chapter chairman for 2009, and as Chapter secretary. He designed and helped build fire pits for the Chapter’s fund-raising event this year and also volunteered to help build basement support poles with Habitat for Humanity.

The AWS board of directors established the Student Chapter Member Award to recognize AWS Student Members whose Student Chapter activities have produced outstanding school, community, or industry achievements.

This award also provides an opportunity for Student Chapter advisors, Section officers, and District directors to recognize outstanding students, in addition to enhancing the image of welding within their communities.

Candidates Sought for Prof. Masubuchi Award

November 2 is the deadline for submitting nominations for the 2010 Prof. Koichi Masubuchi Award, sponsored by the Dept. of Ocean Engineering at Massachusetts Institute of Technology. This award includes an honorarium of $5000. It is presented each year to one person who has made significant contributions to the advancement of materials joining through research and development.

The candidate must be 40 years old or younger, may live anywhere in the world, and need not be an AWS member. The nomination package should be prepared by someone familiar with the research background of the candidate. It should include the candidate’s résumé listing background, experience, publications, honors, and awards, plus at least three letters of recommendation from fellow researchers.

This award was established to recognize Prof. Koichi Masubuchi for his numerous contributions to the advancement of the science and technology of welding, especially in the fields of fabricating marine and outer space structures. E-mail your nominations to Prof. John DuPont at jnd1@lehigh.edu.
ERRATA
AASHTO/AWS D1.5M/D1.5:2008
Bridge Welding Code

The following errata have been identified and incorporated into the current reprint of this document:

Page 262, Form L-3 — Procedure Qualification Record (PQR) for Qualification, Pretest, and Verification Results
Change “Maximum Size Single Pass” to “Minimum Size Multiple Pass” in the “Macroetch” row.

Standards Reaffirmed by ANSI

Standards for ANSI Public Review

ISO Standard for Public Review
ISO/DIS 10225, Gas welding equipment — Marking for equipment used for gas welding, cutting, and allied processes.

Copies of this draft standard are available for review and comment through your national standards body, which in the United States is ANSI, 25 W. 43rd St., 4th Fl., New York, NY 10036; (212) 642-4900. Any comments regarding ISO documents should be sent to your national standards body.

Technical Committee Meetings
May 5–7, D17 Committee and Subcommittees on Welding in the Aircraft and Aerospace Industries. Cincinnati, Ohio. Call M. Rubin, ext. 215.

May 6, 7, A2 Committee and Subcommittees on Definitions and Symbols. Myrtle Beach, S.C. Call A. Alonso, ext. 299.

May 14, D16 Committee on Robotic and Automatic Welding. Milwaukee, Wis. Call M. Rubin, ext. 215.

B2.1 and D16.3 Updated
B2.1/B2.1M:2009, Specification for Welding Procedure and Performance Qualification, provides the requirements for qualifying welding procedures and the performance of welders and welding operators for manual, semiautomatic, mechanized, and automatic welding, in both U.S. customary units and SI (metric) units. Included are sample forms, new materials from Australian and New Zealand standards, new welding procedure specification and qualification variables with tighter restrictions, and updated filler metal groupings. Covered are qualification requirements for base metals, filler metals, qualification variables, and testing requirements. The processes included are oxyfuel gas, SMA, GTA, submerged arc, laser beam, GMA, FCA, plasma arc, electroslag, electrogas, electron beam, and arc stud. The 298-page document lists for $156; $117 for AWS members.

listed below are the people participating in the 2008–2009 AWS Member-Get-A-Member Campaign. For campaign rules and a prize list, see page 83 in this Welding Journal, and for complete campaign rules visit www.aws.org/mgm. The standings are as of March 17, 2009. If you have any questions regarding your member proposer points, call the AWS Membership Dept. (800/305) 443-9353, ext. 480.

Winner’s Circle
Sponsored 20+ new members.
The superscript indicates the number of times the member has achieved Winner’s Circle status since June 1, 1999.
J. Compton, San Fernando Valley7
E. Ezell, Mobile6
J. Merzthal, Peru5
E. Ezell, Mobile4
J. Compton, San Fernando Valley3

Member-Get-A-Member Campaign

President’s Honor Roll
C. Alfaro, San Diego — 2
B. Baldwin, Arrowhead — 2
M. Boggs, Stark Central — 2
M. Boyer, Detroit — 2
R. Boyer, Nevada — 2
K. British, East Texas — 2
J. Contreras, International — 2
B. Donaldson, British Columbia — 2
E. Dupree, Tidewater — 2
F. Ferris, Boston — 1
F. Hendrix, New Jersey — 2
T. Johnson, Pittsburgh — 2
G. Lawrence, N. Central Florida — 2
E. Levert, North Texas — 2
J. Livesay, Nashville — 2
J. Padilla, Cuautitlan Izcalli — 2
S. Luke, Acadian — 2
J. Nash, Atlanta — 2
R. Pitt, Tidewater — 2
J. Polson, L.A./Inland Empire — 2
D. Roland, Upper Peninsula — 2
J. Rule, Cleveland — 2
J. Sisson, Niagara Frontier — 2
K. Smith, North Texas — 2
A. Stute, Madison-Beloit — 2
J. Svatos, Siouxland — 2
D. Thomason, Chicago — 2
M. Torres, Pascagoula — 2
B. Whatley, Albuquerque — 2
M. Yung, Portland — 2
P. Zammit, Spokane — 2

President’s Guild
Sponsored 20+ new members.
S. Esders, Detroit — 22

President’s Roundtable
Sponsored 9–19 new members.
E. Ezell, Mobile — 17
P. Betts, Mobile — 12

Student Member Sponsors
D. Berger, New Orleans — 110
J. Kacir, Detroit — 54
B. Benyon, Pittsburgh — 42
A. Baughman, Stark Central — 36
M. Boggs, Stark Central — 36
R. Jones, Puget Sound — 36
A. Rowe, Philadelphia — 36
A. Zinn, Eastern Iowa — 34
T. Moore, New Orleans — 32
J. Carney, Western Michigan — 26
J. Harris, Pascagoula — 26
E. Norman, Ozark — 26
J. Roberts, Sacramento — 26
S. Siviski, Maine — 26
T. Geisler, Pittsburgh — 24
J. Kline, Northern New York — 24
D. Newman, Ozark — 24
R. Newman, Maine — 24
R. Cook, Utah — 23
D. Howard, Johnstown-Altoona — 23
B. Suckow, Northern Plains — 23
R. Young, Iowa — 23
L. Clark, Milwaukee — 22
H. Hughes, Marion Valley — 22
D. Schnalzer, Lehigh Valley — 22
J. Rule, Cleveland — 21
R. Munns, Utah — 21
A. Duron, New Orleans — 19
J. Fox, NW Ohio — 19
D. Zabel, SE Nebraska — 19
D. Pickering, Central Arkansas — 18
R. Schmidt, Philadelphia — 18
T. Strickland, Arizona — 18
J. Boyer, Lancaster — 17
R. Boyer, Nevada — 17
J. Ciaramitaro, N. Central Florida — 17
C. Donnell, NW Ohio — 16
B. Hallila, New Orleans — 16
M. Arand, Louisville — 14
R. Hutchinson, Long Be./Or. Cty. — 14
G. Smith, Lehigh Valley — 14
A. Mattox, Lexington — 13
R. Rummel, Central Texas — 13
D. Saunders, Lakeshore — 13
A. Stute, Madison-Beloit — 13
D. Taylor, Kern — 13
D. Vranich, N. Florida — 13
J. Daugherty, Louisville — 12
J. Marshall, Siouxland — 12
R. Evans, Siouxland — 11
J. Theberge, Boston — 11
A. Badeaux, Washington, D.C. — 10
C. Kipp, Lehigh Valley — 10
D. Kowalski, Pittsburgh — 10
C. Abram, Columbus — 9
K. Caliva, New Orleans — 9
S. Colton, San Diego — 9
R. Ledford Jr., Birmingham — 9
R. Norris, Maine — 9
V. Faehnlein, Lehigh Valley — 9
D. Kearns, Northern Michigan — 8
M. Rabo, Sacramento — 8
G. Saari, Inland Empire — 8
N. Carlson, Idaho/Montana — 7
L. Caughron, Kansas City — 7
W. Galvery Jr., Long Be./Or. Cty. — 7
J. Geesey, Pittsburgh — 7
S. MacKenzie, Northern Michigan — 7
D. Roskiewich, Philadelphia — 7
J. Fitzpatrick, Arizona — 6
C. Schiner, Wyoming — 6
M. Hayes, Puget Sound — 5
R. Olesky, Pittsburgh — 5
J. Reed, Ozark — 5
T. Shirk, Tidewater — 5
T. Buckler Sr., Columbus — 4
H. Evans, Portland — 4
W. Geiger, N. Central Florida — 4
C. Hobson, Olympic Section — 4
W. Kielhoorn, East Texas — 4
T. Hopper, Mobile — 4
S. Robeson, Cumberland Valley — 4
G. Rolla, L.A./Inland Empire — 4
S. Tennant, Fox Valley — 4
F. Gorgione, Connecticut — 3
D. Hamilton, Chattanooga — 3
S. Hansen, SE Nebraska — 3
J. Hayes, Oklahoma City — 3
R. Huston, Olympic Section — 3
J. Russell, Fox Valley — 3
R. Richwine — 3
D. Saunders, Hokston — 3
M. Shelton, Sabine — 3
B. Wenzel, Sacramento — 3
BOSTON
February 23
Activity: The Section members toured the Metfab Engineering facilities in Attleboro Falls, Mass. The manufacturing plant processes all types of metal from thin gauge to heavy plate using both laser beam and waterjet cutting methods. Steve Cronin, plant manager, and Jim Tremblay, production manager, led the tour.

BOSTON and CENTRAL MASS./RHODE ISLAND
March 9
Speakers: Matthew Wallace, CEO and president, and Lucy Bolduc
Affiliation: VRSim Inc.
Activity: The Sections had a hands-on demonstration of the Sim Welder™ virtual reality technology. Students Rachel Auger, Erik Sowden, Kevin Guyette, Jacob Thomas, West LeBlanc, Thomas Donnellan, and Haeleigh Bigeau were enthusiastic about working with the machine. The event was held at Assabet Valley Regional Technical High School in Marlboro, Mass.

GREEN & WHITE MOUNTAINS
March 10
Speaker: Geoff Putnam, CWI
Affiliation: Thermal Dynamics
Topic: Preparations for the Vermont SkillsUSA welding test
Activity: The Section discussed the project and made job assignments for the contest. The meeting was held at Thermal Dynamics West in Lebanon, N.H.

MAINE
March 12
Activity: The Section members met for a vendors’ day and open house at United Technology Center in Bangor, Maine, in preparation for the following day’s Maine SkillsUSA welding contest. Lynn Malenfant, head welding instructor at the center, coordinated the event. Working the booths and demonstrating their wares for
Thirteen students competed at the state of Maine SkillsUSA competition March 13.

Shown at the Long Island Section program are (clockwise from left) Ken Messmer, Alex Duschere, Barry McQuillen, Chair Brian Cassidy, Harland Thompson, Ray O’Leary, Jeff Feiner, and Tom Garland.

the students were CWI Chris Maseychik, welding department head at Eastern Maine Community College; Josh Richardson and Paul Rice of Maine Oxy; Dean Donovan of Smith Equipment; Robb Smith and Erik Miskin of Advantage Gases; and Adam Fallon representing Lincoln Electric. District 1 Director Russ Norris attended the event.

MARCH 13
Speaker: Joe Champagne, CWI, trainer
Affiliation: Plumbers and Pipefitters UA Local #716
Topic: The Maine SkillsUSA welding contest
Activity: The Section members participated in judging the students’ work in the State of Maine SkillsUSA welding competition for 13 entrants. Attending were vendors from all over New England who contributed their consumables, equipment, pipe, and plates for the event.

District 2
Kenneth R. Stockton, director
(908) 412-7099
kenneth.stockton@pseg.com

LONG ISLAND
March 12
Activity: The Section held an awards presentation program at The Nook Restaurant in Wantagh, N.Y. Jeff Feiner received the District Meritorious Certificate Award, Ray O’Leary accepted the

Sam Vinci demonstrates aluminum welding for the students at the October Career Institute of Technology Student Chapter program.

Doug Detwiler (right) receives his Silver Membership Certificate from Mike Sebergandio, Lancaster Section chairman.

Section Meritorious Certificate Award, and Harland Thompson won the Section Dalton E. Hamilton Memorial Certified Welding Inspector of the Year Award.

District 3
Michael Wiswesser, director
(610) 820-9551
mike@welderinstitute.com

Career Institute of Technology Student Chapter
OCTOBER 2008
Speaker: Sam Vinci
Affiliation: The Lincoln Electric Co.
Topic: Programming and operation of the Lincoln Powerwave 455
Activity: The program was held at the Career Institute of Technology’s Welding Technology Lab in Easton, Pa. Vinci demonstrated for the students how to weld aluminum and stainless steel using the pulsed gas metal arc process. Forty people attended the program including welding instructor Christian Kipp, Chapter advisor.

NOVEMBER 2008
Speaker: Tim Stott
Affiliation: Miller Electric Co.
Topic: Programming and use of the Miller PipePro™ pipe welding machine
Activity: This Career Institute of Technology Student Chapter program was held in the Welding Technology Lab in Easton, Pa. The students who tried their hands using the equipment had great success making good pipe welds on their first try.

DECEMBER 2008
Speaker: Christian Kipp, Chapter advisor
Affiliation: Career Institute of Technology, welding instructor
Activity: The Student Chapter members demonstrated their welding skills and displayed a number of welding projects they

Career Institute of Technology Student Chapter member Scott Beers makes a good pipe weld under the watchful eye of presenter Tim Stott at the November program.

MAY 2009
completed during the year, including an aluminum water tank, hunting cabin outhouse seat, pipe casing for well drilling, and stainless steel control boxes for a tow truck. The program was held in the institute’s Welding Technology Lab in Easton, Pa.

LANCASTER
FEBRUARY 24
Speaker: Bob Hosa, district manager
Affiliation: T. J. Snow Corp., Inc.
Topic: Advanced resistance welding equipment with SPC capabilities
Activity: Doug Detwiler received the Silver Membership Certificate Award for 25 years of service to the Society. The meeting was held at Lancaster County Career & Technology Center in Mount Joy, Pa.

READING
FEBRUARY 19
Speaker: Mike Wiswesser, District 3 director
Affiliation: Welder Training and Testing Institute (WTTI), vice president
Topic: Welder training opportunities at WTTI
Activity: The Section hosted its past chairmen’s night program at Wyomissing Family Restaurant in Wyomissing, Pa. In attendance were past chairs John Miller, Paul Levengood, Francis Butkus, Joe Young, Merilyn McLaughlin, Dave Hibshman, and Peter Shaub. District 3 Director Wiswesser is a past chair of the Lehigh Valley Section.

WASHINGTON, D.C.
FEBRUARY 11
Speaker: George Brunner, AIA
Affiliation: EYP Architects and Engineers
Topic: The use of steel in modern buildings
Activity: Chairman Tom Jacobs pre-
Shown at the Washington, D.C., Section program are (from left) speaker George Brunner, Becky Lorenz, Chairman Tom Jacobs, Ron Flowers, and Alan Badeaux.

Washington, D.C., Section Chair Tom Jacobs (right) presents the Section Meritorious Certificate Award to Dave May in March.

Welding student Francisco Jimenez (left) receives a $1000 Section scholarship award from Alan Shissler, Florida West Coast Section education chairman.

Speaker John Abbitt (right) is shown with Dariel Martin at the March Washington, D.C., Section meeting.

Past Chair Walt Arnold (left) and Chair Al Sedory raffled off door prizes at the Florida West Coast Section’s fund-raising event.

Eric Morris (right) accepts a speaker gift from Bruce Lavallee, Northern New York Section chairman.

Speaker Uwe Aschemeier (left) is shown with Dayton Section Chair Steve Whitney.

MARCH 11
Speaker: John Abbitt, district manager
Affiliation: Thermadyne
Topic: New technologies in Thermal Arc gas metal arc welding machines
Activity: At this Washington, D.C., Section program Becky Lorenz received the District Meritorious Certificate Award. Section Meritorious Certificates were awarded to Dave May and Becky Lorenz. The District Educator Award was dedicated to the late Robert Worden for his selfless dedication to the advancement of welding skills and knowledge. Many more photos are posted on the AWS Washington, D.C., Web site.

District 4
Roy C. Lanier, director
(252) 321-4285
rlanier@email.pittcc.edu

District 5
Steve Mattson, director
(904) 260-6040
steve.mattson@yahoo.com

FLORIDA WEST COAST
March 7
Activity: The Section hosted its 17th annual scholarship fund-raising golf tournament at Walden Lake Golf and Country Club in Plant City, Fla. Francisco Jimenez was awarded a $1000 scholarship check to continue his welding education at Pinellas Technical Education Center.

District 6
Kenneth Phy, director
(315) 218-5297
k.phy@holtec.com

NORTHERN NEW YORK
March 3
Speaker: Eric Morris
Affiliation: 3M Occupational Health and Environmental Safety Division
Topic: Welding safety and controlling hexavalent chromium fume
Activity: The SkillsUSA welding trials for New York State Area III were announced to take place March 18 at the Capital Region BOCES facility. The meeting was held at Mill Road Restaurant and Tavern in Latham, N.Y.
DAYTON
MARCH 10
Speakers: Uwe Aschemeler, H. C. Nutting Co.; and Monica Pfarr, AWS corporate director, Solutions Opportunity Squad
Topics: Keynote speaker Aschemeler, a senior welding engineer and a commercial diver, discussed underwater welding. Pfarr detailed the educational opportunities available to students through AWS scholarship programs.
Activity: The program was hosted by Hobart Institute of Welding Technology in Troy, Ohio, for 112 Section members, welding instructors, and students. Chairman Steve Whitney of Motoman, Inc., served as emcee. The door prizes included a one-week basic robot programming course from Motoman, and auto-darkening helmets from Miller and Lincoln Electric. The program included a tour of the Hobart Institute of Technology training facilities.

JOHNSTOWN-ALTOONA
DECEMBER 9
Speaker: Michael Myers
Affiliation: Concurrent Technologies Corp.
Topic: Cladding to facilitate welding of dissimilar metals
Activity: The program was held at Concurrent Technologies Corp. in Johnstown, Pa.

FEBRUARY 10
Speaker: Warren Krueger
Affiliation: The Lincoln Electric Co.
Topic: Power Wave equipment and waveform technology
Activity: This Johnstown/Altoona Section program was held at the Dale Oxygen facility in Johnstown, Pa.

March 10
Speaker: Victor Matthews, AWS president
Affiliation: The Lincoln Electric Co.
Topic: Careers in welding
Activity: The Johnstown/Altoona Section hosted its past chairmen’s night program at Hoss’s Restaurant in Johnstown, Pa.

The Ohio State University Student Chapter
February 13
Activity: The OSU Student Chapter held its annual engineering open house for high school and community college students and the general public to learn about careers in welding.

Pam Hussen spoke on scholarship and employment opportunities at The Ohio State University Student Chapter event.
more about the OSU’s unique welding programs. More than 250 visitors observed the demonstrations of laser beam welding, robotic arc welding automation, metallography, computer applications, and inspection. The event included a tour of the Edison Welding Institute labs and talks presented by the students and staff. Pam Hussen, undergraduate student advisor, presented a talk on welding scholarship opportunities and job prospects. For information, contact Hussen at hussen.2@osu.edu; (614) 292-2545.

District 8
Joe Livesay, director
(931) 484-7502, ext. 143
joe.livesay@ttcc.edu

CHATTANOOGA
MARCH 17
Speaker: Larry Morrison, training coordinator
Affiliation: United Association Plumbers and Pipefitters
Topic: Details of the UAs apprenticeship training program
Activity: In attendance were welding students from Northwestern Technical College. On hand to answer the students’ questions were James Lockhart with the Iron Workers Local Union #704, David Hamilton with WEC, and Rick Friedman with Lincoln Electric. Don Russell, scholarship and AWS Foundation representative, presented a Section scholarship to Drayton Hales.

HOLSTON VALLEY
FEBRUARY 10
Speaker: Gary Roberts, welding specialist
Affiliation: Airgas-Mid-America
Topic: Welding safety
Activity: The Section updated its bylaws with the addition of an indemnification amendment. Discussions were held on the Section’s Web site, a newsletter, and plans for a students’ night program.

District 9
George D. Fairbanks Jr., director
(225) 473-6362
fits@bellsouth.net

MOBILE
FEBRUARY 12
Speakers: Gene Webb, Reggie Lambert
Affiliation: Conam Inspections and Engineering Services
Topic: Developments in nondestructive testing
Activity: The program was held at Saucy-Q Barbecue in Mobile Ala.
NEW ORLEANS
FEBRUARY 17
Speaker: Matthew Howerton, Section chair
Affiliation: The Lincoln Electric Co.
Topic: Factors affecting welding productivity
Activity: Howerton addressed how welding productivity is affected by the cost of consumables, overwelding of joints, power usage considerations, and wire selection. Eighty-three members and guests attended the meeting.

District 10
Richard A. Harris, director
(440) 338-5921
richaharris©alltel.net

MAHONING VALLEY & CCCTC Student Chapter
FEBRUARY 19
Speaker: Harold Bransch
Affiliation: Motoman
Topic: Affordable welding automation
Activity: This was a joint meeting of the Mahoning Valley Section and Columbiana County Career & Technical Center Student Chapter with 50 members and guests in attendance. The program was held at CCCTC in Lisbon, Ohio.

STARK CENTRAL
FEBRUARY 25
Speaker: Clyde Shetler
Affiliation: C and D Machine
Topic: Career opportunities in the metal fabrication field
Activity: This awards-presentation program was highlighted with the presentation of the prestigious AWS Image of Welding Award to Clyde Shetler. Shetler also received the District 10 Meritorious Award. Other presentations were made to Gary Lazarus: Two Section Meritorious Awards and the District 10 Director Award; Gary Smeglia: Private Sector Instructor Award; Scott Burdge: District 10 Director Award; and Mike Medal: District and Section Dalton E. Hamilton Certified Welding Inspector Awards. The event was held in Canton, Ohio.

District 11
Efthihios Siradakis, director
(989) 894-4101
ft.siradakis©airgas.com

DETROIT
MARCH 12
Speaker: Charles Orsette, executive weld lab manager
Affiliation: Fusion Welding Solutions
Topic: Methods for improving industrial welding quality and process robustness
Activity: Fusion Welding Systems hosted the meeting at Automation & Technical Alliance Facility in Clinton Township, Mich. Fusion Welding Solutions hosted the program. President and CEO John Inscho attended the event.

NORTHWEST OHIO
MARCH 5
Activity: The Section members toured the Penta Career Center in Perrysburg, Ohio. Welding instructor Earl Stevens led the group on a tour of the welding lab that services 14 high schools in the daytime and adult education classes at night. Welding instructor Jim Slivinski demonstrated a computer-controlled plasma arc cutting machine to make intricately scrolled parts used in the construction of power supply stands. Eight members and 15 students attended the tour.

District 12
Sean P. Moran, director
(920) 954-3828
sean.moran©hobartbrothers.com

LAKESHORE
MARCH 12
Speaker: Aaron Buchholz, biologist
Affiliation: Wisconsin Department of Natural Resources
Topic: The history of the wolf population in northern Wisconsin
Activity: The Section held its annual ladies’ night and past chairmen’s night program at Machut’s Restaurant in Two Rivers, Wis. Jeff McLeod received an appreciation plaque for his services as chairman. Other business included a revision to the Section’s bylaws.

RACINE-KENOSHA
MARCH 9
Activity: The Section members met at Gateway Technical College in Elkhorn,
Gateway Technical College welding students and Racine-Kenosha Section members pose for a group shot during their March program.

Shown at the Racine-Kenosha Section program are (from left) Chair Dan Crijase, presenter Bob Schuster, and Ken Karwowski, vice chair.

Craig Tichelar (left) received the Chicago Section Meritorious Award from Rick Polanin (center) District 13 director, and Chairman Hank Sima.

Wis., to study demonstrations of stud welding presented by Bob Schuster of Nelson Stud Welding Inc. The 30 attendees included Racine-Kenosha Section members and welding students attending the college.

District 13
W. Richard Polanin, director
(309) 694-5404
rpolanin@icc.edu

CHICAGO
MARCH 11
Speaker: Victor Matthews, AWS president
Affiliation: The Lincoln Electric Co.
Topic: Careers in welding
Activity: Craig Tichelar received the Section Meritorious Award. Dave Silver was presented his Gold Membership Award for 50 years of service to the Society. District 13 Director Rick Polanin attended the program. The meeting was held at the Local Union 597 Pipe Fitters’ Training Center in Mokena, Ill.

J.A.K.
MARCH 14
Speaker: Mark Stevenson, welding program director
Affiliation: Kankakee Community College (KCC)

PEORIA and Illinois Central College Student Chapter
FEBRUARY 18
Speaker: Scott Avis, component product manager
Affiliation: Caterpillar, Inc.
Topic: The use of steel castings in Caterpillar products
Activity: The members and students learned the mechanical and economic reasons for using welded castings in fabricated structures. The program was hosted by the Student Chapter Advisor Eric Ockerhausen and members of the Peoria Section. The Section and Student Chapter held the annual student welding contest March 19 at the Illinois Central College welding shop in Peoria, Ill., in separate divisions for high school and college-level students. The Peoria Section’s annual steak fry is planned for May 1 at the Morton Optimist Club.

District 14
Tully C. Parker, director
(618) 667-7795
tparke@millerwelds.com
Bobby Coffey (right) receives the Section Instructor of the Year Award from James Maddox, Lexington Section vice chair.

INDIANA
FEBRUARY 19
Activity: The Section members took a three-hour tour of Major Tool & Manufacturing in Indianapolis, Ind. The facility employs 60 welders and four welding engineers working on a variety of projects for national defense, aerospace, nuclear, and power-generation industries. Matt Vislay, manager of fabrication, conducted the tour.

LEXINGTON
FEBRUARY 26
Speakers: Robert Smith, Ed Varekozis
Affiliation: The Lincoln Electric Co.
Topic: Flux cored arc welding
Activity: Bobby Coffey received the Section Instructor of the Year Award. The Section Meritorious Award was presented to Karl Watson, an instructor at Somerset C.C. Delora McGuire received a $500 Section scholarship award to continue her studies at Somerset C.C. The program was held at Bluegrass Community College in Lexington, Ky.

District 15
Mace V. Harris, director
(612) 861-3870
macevh@aol.com

NORTHWEST
FEBRUARY 18
Activity: The Section held its annual Behind the Mask contest at St. Cloud Technical College in St. Cloud, Minn., coordinated by Pam Lesemann. Forty-seven contestants competed in projects involving the GTA, GMA, and SMA welding processes. Assisting were welding instructor Eric McAllister, Section Chair Todd Bridigum, and Matt Roszak. Trevor Larson took first place in GTAW and GMAW-P, and Nick Wuertz won first place for SMAW.

District 16
David Landon, director
(641) 621-7476
dlandon@vermeermfg.com

KANSAS CITY
JANUARY 8
Speaker: Dick Blaisdell, retired
Topic: How to prepare effective written welding procedures (WPS)
Shown at the Nebraska Section program are (front, from left) Monty Rodgers, Karl Fogelman, and Nick Weidenbach; (standing, from left) are Zach Meyers, Betzabel Castor-Diaz, Harrison Bernhagea, Brian Moeller, Brando Weis, Cody Pettigrew, and Cesar Tarango.

Dennis Pickering (left), speaker and chairman of the Central Arkansas Section, is shown with Jay Glass, a welding instructor at South Arkansas Community College.

Activity: Carolyn Bunch of the Youthful Offender Registered Apprenticeship Program explained how the program operates. This Kansas City Section meeting was held at Johnny C’s Restaurant in Kansas City, Mo.

NEBRASKA
FEBRUARY 20
Activity: The Section members and Praxair donated more than $1200 worth of leather welding aprons, gloves, and sleeves to Fremont High School in Omaha, Neb. Welding instructor Brian Moeller accepted the gifts on behalf of the school and his 90 students. He acknowledged the supplies would benefit the students in his metal fabrication classes for many years to come.

District 17
J. J. Jones, director
(940) 368-3130
jjones@thermadyne.com

SAN ANTONIO
Alamo Student Chapter
MARCH 10
Speaker: John Bray, District 18 director
Affiliation: Affiliated Machinery, Inc., president
Topic: District 18 activities update
Activity: Bray discussed plans for the upcoming District 18 conference and an update on the new Rio Grande Valley Section. AWS Vice President John Mendoza and members of the Alamo Student Chapter, Alfonso Rodriguez, advisor, attended the program. The meeting was held at The Little Red Barn Steak House in San Antonio, Tex.

District 18
John Bray, director
(281) 997-7273
sales@affiliatedmachinery.com

RIO GRANDE VALLEY
MARCH 4
Activity: The new Section organization business meeting was conducted by George Baldree, a welding engineer at Keppel AmFELS, Inc., Brownsville, Tex. Elected to the activation committee are George Baldree, chairman; Janie Solano and Ramon Pizaña, vice chairs; Ray Rivera, secretary; and Richard Salinas, treasurer. In attendance were District 18 Director John Bray and Ellery Francisco, District 18 deputy chair and chairman of the Corpus Christi Section. Forty-five people attended the event.

EAST TEXAS-LeTourneau University Student Chapter
FEBRUARY 19
Speaker: Victor Matthews, AWS president
Affiliation: The Lincoln Electric Co.
Topic: Careers in the welding industry
Activity: District 17 Director J. Jones presented Matthews a presidential cowboy hat and a “First Lady” hard hat to Sally Matthews. Seventy-two Section and Student Chapter members attended the event, held at LeTourneau University in Longview, Tex.

CENTRAL ARKANSAS
FEBRUARY 19
Speaker: Dennis Pickering, Section chair
Affiliation: Arkansas Career Training Institute
Topic: The Image of Welding Awards and the American Welding Society
Activity: The program was held at South Arkansas Community College in El Dorado, Ark.

District 19
Neil Shannon, director
(503) 419-4846
neilshn@msn.com

ALASKA
FEBRUARY 20
Speaker: Bruce Jaffa, quality control
Affiliation: Jaffa Construction, Inc.
Topic: Alaska’s boilermaker
Activity: Jaffa discussed his company’s history from an ornamental steel fabrication company into a provider of a wide range of construction for electrical power
Speaker Sil Nonis (left) is shown with Brad Moe, vice chair, British Columbia Section.

generation plants, at the Clean Coal facility in Healy, Alaska, and the Bradley Lakes hydroelectric project near Homer, Alaska. The meeting was held at AVTEC in Seward, Alaska. Attendees included students from local structural and pipe certification programs.

BRITISH COLUMBIA
FEBRUARY 19
Speaker: Sil Nonis, senior sales manager
Affiliation: Red-D-Arc Specialty Products
Topic: Induction heating
Activity: The program was held at Red-D-Arc Welderentals in Delta, B.C., Canada.

ALBUQUERQUE
FEBRUARY 18
Activity: Mike Thomas, program chair, conducted a program to inform 50 students from the welding programs at Eastern New Mexico University — Roswell (ENMU-R) and Clovis Community College about the District scholarship opportunities. Dusty Heritage, ENMU assistant VP, received the Section Educator Award for her contributions to welding education.

IDAHO/MONTANA
FEBRUARY 19
Activity: The Section members toured the Montana Tech’s new welding facility in Butte, Mont. Bruce Madigan, professor of welding engineering, made a presentation and conducted the tour. Dale Detrich of NIST’s Montana Manufacturing Center in Billings, Mont., discussed some of the industries he assists in the Billings area.
LONG BEACH/ORANGE CTY.
FEBRUARY 19
Activity: Past AWS President Gene Lawson and Paul Anderson, both of ESAB Welding and Cutting Products, discussed welding as a profession and demonstrated several ESAB products. The meeting was held at Orange Coast College in Costa Mesa, Calif.

L.A./INLAND EMPIRE
FEBRUARY 24
Speaker: Victor Matthews, AWS president
Affiliation: The Lincoln Electric Co.
Topic: AWS goals for 2009
Activity: Attending were AWS Past President Gene Lawson, District 21 Director Nan Samanich, Chairman George Rolla, Kenneth Reid, chairman of the Los Angeles Trade-Technical College Student Chapter, and Sandra Schreiner Student Chapter representative.

SAN FERNANDO VALLEY
FEBRUARY 26
Activity: Ed Dunn, president, and Kevin Dunn, vice president, conducted the Section members on a tour of Liberty Inspection Co., Inc., in Simi Valley, Calif., to study its nondestructive testing operations. Featured were presentations on radiography, dye penetrant, magnetic particle, and passivation technologies.

SACRAMENTO VALLEY
JANUARY 21
Activity: The Section members toured the facilities of Transfer Flow Inc., a manufacturer of aftermarket and original fuel tanks and fuel systems for Ford Motor Co., National RV, U-Haul, UPS, and other firms. Mark Forwalter conducted the program.

SAN FRANCISCO
MARCH 4
Speaker: Mario Lento, product specialist
Affiliation: Berkeley Process Control, Inc.
Topic: Development of a remote welding system for sealing spent nuclear fuel storage casks
Activity: The program was held at Spencer’s Restaurant in Berkeley, Calif.

Shown at the Long Beach/Orange County program are (from left) Ross Bumcor, Bill Galvery, presenter Gene Lawson, Diana Valdez, Richard Hutchison, and Winford Sartin.

The San Fernando Valley Section members toured Liberty Inspection in February.

Shown at the San Francisco Section program are (from left) Chair Liisa Pine, Secretary James Bulgerin, and speaker Mario Lento.

Kenneth Reid is shown with Sandra Schreiner at the Los Angeles/Inland Empire meeting.

Shown at the Sacramento Valley Section tour of Transfer Flow Inc. are Mark Forwalter (left) and Chairman Don Robinson.

Speaker Mario Lento chats with Liisa Pine, San Francisco Section chair.
Guide to AWS Services

American Welding Society
550 NW LeJeune Rd., Miami, FL 33126
www.aws.org; (800/305) 443-9353; FAX (305) 443-7559
Staff telephone extensions are shown in parentheses.

AWS PRESIDENT
Victor Y. Matthews
vic_mathews@electrodecom
The Lincoln Electric Co.
7955 Dines Rd.
Novelty, OH 44072

ADMINISTRATION
Executive Director
Ray W. Shook
rshook@aws.org
(216)
Deputy Executive Director
Frank R. Tarafa
tarafa@aws.org
(216)
Deputy Executive Director
Cassie R. Burrell
cburrell@aws.org
(216)
Senior Associate Executive Director
Jeff Weber
jweber@aws.org
(216)
Executive Assistant for Board Services
Gricelda Manalich
gricelda@aws.org
(214)
Administrative Services
Manager
Jim Lankford
jlankford@aws.org
(214)
IT Network Director
Armando Campana
acampana@aws.org
(295)
Director
Hidal Nuñez
hidal@aws.org
(295)
Database Administrator
Natalia Swain
mswain@aws.org
(245)
Human Resources
Director
Luisa Hernandez
luisa@aws.org
(246)
Manager
Dora A. Shade
shade@aws.org
(246)

INT’L INSTITUTE OF WELDING
Senior Coordinator
Sissibeth Lopez
st Lopez@aws.org
(313)

GOVERNMENT LIAISON SERVICES
Hugh K. Webster
hwebster@wec.com
Webster, Chamberlain & Bean, Washington, D.C., (202) 785-9500; FAX (202) 835-0243. Identifies funding sources for welding education, research, and development. Monitors legislative and regulatory issues of importance to the welding industry.

CONVENTION and EXPOSITIONS
Senior Associate Executive Director
Jeff Weber
jweber@aws.org
(246)
Corporate Director, Exhibition Sales
Joe Krall
jkrall@aws.org
(295)
Organizes the annual AWS Welding Show and Convention, regulates space assignments, registration items, and other Expo activities.

Brazing and Soldering Manufacturers’ Committee
Jeff Weber
jweber@aws.org
(246)

RWMA — Resistance Welding Manufacturers’ Alliance
Manager
Susan Hopkins
sho@rwma.org
(295)

WEMCO — Welding Equipment Manufacturers Committee
Manager
Natalie Tapley
ntapley@aws.org
(444)

PUBLICATION SERVICES
Department Information
Andrew Cullison
cullison@aws.org
(249)
Welding Journal
Publisher
Andrew Cullison
cullison@aws.org
(249)
Editor
Mary Ruth Johnsen
mjohnsen@aws.org
(238)
National Sales Director
Rob Saltzstein
saltzstein@aws.org
(243)
Society and Section News Editor
Howard Woodward
woodward@aws.org
(244)
Welding Handbook
Welding Handbook Editor
Annette O’Brien
obrien@aws.org
(305)
Publishes the Society’s monthly magazine, Welding Journal, which provides information on the state of the welding industry, its technology, and Society activities. Publishes Inspection Trends, the Welding Handbook, and books on general welding subjects.

MARKETING COMMUNICATIONS
Director
Ross Hancock
rhancock@aws.org
(226)
Public Relations Manager
Cindy Wehl
wehl@aws.org
(416)
Webmaster
Angela Miller
amiller@aws.org
(456)

MEMBER SERVICES
Department Information
Deputy Executive Director
Cassie R. Burrell
cburrell@aws.org
(253)
Director
Rhonda A. Mayo
rmayo@aws.org
(260)
Serves as a liaison between Section members and AWS headquarters. Informs members about AWS benefits and activities.

CERTIFICATION SERVICES
Department Information
Managing Director, Certification Operations
John Filippi
jfilippi@aws.org
(222)
Managing Director, Technical Operations
Peter Howe
phowe@aws.org
(309)
Manages and oversees the development, integrity, and technical content of all certification programs.

Director, Int’l Business & Certification Programs
Priti smoral@aws.org
(258)
Directs all int’l business and certification programs. Is responsible for oversight of all agencies handling AWS certification programs.

EDUCATION SERVICES
Managing Director
Dennis Marks
dmarks@aws.org
(449)
Director, Education Services Administration and Convention Operations
John Ospina
jospina@aws.org
(462)

AWS AWARDS, FELLOWS, COUNSELORS
Senior Manager
Wendy S. Reeve
wreeve@aws.org
(293)
Coordinates AWS awards and AWS Fellow and Counselor nominees.

TECHNICAL SERVICES
Department Information
Andrew R. Davis
adavis@aws.org
(466)
In’tl Standards Activities, American Council of the Int’l Institute of Welding (IIW)
Director, National Standards Activities
John L. Gayler
gayler@aws.org
(472)
Personnel and Facilities Qualification, Computerization of Welding Information
Manager, Safety and Health
Stephen P. Hedrick
shedrick@aws.org
(305)

Technical Publications
AWS publishes about 200 documents widely used throughout the welding industry.

Staff Engineers/Standards Program Managers
Annette Alonso
aalonso@aws.org
(299)
Automotive Welding, Resistance Welding, Oxy-fuel Gas Welding and Cutting, Definitions and Symbols, Sheet Metal Welding
Stephen Borroto
sborroto@aws.org
(334)
Rakesh Gupta
gupia@aws.org
(301)
Filler Metals and Allied Materials, Int’l Filler Metals, Instrumentation for Welding, UNS Numbers Assignment
Brian McGrath
bmcgrath@aws.org
(311)
Methods of Inspection, Mechanical Testing of Welds, Welding in Marine Construction, Piping and Tubing
Selvis Morales
smorales@aws.org
(313)
Welding Quality, Structural Welding
Matthew Rubin
mmrubin@aws.org
(215)
Aircraft and Aerospace, Machinery and Equipment, Robotics Welding, Arc Welding and Cutting Processes
Reino Starks
rstarks@aws.org
(304)
Welding in Sanitary Applications, High-Energy Beam Welding, Friction Welding, Railroad Welding, Thermal Spray

Note: Official interpretations of AWS standards may be obtained only by sending a request in writing to the Managing Director, Technical Services. Oral opinions on AWS standards may be rendered. However, such opinions represent only the personal opinions of the particular individuals giving them. These individuals do not speak on behalf of AWS, nor do these oral opinions constitute official or unofficial opinions or interpretations of AWS. In addition, oral opinions are informal and should not be used as a substitute for an official interpretation.

Staff telephone extensions are shown in parentheses.

WELDING JOURNAL 89
Honorary Meritorious Awards

The Honorary Meritorious Awards Committee makes recommendations for the nominees presented to receive the Honorary Membership, National Meritorious Certificate, William Irgang Memorial, and the George E. Willis Awards. These honors are presented during the FABTECH International & AWS Welding Show held each fall. The deadline for submissions is December 31 prior to the year of the awards presentations. Send candidate materials to Wendy Sue Reeve, secretary, Honorary Meritorious Awards Committee, wreeve@aws.org; 550 NW LeJeune Rd., Miami, FL 33126. Descriptions of these awards follow.

William Irgang Memorial Award
Sponsored by The Lincoln Electric Co. in honor of William Irgang, the award, administered by AWS, is given each year to the individual who has done the most over the past five years to enhance the Society’s goal of advancing the science and technology of welding. It includes a $2500 honorarium and a certificate.

George E. Willis Award
Sponsored by The Lincoln Electric Co. in honor of George E. Willis, the award, administered by AWS, is given each year to an individual who promoted the advancement of welding internationally by fostering cooperative participation in technology transfer, standards rationalization, and promotion of industrial goodwill. It includes a $2500 honorarium and a certificate.

Honorary Membership Award
The honor is presented to a person of acknowledged eminence in the welding profession, or to one who is accredited with exceptional accomplishments in the development of the welding art, upon whom the Society deems fit to confer an honorary distinction. Honorary Members have full rights of membership.

National Meritorious Certificate Award
This certificate award recognizes the recipient’s counsel, loyalty, and dedication to AWS affairs, assistance in promoting cordial relations with industry and other organizations, and contribution of time and effort on behalf of the Society.

International Meritorious Certificate Award
This honor recognizes recipients’ significant contributions to the welding industry for service to the international welding community in the broadest terms. The awardee is not required to be an AWS member. Multiple awards may be given. The award consists of a certificate and a one-year AWS membership.

AWS Mission Statement
The mission of the American Welding Society is to advance the science, technology, and application of welding and allied processes, including joining, brazing, soldering, cutting, and thermal spraying.

It is the intent of the American Welding Society to build AWS to the highest quality standards. Your suggestions are welcome. Please contact any staff member or AWS President Victor Y. Matthews, as listed on the previous page.
To keep pace with the evolving needs of welders, the American Welding Society (AWS) has created a Membership exclusively for welders...

the AWS Welder Membership.

Welders who are committed to making their jobs, as well as their lives easier, are candidates for the AWS Welder Membership.

The AWS Welder Membership will allow you to save on welding equipment that you use every day, give you direct access to a health insurance program that fits your needs, provide you with the latest information in the industry and much more.

You’ll connect with the materials joining community through educational seminars, informal get-togethers and special events. You’ll be tuned into the latest happenings and trends. You’ll get the discounts and benefits that you’ve been looking for.

● Discounts on welding equipment and tools of the trade offered by participating GAWDA distributors
● Health Insurance Program
● Publications exclusively for welders
● Discounts on auto and home insurance
● Discounts on dental, vision and pharmacy programs
● The Welder’s Exchange bulletin board on the AWS web site
● and more...

Membership in AWS is a great way to nurture your professional development. Whether you’re just starting out or a veteran welder, you’ll benefit from becoming a member. Join today!

Call: (800) 443-9353, ext 480, or (305) 443-9353, ext. 480

Visit: www.aws.org/membership

American Welding Society
The four-page, full-color *A Guide to Welding Fume Control* offers practical information for providing a safer workplace.

The centerpiece is the company’s welding fume control methodology presented in graphic format to assist engineers in determining what must be done to ensure a healthier workplace. The chart considers regulatory assessment, exposure determination, engineering controls, safe work practice controls, and personal protective equipment. One page considers methods for controlling the employees’ route of exposure to fume with advice on monitoring, training, and equipment maintenance. Also described are support literature available free from the company. The PDF document can be downloaded from the company’s Web site; search for publication MC08-67; or call for a hard copy.

The Lincoln Electric Co.
www.lincolnelectric.com
(216) 481-8100

Welding Accessories Catalog Updated

A 33-page, 2009–2010 welding accessories catalog pictures and describes the company’s lines of electrode holders and replacement parts, ground clamps, cable connectors, machine plugs and GTA adapters, stud and terminal connectors, power output terminals, cable lugs, splicers, heat shrink and Swedg-On tool.

Get Fired Up.

Western Canada’s premier forum for welding and manufacturing.

WeldExpo comes to Edmonton every two years and won’t return until 2011! See the latest welding technologies, techniques, equipment and support services!

Reduce costs • Improve Productivity • Network

Accompanying technical sessions in partnership with AWS Alberta including participating companies: FANUC Robotics Canada, Hobart Brothers Canada, Lincoln Electric Canada and Roboweld!

www.wmts.ca • 888.322.7333

WeldExpo is part of the Western Manufacturing Technology Show (WMTS), serving Western Canada’s vital industries of Oil & Gas, Mining, Heavy Equipment, Agriculture, Electronics, Public Works and more!
chipping hammers, electrode stabilizing rod ovens, welding blankets, pneumatic tools, circle burners, cylinder wrenches, antispatter, wire lube pads, nozzle gel, and Spray-Galv. Included are the company’s line of dent-pulling systems and Lencospot® resistance spot welding machines. For easy reference, a four-page item code index lists hundreds of products by item code number, company model number, and catalog page number.

Lenco
www.profax-lenco.com
(573) 243-3141

Welding Torches Pictured in Catalog

A 264-page catalog illustrates and describes the company’s comprehensive lines of welding torches and guns, wire straighteners, wire feeders, regulators and flowmeters, gauges, spool guns, portable cutting and beveling machines, drive rolls, hand controllers, positioners, plasma coolant, cable covers, air regulators, compressed air filters, contactors, gas and water hoses. Included are myriad accessories and replacement parts to fit many popular brands of welding equipment.

Profax
www.profax-lenco.com
(281) 485-6258

Laser Safety Spec Revised

The recently released 56-page Z136.5-2009, Safe Use of Lasers in Educational Institutions, applies the requirements of ANSI Z136.1, Safe Use of Lasers, to the unique environments associated with educational institutions, including teaching laboratories, classrooms, lecture halls, science fairs, and science museums that have lasers incorporated into their educational process. It is intended for staff and students using lasers for academic instruction in university, college, secondary, or primary educational facilities. It represents a significant revision to the 2000 edition, which it replaces. Other significant revisions can be seen in the laser laboratory layouts, standard operating procedures, figures, and tables. The Definitions section has been updated with some terms being redefined and the addition of many new terms and definitions. The standard is intended to be used with Z136.1-2007, Safe Use of Lasers, the 276-page, soft-bound parent document of the series. The two-document set may be purchased online or ordered by phone for $2601 list, $225 for Institute members.

Laser Institute of America
www.laserinstitute.org
(407) 380-1553

Simplicity...Versatility...Affordability

The W-60-12-SM Saddle-Miter Pipe Cutter is the machine to buy if you are cutting pipe 12 inches and below, such as stair rails, machine frames or plumbing. Cuts perfect 90° saddle joints to connect any size branch to any size trunk, including 1:1 matches. Miters can be set to any angle. This machine will save you hours of work the first time you use it.

The W-50 Destructive Weld Tester is a destructive weld testing machine that incorporates compression, tensile, and bend testing in one complete unit. The W-50 is an invaluable asset to any training facility or commercial company that requires welder qualification. The W-50 can do all the destructive tests as specified by AWS, ASME and API. The W-50 requires very little space since the unit sits horizontally. This machine is designed so the entire test procedure can be handled by one operator quickly and easily.

The W-70 Welding Positioner, when you need to rotate your work at a controlled speed you can’t beat the set-up. The handy foot-pedal speed controller keeps both hands free for welding, or use the panel control. Chuck anything up to 12 inches in the internal jaws.

For info go to www.aws.org/ad-index
NEMA Graphic Symbols for Arc Welding Published

Just released, the 65-page NEMA Standards Publication EW 4-2009, Graphic Symbols for Arc Welding and Cutting Apparatus, provides manufacturers and users of arc welding and cutting equipment with a system of 217 graphic symbols that can be used and recognized throughout the industry. Included are symbols used to identify controls, indicators, connection points, operations, functions, commands, and processes. It does not cover graphic symbols used to alert personnel of immediate or potential personal hazards in the use of the equipment. This edition adds symbols from Annex L of IEC 60974-1 and uses an international style that harmonizes with ISO/IEC documentation methods. Each graphic is listed with its function, keyword or phrase, an application description, and the reference source(s). Visit the Web site to download the PDF edition free of charge, or order the hard copy for $114.

National Electrical Manufacturers Assn. www.nema.org/standards/ew4.cfm (703) 841-3200

Brochure Details Brakes and Clutches

An eight-page, full-color brochure details the company’s engineering, testing, and research capabilities, plus highlights eight key product lines: off-highway vehicle brakes; clutches and torque limiters; winch, crane, and marine products; machine tool face tooth couplings; forklift truck brakes; servo motor brakes; pneumatic clutches and brakes; and custom design units. To download the PDF brochure, visit its Web site then click the Literature tab.

Matrix International www.matrix-international.com (815) 389-3771

Updated Aluminum Alloy Designations Published

The 29-page, 2009 edition of International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys, known as the “Teal Sheets,” supersedes the 2006 edition. Featured are 23 new alloy designations and their associated chemical composition limits, including the...
calculated densities of the registered alloys. The document composition tables have been reformatted to improve readability. Included are nearly 500 designations and chemical composition limits for wrought aluminum and wrought aluminum alloys, a table of nominal densities for the registered alloys, and a list of previously registered but currently inactive alloy designations. The hard copy may be ordered from www.aluminum.org/bookstore. The price is $40 list, $20 for association members. To download the document free of charge, visit the Web site below.

The Aluminum Association
www.aluminum.org/TealSheets
(703) 358-2960

Safety Products Catalog Now Smaller and Better

The company’s smaller (116 pages) S-27, Safety, Facility, and Equipment Identification Catalog, eliminates a lot of the product information and focuses on safety and identification solutions including compliance, lockout/tagout, visual workplace, and slips, trips, and falls. The reorganization makes it easier to understand the company’s differentiated products, processes, and services that are better illustrated and described online. Catalog 27 and other publications can be requested online at the listed Web site.

Brady Corp.
www.bradyid.com
(888) 250-3082

We make companies, small or large, Stand Out.

About AWS Corporate Memberships:

The American Welding Society (AWS), understands that one size does not fit all. For that reason, we’ve created FOUR different levels of corporate membership, starting for as little as $150 per year, allowing you to select a program that best fits with the way your company operates. With an 88-year history in the welding industry, and 50,000+ members worldwide, AWS Corporate Membership offers your company the ability to INCREASE ITS EXPOSURE and IMPROVE ITS COMPETITIVE POSITION.

Contact Us:

CALL US FOR MORE INFORMATION, OR TO JOIN AT: (800) 443-9353, EXT. 480, OR (305) 443-9353, EXT. 480. OR VISIT US ON-LINE AT WWW.AWS.ORG/MEMBERSHIP.
Retro Systems, Valley Center, Kan., a manufacturer of CNC profile cutting machines for the oxyfuel and plasma arc cutting processes, has appointed Randall J. Damas and Kelly Craft regional managers. Damas, based in Cleveland, Ohio, will service sales from Michigan to Maine and the Canadian Province of Ontario eastward. Craft will manage sales in the southeastern United States.

Alloy Products VP Named at Wall Colmonoy

Wall Colmonoy, Madison Heights, Mich., has appointed Craig Johnson to vice president, Alloy Products Group, responsible for the sales and marketing functions. Johnson, with the company for more than 20 years, most recently served as commercial director for the Group.

COO Named at CMW

CMW Inc., Indianapolis, Ind., a manufacturer of highly engineered metal alloys and composites, has appointed Eric L. Krepps chief operating officer. Krepps previously held leadership positions with Eaton/Aerocquip, Sanmina-SCI, and Faurecia Systems managing operations in Asia, Mexico, and other countries.

PFERD of Canada Fills General Manager Post

August Rüeggeberg GmbH & Co., Marienheide, Germany, manufacturer of PFERD abrasives, power tools, and other products, recently established a new distribution service center in Toronto, Ont., Canada. Mark Crump has been appointed to fill the newly created position of general manager. Crump previously worked for 15 years at Kennametal U.K. Ltd. as distributor development manager, based in London.

Taylor Hobson Names Managing Director

Taylor Hobson, Leicester, England, a manufacturer of ultrahigh-precision industrial metrology and nanotechnology instrumentation, has named Craig Howarth managing director. Previously, Howarth served as managing director for Hanovia, a manufacturer of UV-based water-disinfection equipment.
The Emmet A. Craig
Resistance Welding School

Sponsored by the American Welding Society and the Resistance Welding Manufacturing Alliance (RWMA)
is coming to Chicago!
Tuesday & Wednesday,
November 17 & 18, 2009
at the

FABTECH
INTERNATIONAL
&Welding Show

Topics to be covered:
Introduction & Basics of Resistance Welding
Electrodes and Tooling
Welding Controls
Electrical Power Systems
Welding Processes & Machines
Troubleshooting and Maintenance
Initial Machine Set-Up

Each year, this two-day resistance welding school is attended by seasoned professionals, shop supervisors, production managers, electrical engineers, and mechanical engineers. Sessions on the basics of resistance welding and real-life applications of the process are conducted by industry specialists with extensive resistance welding experience. Participants are able to learn at their own pace, discuss specific welding concerns with the instructors, and are invited to bring their own samples for discussion. In addition, attendees can visit with RWMA-member companies during a tabletop exhibit reception to learn about the latest resistance welding products being offered.

For the latest information on the RWMA Welding School visit our website at www.aws.org/show/rwma.html or call 800-443-9353, ext. 455

To register online, go to www.aws.org/show/rwma.html and click on REGISTER
medial markets, has named Neil Redpath technical/research and development manager. Redpath previously had global responsibility for nitrile glove polymer applications development and customer support for Dow Re-ichhold Specialty Latex LLC.

Laser Design and GKS Inspection Fill Key Post

Laser Design, Inc., and GKS Inspection Services, Detroit, Mich., providers of 3-D laser scanning systems and services, has appointed Giles Gaskell business development manager. After founding companies in the UK and Italy, Gaskell moved to the United States in 2005 where he most recently served as director of business development for NVision Inc.

Veridiam Names CEO

Veridiam, San Diego, Calif., a manufacturer of build-to-print metal tubing, components, and assemblies for the power-generation, aerospace, and other industries, has appointed Andrew Gale chief executive officer, replacing Neal Nordstrom who remains with the company in an executive capacity. Gale, with 25 years of experience, most recently was president and CEO of C-Tech Industries.

Dinh Selected INL Fellow

Nam Truc Dinh has been selected as an Idaho National Laboratory Fellow in recognition of his 20 years of research and development as a nuclear safety engineer. Dinh was cited for his “significant impact on the resolution of several safety issues in Light Water Reactor safety and played a principal role in the severe accident treatment and passive safety design in the GE-Hitachi’s Economic Simplified Boiling Water Reactor plant design.”

Three Tapped for ASM Thermal Spray Hall of Fame

On May 4 in Las Vegas, Nev., the ASM Thermal Spray Society will induct Daryl E. Crawmer, Akira Nakahira, and Anatolii N. Papyrin into its Hall of Fame. Crawmer is director of technology for Thermal Spray Technologies, Inc., in Sun Prairie, Wis. Nakahira is chairman and CEO of TOCALO Co., Ltd., and president of the Japan Thermal Sprayers Assn. Papyrin is president of Cold Spray Technology, LLC, in Albuquerque, N.Mex.
The interest level is extraordinarily high when it comes to the welding of corrosion-resistant alloys. There are many reasons for this. One is the entry of the duplex stainless steels and other high-performance grades. Another is the unstable prices in nickel, molybdenum and titanium. When the price of nickel hit the roof, many fabricators switched from 316 to 201 stainless because of the latter grade’s lower nickel content. Research is feverish throughout the world in the development of new and cheaper methods of producing titanium. Will a lower cost titanium make the metal more popular?

The overall activity is immense. Cladding and strip overlay processes have become more popular means of protecting parts exposed to heavy corrosion. Duplex stainless is now being welded for over-the-road tankage. New processes, like friction stir welding and the more advanced thermal stir welding out of NASA will be discussed as well. Also, improvements in weld properties are being realized by increasing the weld interpass temperatures for conventional austenitic stainless steels.

Keep abreast of this exciting new world in welding where corrosion-resistant alloys have taken center stage. Mark your calendar for November 18, 2009, at the FabTech International and AWS Welding Show in Chicago, Illinois.

For the latest conference information visit our website at www.aws.org/conferences or call 800-443-9353, ext. 455.

Hosted by: American Welding Society®
Friends and Colleagues:

The American Welding Society established the honor of Counselor to recognize individual members for a career of distinguished organizational leadership that has enhanced the image and impact of the welding industry. Election as a Counselor shall be based on an individual’s career of outstanding accomplishment.

To be eligible for appointment, an individual shall have demonstrated his or her leadership in the welding industry by one or more of the following:

- Leadership of or within an organization that has made a substantial contribution to the welding industry. The individual’s organization shall have shown an ongoing commitment to the industry, as evidenced by support of participation of its employees in industry activities.

- Leadership of or within an organization that has made a substantial contribution to training and vocational education in the welding industry. The individual’s organization shall have shown an ongoing commitment to the industry, as evidenced by support of participation of its employee in industry activities.

For specifics on the nomination requirements, please contact Wendy Sue Reeve at AWS headquarters in Miami, or simply follow the instructions on the Counselor nomination form in this issue of the Welding Journal. The deadline for submission is July 1, 2009. The committee looks forward to receiving these nominations for 2010 consideration.

Sincerely,

Alfred F. Fleury
Chair, Counselor Selection Committee
LETTERS TO THE EDITOR
— continued from page 20

physically measure larger than the size of the weld.

Now let’s take a look at the other thing Fig. 25 says, “By measuring the leg length, the 2nd side of the triangle is known. Now the actual size can be determined as well as convexity and concavity issues be determined.” We already know that is not true (see above information), and one should never take for granted that each leg is equal in length. You always measure the length of the shortest leg to determine the size of a fillet weld.

Ron Theiss, NHC (ret.), and John Husfeld, Conformance Consulting Services

The statement regarding the theoretical throat vs. the actual throat is correct, and it should have read “theoretical” throat. I can measure each leg of a fillet weld so I know if weld lengths are of equal size, and I have the ability to measure convexity/concavity of a weld as well.

Joe Pavilanis
Process/Quality Engineer
Woolf Aircraft Products, Inc.
Romulus, Mich.

NEWS OF THE INDUSTRY
— continued from page 12

“I can think of no enterprise more worthy than one devoted to inspiring the next generation of engineers, builders, and manufacturers,” said Ratzenberger. “I am proud to join forces with FMA and know that with each child who attends one of our camps or receives one of our scholarships, we are rebuilding America’s foundation one tinkerer at a time.

“We must encourage kids when they graduate from high school to consider manufacturing as a career. . .we need to do better at informing the next generation and their parents that working a skilled job with your hands can be rewarding financially and fulfilling personally,” added Ratzenberger.

The new organization will feature an 18-member board of directors; six members from the former NBTF will join the 12 former FMA Foundation board members.

Industry Notes

• Vincennes University, Vincennes, Ind., now offers a new associate degree in Welding Technology designed to open opportunities in management, inspection, and automation. Expected first-year enrollment is 23 students with this to possibly double by the fifth year of the program.
• GE Sensing & Inspection Technologies and SGS-CSTC, a Chinese joint venture of SGS group, opened a joint nondestructive examination application center in Shanghai, China.
• Detroit Tool Metal Products, Lebanon, Mo., has been awarded a $1.4 million contract from DRS Technologies, West Plains, Mo., for welding M989A1 Heavy Expanded Mobility Ammunition Trailer frames,
• Diversified Industrial Staffing, Troy, Mich., is expanding into new markets around the country to bring an approach of matching manufacturers with the best skilled-trades workers, including welders, according to Todd Palmer, its president and owner.
• A 40,000-sq-ft warehouse expansion bringing the total area dedicated to nickel alloys to 112,000 sq ft has been completed by Corrosion Materials, Baker, La. This includes a Kasto Unicompact 5.0 automated storage and retrieval system for bar and tubular products along with 3000 sq ft for on-site X-raying.

NEW PRODUCTS
— continued from page 38

Ratzenberger said to join forces with FMA and know that with each child who attends one of our camps or receives one of our scholarships, we are rebuilding America’s foundation one tinkerer at a time.

“The must encourage kids when they graduate from high school to consider manufacturing as a career...we need to do better at informing the next generation and their parents that working a skilled job with your hands can be rewarding financially and fulfilling personally,” added Ratzenberger.

The new organization will feature an 18-member board of directors; six members from the former NBTF will join the 12 former FMA Foundation board members.

Industry Notes

• Vincennes University, Vincennes, Ind., now offers a new associate degree in Welding Technology designed to open opportunities in management, inspection, and automation. Expected first-year enrollment is 23 students with this to possibly double by the fifth year of the program.
• GE Sensing & Inspection Technologies and SGS-CSTC, a Chinese joint venture of SGS group, opened a joint nondestructive examination application center in Shanghai, China.
• Detroit Tool Metal Products, Lebanon, Mo., has been awarded a $1.4 million contract from DRS Technologies, West Plains, Mo., for welding M989A1 Heavy Expanded Mobility Ammunition Trailer frames,
• Diversified Industrial Staffing, Troy, Mich., is expanding into new markets around the country to bring an approach of matching manufacturers with the best skilled-trades workers, including welders, according to Todd Palmer, its president and owner.
• A 40,000-sq-ft warehouse expansion bringing the total area dedicated to nickel alloys to 112,000 sq ft has been completed by Corrosion Materials, Baker, La. This includes a Kasto Unicompact 5.0 automated storage and retrieval system for bar and tubular products along with 3000 sq ft for on-site X-raying.

NEW PRODUCTS
— continued from page 38

recommented for use with up to X70 grade pipe), LH-D90 (up to X80 grade), and LH-D100 (up to X90 grade). These low-hydrogen consumables are useful for downhill pipe welding applications on high-strength, cross-country pipelines. They are also recommended for fill and cap pass welding, as well as pipe repair and hot tapping applications. All offer enhanced user features such as a smooth arc, good pool control, and lower spatter levels. The company’s Integrated Silicate Technology™ electrodes feature low-hydrogen levels for reduced chances of hydrogen-induced cracking. An Easy Strike® tapered tip enables easy touch start arc initiation for minimal starting porosity. Additionally, each Pipeliner® LH-D electrode carries the new AWS Classification, EXXX45-P2, designated for downward progression welding in line pipe applications.

The Lincoln Electric Co.
www.lincolnelectric.com
(888) 355-3213

Angle Grinder Equipped with Dust Extraction

The L 1506 VV AIR angle grinder and sander has a built-in vacuum port for dust-free operation. When connected to an industrial vacuum, it provides a cleaner working environment. The product is powered with a heavy-duty, 1-hp pneumatic motor, making it a useful choice for power plants, metal fabrication, construction, shipyards, and refineries. Its high-torque 6000 rev/min output stands up to continuous use in finishing welded joints, rough grinding tasks, and sanding on steel, stainless steel, and aluminum. Weighing 4 lb, this tool has a ¾-in. air connection with an air consumption of 33 ft³/min at 90 lb/in². The grinder has a ¾-in.-11 spindle and ¾-in. arbor, and accepts 4- and 5/8-in. grinding discs.

CS Unitec, Inc.
www.csunitec.com
(800) 700-5919
CLASSIFIEDS

CAREER OPPORTUNITIES

AWS JobFind

Post Jobs. @ Find Jobs.
www.aws.org/jobfind

Job categories for welders, engineers, inspectors, and more than 17 other materials joining industry classifications!

EQUIPMENT FOR SALE OR RENT

MITROWSKI RENTS
Made in U.S.A.
Tank Turning Rolls
10-Ton thru 1000-Ton

Used Equipment for Sale
www.mitrowskiwelding.com
sales@mitrowskiwelding.com
800-218-9620
713-943-8032

ATTENTION!!
RETOOLING? CHANGING PRODUCTS?
CLOSING SHOP? GOIN’ FISHING?

We pay good prices for used welding machinery!
We are looking for any used welding machinery like: Turning Rolls, Positioners, Manipulators, Seamers, etc.

Send Photos to:
melissa@weldplus.com
or call 800.288.9414

VERSATIG™
MULTIPLE TIG TORCH SELECTORS
www.versa-tig.com

Manufacturer’s Representative

MASTER WELD PRODUCTS is a US Manufacturer of MIG & TIG welding torches and consumables. We are seeking Manufacturer’s Reps to support defined territories in the South East, Mid West, North West from 3 strategically located warehouse or manufacturing facilities. Contact Jason Reigner via e-mail Jason@masterweld.net or 610-972-7500.

Put Your Products and Services to Work in July 2009

Generate sales leads by showcasing your full-color product photo, a product description, Web site, or other sales literature. These showcases reach 70,000 qualified buyers. Great exposure for just pennies a contact.

Closing date is May 15, 2009

Call our sales team at:
1-800-443-9353
Rob Saltzstein at ext. 243
salty@aws.org
Lea Garrigan at ext. 220
garrigan@aws.org
EQUIPMENT FOR SALE OR RENT

WELDPLUS WELDING SOLUTIONS

- Reconditioned New & Used Machinery
- Aronson - Pandjiris - IRCO - Webb
- Ransome - Jetline - Profax - MBC
- Positioners - Manipulators - Seamers
- Turning Rolls - Welding Systems
- Fronius • Lincoln • Miller

Weld Plus can customize new or used welding machinery with TIG-MIG-SUB ARC upon request

800-288-9414
www.weldplus.com

Red-D-Arc Welderentals

Rentals, Lease and Sales

Welders, Weld Positioning Equipment, Welding-Related Specialty Equipment, Diesel-Powered Electric Generators

1-888-733-3272 redarc.com

GROW WELDING PRODUCT SALES IN MEXICO

Welding Journal is now published in Spanish three times a year: February, May, and September.

Take this opportunity to reach the lucrative Mexican marketplace with your best products and services.

Circulation in Mexico is 10,000. Be wise! Advertise!

Contact Rob Saltzstein or Lea Garrigan for more information at 1-800-443-9353, Ext 220 or 243 or e-mail us at: salty@aws.org, garrigan@aws.org

Place Your Classified Ad Here!

Contact Frank Wilson, Senior Advertising Production Manager
(800) 443-9353, ext. 465
fwilson@aws.org

Boiler Tube Alignment Tools

- Walthonde Wallbanger™
 - DB model fits 2 tubes on specific OD’s ranging from 7/8” to 1-1/4”
 - HD model fits 1 tube on specific OD’s ranging from 1-3/4” to 3-1/4”

- Walthonde Wallstick™ NEW
 - Quickly & accurately aligns waterwall tubes with 1/4” or 3/8” membrane. Fits OD tube sizes: 7/8” through 3” (Patented)

More alignment tools available at our website: www.walthonde.com

Walthonde Tools, Inc.
1-800-TUBE FIT (882-3348)
Tel: 304-756-3796 / Fax: 304-756-3834

markingpendepot.com

Paint markers for professionals

ArroMark, Artline, Dixon, Dykem, Markal, Posca, Sakura, Sharpie, SKM, UniPaint

The world’s best selection of markers!

Order Online at markingpendepot.com or call 888-396-3848

markingpendepot.com

Paint markers for professionals

ArroMark, Artline, Dixon, Dykem, Markal, Posca, Sakura, Sharpie, SKM, UniPaint

The world’s best selection of markers!

Order Online at markingpendepot.com or call 888-396-3848

Welding Positioners & Turning Rolls

New and Used

Large selection in stock for immediate delivery.

www.allfabcorp.com

Call, Fax or Email for a free catalog.

Welding Journal • £
AISC Certification Training

Learn about the document requirements and how to implement them!

Building & Bridge: May 18-20
Sophisticated Paint: May 20-21

Convenient classes in Chicago:
312-861-3000 | info@atema.com
www.atema.com

CWI PREPARATORY

Guarantee - Pass or Repeat FREE!

2 WEEK COURSE (10 DAYS)

MORE HANDS-ON/PRACTICAL APPLICATIONS
Pascagoula, MS: June 17-26 & Aug. 5-14
Houston, TX: June 9-12 & Aug. 19-28
Beaumont, TX: July 8-17
Houma, LA: July 22-31 & Sep. 9-18

SAT–FRI COURSE (7 DAYS)

EXTRA INSTRUCTION TO GET A HEAD START
Pascagoula, MS: June 20-26 & Aug. 8-14
Houston, TX: June 6-12 & Aug. 22-28
Beaumont, TX: July 11-17
Houma, LA: July 25-31 & Sep. 12-18

MON–FRI COURSE (5 DAYS)

GET READY–FAST PACED COURSE!
Pascagoula, MS: June 22-26 & Aug. 11-14
Houston, TX: June 8-12 & Aug. 24-28
Beaumont, TX: July 13-17
Houma, LA: July 27-31 & Sep. 14-18

Test follows on Saturday at same facility

FOR DETAILS CALL OR E-MAIL:
(800) 489-2890
info@realeducational.com

Also offering API 510, API 570, RT Film Interpretation, MT/PT/UT Thickness, Welding Procedure Fundamentals and 9-Year Recertification Courses!

Mechanical Drawings Created

We make drawings to your specifications to meet ASME Y14.5 and AWS 2.4.

Contact CAD Star at:
cad_star@hotmail.com

STS WELDING CONSULTATION INC.

Services Provided:

- AWS Certified Welding Fabricator Training and Consulting-AWS B5.17
- In-house welding program audits and program recommendations at your facility
- Subsea welding consulting for overlay, Flow lines, Risers, Phased Array-AUT
- CWI Inspections • Auditing
- Certification Training • NDT
- Weld Procedures • Quality Systems

Call Today!
1-504-931-9567

Advertiser Index

- **3M/Speedglas**15
 www.speedglas.com800-328-1667

- **Abicor Binzel** IBC
 www.abicorusa.com800-542-4867

- **Americ Corp.**64
 www.americ.com800-364-4642

- **Arcos Industries, LLC**39
 www.arco.com800-233-8460

- **Astro Arc Polysoude**9
 www.astroarc.com661-702-0141

- **Atlas Welding Accessories, Inc.**38
 www.atlaswelding.com800-962-9353

- **AWS Certification Services**22, 69
 www.aws.org800-443-9353

- **AWS Education Services**28, 61, 63, 70, 99
 www.aws.org800-443-9353

- **AWS Membership Services**48, 91, 95
 www.aws.org800-443-9353

- **AWS RWMA**97
 www.aws.org800-443-9353

- **Bellingham Technical College**37
 www.btc.ctic.edu360-752-7000

- **Bradford Derustit Corp.**30
 www.derustit.com503-691-9721

- **Bruker AXS Inc.**978-439-9899
 www.handheldxrf.com978-439-9899

- **CM Industries, Inc.**2
 www.cmindustries.com847-550-0033
<table>
<thead>
<tr>
<th>Company Name</th>
<th>Website</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CML USA, Inc./Ercolina</td>
<td>www.ercolina-usa.com</td>
<td>563-391-7700</td>
</tr>
<tr>
<td>Commercial Diving</td>
<td>www.commercialdivingacademy.com</td>
<td>888-974-2232</td>
</tr>
<tr>
<td>Cor-Met</td>
<td>www.cor-met.com</td>
<td>810-227-3251</td>
</tr>
<tr>
<td>C-Spec</td>
<td>www.weldoffice.com</td>
<td>877-977-7999</td>
</tr>
<tr>
<td>Divers Academy International</td>
<td>www.diversacademy.com</td>
<td>800-238-3483</td>
</tr>
<tr>
<td>ESAB Welding and Cutting Products</td>
<td>www.esabna.com</td>
<td>800-372-2123</td>
</tr>
<tr>
<td>Esco Tool</td>
<td>www.escotool.com</td>
<td>508-429-4441</td>
</tr>
<tr>
<td>Essen Welding Show</td>
<td>www.essen-welding.com</td>
<td>+49(0)201-3101-339</td>
</tr>
<tr>
<td>Fischer Technology, Inc.</td>
<td>www.fischer-technology.com</td>
<td>800-243-8417</td>
</tr>
<tr>
<td>Fronius USA, LLC</td>
<td>www.fronius-usa.com</td>
<td>810-220-4414</td>
</tr>
<tr>
<td>Gedik Welding, Inc.</td>
<td>www.gedikwelding.com</td>
<td>+90 216 378 50 00</td>
</tr>
<tr>
<td>H&M Pipe Beveling Machine Co., Inc.</td>
<td>www.hmpipe.com</td>
<td>918-582-9984</td>
</tr>
<tr>
<td>Hobart Inst. of Welding Tech.</td>
<td>www.welding.org</td>
<td>800-332-9448</td>
</tr>
<tr>
<td>Hodgson Custom Rolling, Inc.</td>
<td>www.hodgsoncustomrolling.com</td>
<td>905-356-8132</td>
</tr>
<tr>
<td>KMT Saw</td>
<td>www.kmtsaw.com</td>
<td>269-321-8860</td>
</tr>
<tr>
<td>Lincoln Electric Co.</td>
<td>www.lincolnelectric.com</td>
<td>216-481-8100</td>
</tr>
<tr>
<td>Magnatech Limited Partnership</td>
<td>www.magnatech-lp.com</td>
<td>860-653-2573</td>
</tr>
<tr>
<td>Mathey Dearman</td>
<td>www.mathey.com</td>
<td>800-725-7311</td>
</tr>
<tr>
<td>Midalloy</td>
<td>www.midalloy.com</td>
<td>800-776-3300</td>
</tr>
<tr>
<td>National Standard</td>
<td>www.nationalstandard.com</td>
<td>800-777-1618</td>
</tr>
<tr>
<td>Pferd, Inc.</td>
<td>www.pferdusa.com</td>
<td>800-342-9015</td>
</tr>
<tr>
<td>Revco</td>
<td>www.blackstallion.com</td>
<td>800-527-3826</td>
</tr>
<tr>
<td>Sakura of America</td>
<td>www.sakuraofamerica.com/industrial</td>
<td>800-776-6257, x113</td>
</tr>
<tr>
<td>Select Arc, Inc.</td>
<td>www.select-arc.com</td>
<td>937-295-5215</td>
</tr>
<tr>
<td>Smart TCP</td>
<td>www.smarttcp.com</td>
<td>248-994-1041</td>
</tr>
<tr>
<td>Synetik</td>
<td>www.synetik-di.com</td>
<td>514-488-7045</td>
</tr>
<tr>
<td>Thermadyne Industries/Tweco</td>
<td>www.thermadyne.com/tweco</td>
<td>866-279-2628</td>
</tr>
<tr>
<td>Triangle Engineering, Inc.</td>
<td>www.triangl.com</td>
<td>781-878-1500</td>
</tr>
<tr>
<td>Tri-Tool, Inc.</td>
<td>www.tritool.com</td>
<td>888-874-8665</td>
</tr>
<tr>
<td>Trumpf</td>
<td>www.trumpf.com</td>
<td>734-454-7200</td>
</tr>
<tr>
<td>Vernon Tool Co.</td>
<td>www.vernotool.com</td>
<td>760-433-5860</td>
</tr>
<tr>
<td>Watts Specialties, Inc.</td>
<td>www.watts-specialties.com</td>
<td>253-848-9288</td>
</tr>
<tr>
<td>Weartech International</td>
<td>www.weartech.net</td>
<td>562-896-7847</td>
</tr>
<tr>
<td>Weld-Ed</td>
<td>www.weld-ed.org</td>
<td>866-529-9353</td>
</tr>
<tr>
<td>Weld Hugger, LLC</td>
<td>www.weldhugger.com</td>
<td>877-935-3447</td>
</tr>
</tbody>
</table>

IFC = Inside Front Cover
IBC = Inside Back Cover
OBC = Outside Back Cover

Visit Our Interactive Ad Index: www.aws.org/ad-index
Take Advantage of your Editorial Exposure
Reprints of Welding Journal are a simple way to put information directly into the hands of your target audience. Having been featured in a well-respected publication adds the credibility of a third-party endorsement to your message.

CUSTOMIZED REPRINTS
The publication’s masthead will be placed above the article content and/or images; and your logo and contact information can be prominently featured at the end of the reprint. Customized reprints are printed on quality 80# gloss stock.

WEB-POSTING CUSTOMIZED ePRINTS
Extend your exposure to the online audience with a customized web-posting ePrint available in various timeframes. You may also purchase permission for e-mail distribution.

PLAQUES/POSTERS AND FRAMED PRINTS
Plaques, posters, and/or framed prints are suitable for trade-shows, special events, point-of-purchase, or office display.

MINIPRINTS/POSTCARDS
Customized reprint postcards make a perfect direct-mail campaign. Double-sided miniprints are also available.

Reprints are ideal for:
- PR Materials and Media Kits
- Direct Mail Enclosures
- Trade Shows/Promotional Events
- Conferences/Speaking Engagements
- Recruitment and Training Packages
- Customer and Prospect Communications/Presentations

Give yourself a competitive advantage with reprints!
For additional information, please contact Fostereprints, the official reprint provider for Welding Journal.
Email: sales@fostereprints.com or call 866-879-9144

CAN WE TALK?
The Welding Journal staff encourages an exchange of ideas with you, our readers. If you’d like to ask a question, share an idea or voice an opinion, you can call, write, e-mail or fax. Staff e-mail addresses are listed below, along with a guide to help you interact with the right person.

Publisher
Andrew Cullison
cullison@aws.org, Extension 249
Article Submissions

Editor
Mary Ruth Johnsen
mjohnsen@aws.org, Extension 238
Feature Articles

Associate Editor
Howard Woodward
woodward@aws.org, Extension 244
Society News
Personnel

Associate Editor
Kristin Campbell
kcampbell@aws.org, Extension 257
New Products
News of the Industry

Production Manager
Zaida Chavez
zaida@aws.org, Extension 265
Design and Production

Advertising Sales Director
Rob Saltzstein
salty@aws.org, Extension 243
Advertising Sales

Advertising Sales & Promotion Coordinator
Lea Garrigan Badwy
garrigan@aws.org, Extension 220
Production and Promotion

Advertising Production Manager
Frank Wilson
fwilson@aws.org, Extension 465
Advertising Production

Peer Review Coordinator
Erin Adams
eadams@aws.org, Extension 275
Peer Review of Research Papers

Welding Journal Dept.
550 N.W. LeJeune Rd.
Miami, FL 33126
(800) 443-9353
FAX (305) 443-7404
Influence of Nanoscale Marble (Calcium Carbonate CaCO₃) on Properties of D600R Surfacing Electrode

Nanoscale marble was added to the flux coating of D600R, a newly developed hardfacing electrode for the repair of steel rolls

BY B. CHEN, F. HAN, Y. HUANG, K. LU, Y. LIU, AND L. LI

ABSTRACT

Conventional microscale marble in the flux coating of D600R, a hardfacing shielded metal-arc welding electrode, was replaced by marble of nanoscale sizes for possible enhanced electrode characteristics. The microscale marble was substituted with different proportions of nanoscale marble particles. An arc characteristics analyzer was used to measure the welding current, arc voltage, and short-circuiting characteristics of the electrode under various welding conditions. Hardness and wear resistance properties of the weld deposit were characterized. The results show that the smaller marble particle sizes in the flux coating produced lower short-circuiting voltage, lower short-circuiting current, and shorter short-circuiting time. A significantly improved arc stability resulted in better welding characteristics of the electrode. The nanoscale marble particles in flux coating produced greater metal deposition efficiency, as well as increased hardness and wear resistance of the deposit.

KEYWORDS

Welding Electrode
Flux Coating
Nanoscaled Marble
Calcium Carbonate

Introduction

Due to their small size and large surface effects, nanomaterials have unique mechanical, electrical, magnetic, and optical properties differing from traditional materials (Refs. 1–8). These properties enabled nanomaterials to be used in an array of applications, including the defense, electronic, aerospace, and chemical industries. The introduction of nanotechnology to welding started at the end of the 20th century. There are currently commercial welding consumables that contain nanomaterials. Although systematic studies on the roles of nanomaterials during welding process are still missing, a few research papers are available on nanomaterial-containing welding consumables (Refs. 9–12).

In this investigation, nanoscale marble particles were added to the flux cover of D600R hardfacing welding electrodes, partially or entirely substituting the original (microscale) marble particles. The hypothesis was the small size of the nanoscaled marble particles, with an effective constituent of CaCO₃, will significantly affect the chemical reactions in the slag, and change the properties of the flux coating. An investigation was conducted on the effect of concentration of nanoscale marble in flux coating on the welding procedural and metallurgical properties of a hardfacing electrode. The melting character, which includes the melting temperature and its range, was investigated for the experiment electrodes. The effects of nanoscale marble on the length of flux sleeve, stability of electric arc, formation of weld bead, and adaptability for all-position welding were characterized.

Experimental Procedure

The D600R is a newly developed electrode for the repair of steel rolls. The core of the electrode is H08A steel, with a nominal composition of C < 0.1%, Mn 0.3–0.55%, Si < 0.03%, Cr < 0.2%, Ni < 0.3%, S and P < 0.03%. The composition of the flux system for D600R is kept constant, except the conventional, microscaled marble was replaced with nanoscaled particles. The composition of the flux is listed in Table 1, and replacement ratios for nanoscale marble are given in Table 2.

A Model TL-25 hydraulic electrode extrusion machine was used to produce the experimental electrodes. No apparent effect was observed of nanoscale marble on the extrusion behavior of the electrodes. The flux coating has sufficient strength, moisture resistance, and smooth appearance. The electrodes were dried according to the following sequence: at room temperature for 24 h, at 50°C for 7 h, at 120°C for 3 h, at 250°C for 2 h, and finally at 380°C for 1.5 h.

A high-temperature physical properties measurement device (Model GX) was used to measure the melting range of the fluxes. The mixed fluxes were made into cylinders 3 mm in diameter and 3 mm high. The specimen was sealed in the test chamber that was filled with Ar. The contour of the specimen and temperature indication were recorded digitally as shown in Fig. 1. The heating current was 4–5 A,
Fig. 1 — The contour of the specimen and temperature indication before heating test.

Fig. 2 — The specimen with its height collapsed to half of the original height at the melting temperature.

Table 1 — Composition of Flux Coating of Electrode D600R

<table>
<thead>
<tr>
<th>Flux Constituent</th>
<th>Percentage (wt-%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marble</td>
<td>31</td>
</tr>
<tr>
<td>Fluorite</td>
<td>36</td>
</tr>
<tr>
<td>High carbon ferromanganese</td>
<td>3</td>
</tr>
<tr>
<td>Carbon ferrochromium</td>
<td>14</td>
</tr>
<tr>
<td>Ferromolybdenum</td>
<td>2</td>
</tr>
<tr>
<td>Rare-earth silicoferrite</td>
<td>1.5</td>
</tr>
<tr>
<td>Ferrotitanium</td>
<td>10</td>
</tr>
<tr>
<td>Sodium carbonate</td>
<td>1.5</td>
</tr>
<tr>
<td>Graphite</td>
<td>0.5</td>
</tr>
<tr>
<td>Light rare-earth oxide</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: The total amount by weight of the flux constituents is 100.5%; water glass: sodium silicate with density 1.49-1.51 g/cm³ and modulus M = 2.9-3.0; electrode core wire is steel H08A with 4.0-mm diameter; extrusion die throat-diameter is 6.8-6.9 mm.

Table 2 — Concentration of Nanoscale Marble and Electrode Properties

<table>
<thead>
<tr>
<th>Flux ID</th>
<th>Nanoscale Marble (%)</th>
<th>Tm(°C)</th>
<th>Melting Range (°C)</th>
<th>Sleeve Length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT1</td>
<td>0</td>
<td>1110</td>
<td>80</td>
<td>1.73</td>
</tr>
<tr>
<td>HT2</td>
<td>10</td>
<td>1098</td>
<td>40</td>
<td>1.62</td>
</tr>
<tr>
<td>HT3</td>
<td>20</td>
<td>1073</td>
<td>24</td>
<td>1.10</td>
</tr>
<tr>
<td>HT4</td>
<td>25</td>
<td>1063</td>
<td>26</td>
<td>1.08</td>
</tr>
<tr>
<td>HT5</td>
<td>50</td>
<td>1082</td>
<td>38</td>
<td>1.15</td>
</tr>
<tr>
<td>HT6</td>
<td>100</td>
<td>1079</td>
<td>76</td>
<td>1.13</td>
</tr>
</tbody>
</table>

Note: The change of contour in the specimen during heating and melting was observed and recorded. The effective melting point of the fluxes was defined as the temperature at which the fluxes start to melt. This effective melting temperature was measured when the specimen height collapsed to one-half of the original height upon heating — Fig. 2. The melting temperature range was defined as the temperature between the start of the specimen collapse and the melting point defined above.

The deposit (cladding) efficiency tests were conducted on the low-carbon steel plates (dimensions 400 × 50 × 10 mm). Three electrodes were used for each test on three plates, and the remaining length of the electrode was about 50 mm. The length of electrode and weight of plate were measured before welding. The remaining length of the electrode, weight of the electrode core, and weight of the test plate were also measured after welding. The error of measurement was below 0.1 g. The equation for the deposit efficiency calculation was (Ref. 14)

\[
\text{Deposit efficiency} = \frac{\text{deposit metal weight (g)}}{\text{total weight of 3 melted electrode cores (g)}} \times 100\%
\]

where deposit metal weight (g) = plate weight after welding (g) – plate weight before welding (g).

and the heating rate was 10–15°C/min. The diffusible hydrogen content in the weld bead was measured according to standard GB-T3965—1995, Measurement Methods for Diffusible Hydrogen in the Electrode Deposit Metal, which is similar to ISO 3690. The diffusive hydrogen results obtained using GB-T3965 are comparable to those obtained from ISO 3690. The distribution of arc voltage probability density is generated by the Hanoverian electric arc quality analysis device (Ref. 17). The bead-on-plate welding was conducted on the Q235 low-carbon steel plate (400 × 50 × 10 mm). Each test was repeated three times. The sampling time used was 5 s. The density distribution of the probability density of arc voltage occurring randomly was recorded for the given time.

Results and Discussion

Melting Characteristics

The effective melting point (Tm) and melting temperature range of the test flux coatings are shown in Table 2. The addition of nanoscale marble had the effect of decreasing the melting point and melting temperature range of the flux coating. As the concentration of nanoscale marble increased, the melting point and melting temperature range increased. HT4 had the lowest melting point (1063°C). The melting ranges of HT3 and HT4 are narrow, being 24°C and 26°C, respectively. HT1 and HT6 have wider ranges of melting temperature, being 80°C and 76°C, respectively. A decreased melting point makes the formation of a long flux sleeve on the end of an electrode difficult. It was found that the variations of the flux sleeve length and melting point have the same trend, i.e., the Flux HT4 (with 25% nanoscale marble) has the shortest flux sleeve. Maintaining similar welding conditions, electrodes with shorter sleeve length tend to produce less penetration. For a hardfacing electrode, minimization of di-
lution due to deep penetration may be desired. Nanoscale marble provides an additional method to control the penetration through the sleeve length design.

The changes in melting temperature and its range are believed to be caused by two effects. First, nanoscale marble with more surfaces will decompose more completely into CaO, which may increase the melting point of the electrode flux. Second, the increased surface areas may also cause nanoscale particles to absorb more energy more efficiently. Thus, adding nanoscale marble may decrease the melting point of the flux. For different proportions of nanoscale marble, one of the effects may dominate. This would account for the changes in melting point and melting temperature range.

Deposit Efficiency

The deposit efficiency varying with the nanoscale marble is shown in Fig. 3. The deposit efficiency increases with the increasing portion of nanoscale marble. When the portion of nanoscale marble is more than 25%, the deposit efficiency reaches a plateau with a small decrease, until the marble is entirely substituted with nanoscale marble. HT4 and HT5 have the higher deposit efficiencies, which are 110.6% and 110.7%.

When the alloy components are transferred from the coating to the weld bead, the equilibrium is (Ref. 15)

\[M_d = M_0 - (M_0 - M_{sl}) \]

where \(M_d \) is the amount of alloy transferred to deposit; \(M_0 \) is the initial amount of the alloy in the electrode (core and flux coating); \(M_{sl} \) is the remaining amount of the alloy in the slag; and \(M_{ox} \) is the amount of the oxidized alloy. With more instant generation of CO₂ caused by more nanoscale marble added, the stirring effect of the weld pool may be increased, and the remaining amount of alloy components in slag \(M_{sl} \) decreases. Meanwhile, the increasing oxidation effect increases the amount of alloys that are lost by oxidation. These two potentially competing effects would determine the final amount of alloy components transferred to the weld pool. The chemical composition of the fusion deposit of the test electrodes indicates such an effect (Table 3). The concentration of alloying elements first increases then decreases with an increasing portion of nanoscale marble in the fluxes.

Diffusible Hydrogen Content

The content of diffusible hydrogen in the deposit metal decreases with the increase of nanoscale marble in the flux — Fig. 4. When nanoscale marble is more than 50%, the diffusible hydrogen level reaches a low plateau. The reason for the beneficial effect of nanoscale marble is believed to be related to the increased surface areas of the particles. More CO₂ is generated by the decomposition of fine marble (CaCO₃), and the effect of oxidation is enhanced. The partial pressure of hydrogen is reduced due to an increased CO₂ partial pressure. A strong relation exists between the partial pressure of hydrogen and the solubility of hydrogen in the deposit metal (Refs. 15, 16).

Arc Stability and Metal Transfer

The distributions of arc voltage probability density for the test electrodes under the same welding parameters are shown in Fig. 5. The probability density \(n, \% \) is a function that represents a probability distribution in terms of an integral. The probability for arc voltage to fall between, for example, 4 and 6 volts, equals the area underneath the curve (i.e., integration) between the 4 to 6 interval. All the distributions of arc voltage probability density have a similar shape of two peaks. The left peak describes the probability density distribution of the short-circuit voltage for coarse drop short-circuit transfer (Refs. 17–19). Therefore, the smaller the left-peak area, the better the arc stability for the electrode.

The area of the left peak was integrated from the minimum voltage to the minimum probability value between two peaks. This integrated probability is defined as \(\Sigma U_{2}(\%) \). It can be used as a parameter for evaluating the short-circuit droplet transfer. A smaller \(\Sigma U_{2} \) means...
less of a chance for short-circuit and explosion drop transfers. Table 4 shows the ΣU_j for the test electrodes. HT4 has the smallest ΣU_j, which is 6.57%. HT4 has a more stable arc, with less splash, and better processing properties. While the ΣU_j for HT1 is the largest (7.56%), creating a greater tendency for short-circuit and explosion drop transfer.

The distributions of welding current probability density for the test electrodes are shown in Fig. 6. The rising part on the left portion of the curves shows the distribution of welding current probability density for the moment of the end of short circuit and the re-ignition of the arc. The next portion of the curves shows the distribution of welding current probability density for the period of the stabilized arc, which has the maximum probability density. The rest of the curves represents the period of short-circuiting. It has the maximum current when the molten drop contacts the weld pool. The higher the curve intersects with the current axis (horizontal), the higher the short-circuit current. The total short-circuit time T_j, the more stable the welding arc. The larger molten drop has the longer short-circuit time. Thus, the short-circuit time reflects the size of the liquid drop. Among the frequency distributions of short-circuit time T_j, a threshold of 2.05 ms has been used to separate the short-circuit probability distribution (Ref. 18). The short-circuit time $T_j \leq 2.05$ ms corresponds to fine droplet transfer in the slag bridge, while the short-circuit time $T_j > 2.05$ ms corresponds to coarse droplet short-circuit transfer. The total short-circuit time T_j, defined as the accumulated short-circuit time for $T_j > 2.05$ ms, can be used as an arc stability parameter. The shorter the T_j, the more stable the welding arc. The T_j data for all electrodes are calculated and listed in Table 4. The largest ΣT_j is for HT1 with 175.9 ms, while all the ΣT_j time for the electrodes with nanoscale marble added are shorter than HT1. Flux HT4 has the shortest ΣT_j, which is 155.5 ms. Thus, the nanoscale marble can shorten the short-circuiting time.

In Table 5, the average hardness numbers and wear resistance results are listed. Flux HT4 has the highest hardness, while HT1 has the lowest. The averaged hardness of the deposit metal with nanoscale marble added is slightly higher than that with microscale marble. The distribution of hardness is more uniform throughout the deposit metal with nanoscale marble added. The difference between the maximum and minimum hardness values is 7 HRC for HT1, while the difference is only 3 HRC for HT6.

The abrasive resistance tests were conducted on a Model MM-200 continuous sliding dry abrasion machine. The deposit metal from test electrodes was machined into 1-mm-diameter, 15-mm-high pin specimens. The pin specimen slid against the outer surface of a 40-mm-diameter cylinder made from a 0.45%C steel, machined and quenched to a hardness of HRC 60. During the test, the pin specimen was held stationary with its rotational axis perpendicular to that of the 40-mm steel cylinder, which rotated at 200 rev/min, and a load of 98 N was applied to the pin specimen. The abrasive wear test did not involve a lubricant. The test procedure was the following: The pin specimen was first wear tested for 15 min; then it was removed from the machine, cleaned, dried, and weighed for the initial weight. The specimen was then tested for 120 min. The tested specimen was cleaned, dried, and weighed for the postwear weight. The abrasive resistance was evaluated by
weight loss. The weights of the sample before and after the abrasion test were measured on an analytical scale, with a precision of 0.0001 g. Each measurement was repeated at least three times, and the average value was reported. The variation between the readings in weight was ± 0.0002 g. Shown in Table 5, the increase of nanoscale marble in the coating improves the abrasive resistance of the deposit sample. Specimen HT1 with zero nanoscale marble has the best abrasive resistance and HT1 with zero nanoscale marble has the worst wear resistance.

Conclusions

The introduction of nanoscale marble (calcium carbonate) has a significant influence on the properties of D600R shielded metal arc welding electrode flux. The stability of the electrical arc, content of diffusible hydrogen in the deposit metal, and deposit efficiency are improved by replacing the conventional (microscale) marble with nanoscale marble in the electrode flux coating. The nanoscale marble improves the hardness and abrasive resistance of the deposit metal. The optimum proportion of the nanoscale marble seems to be between 20 and 25% for both the arc stability and deposit metal properties.

Acknowledgment

This paper is based on a conference article and reprinted with permission of Materials Science & Technology 2008 Conference & Exhibition Proceedings.

References

Change of Address? Moving?

Make sure delivery of your Welding Journal is not interrupted. Contact the Membership Department with your new address information — (800) 443-9353, ext. 217; smateo@aws.org.
The Effect of High-Temperature Eutectic-Forming Impurities on Aluminum 7108 Weldability

Iron and other similar transition impurity elements can form high melting temperature eutectics that can affect weldability, grain size, and interdendritic feeding

BY M. G. MOUSAVI, C. E. CROSS, AND Ø. GRONG

ABSTRACT

The weldability of the 7108 aluminum extrusion alloy has been found to exhibit a high sensitivity to iron impurity content. This is believed to be related to the formation of a high-melting-temperature Al-Fe eutectic, capable of blocking interdendritic fluid flow and impeding the feeding of solidification shrinkage and thermal strain. Other high-temperature, eutectic-forming impurities have been found to behave in a similar manner when added to Alloy 7108 in a controlled manner. The circular patch test (CPT) was adapted to evaluate the effect of impurity elements on the solidification cracking susceptibility of welds made on cast 7108 coupons, treated with different impurity metal additions. Results from the CPT have shown a correlation between the amount of eutectic generated, as predicted using the Scheil Equation, and the susceptibility to cracking. However, in some instances, impurities are also observed to refine the grain size, an effect that tends to counteract their negative influence on weldability.

Introduction

Weldable 7xxx alloys were developed in the 1960s as a high-strength alternative to weldable 5xxx alloys (e.g., Alloy 5083). These are basically Al-Mg-Zn alloys that are copper free and respond well to natural aging in the weld metal and heat-affected zone (HAZ) following welding (e.g., Alloys 7039, 7005, and 7108). The copper-containing 7xxx alloys (e.g., Alloy 7075) constitute high-strength aerospace alloys and are generally not considered weldable.

Alloy 7108 is one such Al-Mg-Zn precipitation-hardenable extrusion alloy (Al-5.2%Zn+1%Mg), considered to be readily weldable when using an appropriate filler alloy such as Alloy 5183 (Al-5Mg). The high zinc in the base metal, when diluted with the high magnesium in the filler metal, shifts the composition of the weld metal away from the region of highest cracking susceptibility (Ref. 1). From the standpoint of maintaining high strength, however, it is preferable to minimize the amount of filler dilution and keep the weld metal zinc content high (Ref. 2).

During a circular patch test (CPT) study examining the autogenous weldability of different alloy variations of 7108, it was discovered that high-purity variants exhibited no tendency toward cracking (Ref. 3). Whereas, the same test applied to a commercial 7108 alloy resulted in severe cracking. This led to a suspicion of the role of impurity elements and their influence on weldability. Alloy 7108 normally contains up to 0.25 wt-% Fe, 0.12 wt-% Si, and 0.04 wt-% Mn as acceptable impurity levels (Ref. 4). The impurities Fe and Si, in particular, are common to all commercial aluminum alloys as residuals from the extractive processing of aluminum ore. The present study was specifically initiated to systematically investigate how Fe impurity levels affect the weldability of Alloy 7108. Other transition elements that form a high-melting eutectic similar to Fe (i.e., Sc, Mn, Co, and Ni) were also examined in order to provide a basis for comparison. Data regarding the effect of Sc, although not specifically generated for this study, have been drawn from previous work (Ref. 5). Such comparisons become important when developing mechanistic models to explain observed behavior. The role of Si, an impurity normally found together with Fe, was not addressed in this study. However, it is recognized that the presence of Si, and its tendency to form intermetallics with Fe, has the potential to alter the effect of Fe on weldability.

Background

Transition Element Phase Equilibrium

Fe sits in the first row of the transition elements in the periodic table and, just like its neighbors Sc, Mn, Co, and Ni, it forms a high-melting eutectic with aluminum at the aluminum-rich end of the binary phase diagram — Fig. 1. On the other hand, the transition elements Ti, V, and Cr all form peritectics with aluminum (as do all the elements in these three columns: IVB, VB, and VIIB). It is interesting to note that Ti, V, and Zr (Zr lies below Ti on the periodic table) are often added to aluminum alloys for grain refinement, because the peritectic reaction (L + β → α) provides an ideal nucleating substrate (Ref. 6). However, Sc has also been found to result in grain refinement even though it is not a peritectic former, presumably because the eutectic ScAl₃ compound favors the nucleation of aluminum grains (Refs. 5, 7).

The eutectic-forming transition elements shown in Fig. 1 all involve the formation of an intermetallic compound with aluminum at relatively high temperatures (see Table 1). Sc and Fe form a binary eutectic with aluminum at 655°C, Mn and Co form a eutectic at 657°C, and Ni forms a eutectic at 640°C. The eutectic tempera-

KEYWORDS

Sc, Mn, Fe, Co, and Ni
Alloy 7108
Eutectic
Interdendritic Fluid Flow
Weldability
Grain Size
Circular Patch Test (CPT)
ures for Sc, Fe, Mn, and Co are all within two deg of one another, whereas the Ni eutectic temperature is somewhat lower. The partition coefficients (k) shown in Table 1 were calculated assuming straight liquidus and solidus lines:

$$k = \frac{C_S}{C_E}$$ \hspace{1cm} (1)

where C_S is the solute solubility at the eutectic temperature and C_E is the eutectic composition. These coefficients, although specifically meant for Al-X binary alloys, are used in this study for Al-Zn-Mg-X alloys assuming a high dilution of X impurity in aluminum. It is understood that this is only an approximation, making an assumption that Zn and Mg do not significantly alter the solubility of these impurity elements in aluminum.

In Table 1, the Scheil Equation has been used to calculate the quantity of nonequilibrium eutectic (f_E) generated in aluminum binary alloys as a function of solute content (C_0) using the data in Table 1:

$$f_E = \left(\frac{C_0}{C_E}\right)^{1/k}$$ \hspace{1cm} (2)

At normal impurity levels (i.e., less than 0.3 wt-%), Co and Sc are observed to generate the greatest amount of eutectic, followed by Fe and Ni. Mn, however, generates only a negligible amount of eutectic in this solute range.

Considering in more detail the effect of Fe on the solidification of 7108 requires knowledge of the Al-Zn-Mg-Fe quaternary system, which is not well documented. Monolfo predicts three phases, FeAl$_3$, Mg$_2$Zn$_3$Al$_2$, and MgZn$_2$, for conditions where Zn:Mg > 2.2 and Fe >> Si (Ref. 9). From the Al-Zn-Mg ternary equilibrium system, one would expect to form Mg$_2$Zn$_3$Al$_2$ through a eutectic reaction starting below 489°C, followed by a peritectic reaction to form MgZn$_2$ at around 475°C. From examining Al-Zn-Fe and Al-Mg-Fe ternary equilibrium systems, it is to be expected that FeAl$_3$ will form at elevated temperatures close to the liquidus through a eutectic reaction. However, it has been well documented that FeAl$_3$ is more commonly observed in place of FeAl$_2$ for fast cooling rates (Ref. 10). Also, for fast cooling rates, the peritectic reaction to form MgZn$_2$ is not expected to occur to any significant extent. Hence in 7108 weld metal, FeAl$_3$ and Mg$_2$Zn$_3$Al$_2$ are the two intermetallic phases expected to form.

Aluminum Weldability

Solidification cracking is a defect common to many aluminum alloys, where susceptibility to this form of cracking is normally used to define weldability. Formation of this defect involves the separation and tearing of liquid films present at grain boundaries in the mushy zone trailing the weld pool. Recent models have suggested that crack initiation may arise from a pressure drop in the interdendritic liquid due to insufficient liquid feeding of solidification shrinkage and thermal contraction (Refs. 11–13). Accordingly, anything that inhibits interdendritic fluid flow should promote crack formation.

The link between liquid feeding and crack formation is being considered in this study to explain how interdendritic phases that form at high temperature and block interdendritic channels may influence weldability. Evidence that a high-temperature Fe-bearing phase can affect the pressure drop in solidification has been found in several aluminum castability studies, where it has been shown that shrinkage porosity increases with Fe impurity content (Refs. 14–16). Specifically, this effect has been related to coarse FeAl$_3$FeSi needles in Al-Si alloys that effectively block liquid feeding in interdendritic channels. Regarding solidification cracking susceptibility, however, Fe has actually been shown to have a positive effect in castings (Refs. 16–19), attributed in some cases to mechanical bridging between dendrites by the $eta$ phase. Such bridging is not possible in welds, however, where interdendritic phases are considerably finer in size and refined in shape. Instead of its traditional coarse needle shape spanning across dendrites in castings, the weld metal $eta$ phase is found to be refined in size and restricted to grain boundaries (Ref. 20).

Weld metal grain size can also have a pronounced effect on weldability (Refs. 5, 21). Grain refinement results in more weld metal grain boundaries, with less strain per grain boundary and more resistance to cracking (Ref. 22). Thus, any effect that impurity additions may have on weldability must include an analysis of grain size. Grain refinement involves the heterogeneous nucleation of new grains, which requires both undercooling and the presence of an appropriate substrate (Ref. 6). When the substrate is similar in crystal structure to the metal being nucleated, less undercooling is required. Constitutional undercooling can be related to alloy partitioning and compared using the parameter P (Ref. 23):

$$P = \frac{m_L(1-k)C_0}{k}$$ \hspace{1cm} (3)

where m_L is the liquidus slope. Undercooling parameter values for the transition elements are compared in Table 2 (for $C_0 = 1$), where it is observed that Mn should generate the least amount of undercooling and Ni the highest.

Experimental

The effect of impurity elements Fe, Mn, and Co on the solidification cracking susceptibility of Alloy 7108 was studied by per-

Table 1 — Compilation of Phase Equilibrium Data for Select Transition Elements in Aluminum (Refs. 8, 9)

<table>
<thead>
<tr>
<th>Solute</th>
<th>T_E (Eutectic Temp. °C)</th>
<th>C_S Solubility at T_E (wt-%)</th>
<th>C_E Eutectic Comp. (wt-%)</th>
<th>C_I Intermetallic (wt-%)</th>
<th>k Partition Coefficient</th>
<th>Intermetallic Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sc</td>
<td>655</td>
<td>0.31</td>
<td>0.6</td>
<td>35.7</td>
<td>0.52</td>
<td>ScAl$_3$</td>
</tr>
<tr>
<td>Mn</td>
<td>657</td>
<td>1.8</td>
<td>1.9</td>
<td>25.3</td>
<td>0.95</td>
<td>MnAl$_6$</td>
</tr>
<tr>
<td>Fe</td>
<td>655</td>
<td>0.04</td>
<td>1.8</td>
<td>37.0</td>
<td>0.022</td>
<td>FeAl$_3$</td>
</tr>
<tr>
<td>Co</td>
<td>657</td>
<td>0.02</td>
<td>1.9</td>
<td>32.7</td>
<td>0.020</td>
<td>Co$_2$Al$_6$</td>
</tr>
<tr>
<td>Ni</td>
<td>640</td>
<td>0.04</td>
<td>6.0</td>
<td>42.0</td>
<td>0.0067</td>
<td>NiAl$_3$</td>
</tr>
</tbody>
</table>

Fig. 1 — Periodic table showing transition elements pertinent to this study.
forming weldability tests on specially prepared cast coupons having variable impurity content. Details of the weldability test and alloy preparation are discussed below.

Weldability Testing

The CPT was developed for use in this study, specifically adapted for evaluating small cast coupons of experimental alloys (Ref. 3). There are numerous versions of this test as described in a review on this subject (Ref. 24), but the basic test consists of a weld made in a circular pattern on a flat plate. As the weld nears completion of the circle, it begins to experience transverse tensile strain from the weld bead made at the beginning of the circle. Thus, when welding susceptible alloys, a solidification crack (normally a centerline crack) will eventually form and trail behind the weld until the circle is completed. The total length of the crack generated can then be measured and used as an indication of relative weldability.

The CPT fixture developed for use in this investigation consisted of a coupon affixed to a water-cooled copper heat sink, mounted to the headstock of a rotary lathe. A stationary gas tungsten arc welding (GTAW) torch was mounted perpendicular to the headstock. A current of 130 A combined with a travel speed of 3.5 mm/s. These parameters are similarly adopted for this study. The CPT weld coupons were 10-mm-thick cast alloys (approximately 52 mm square) with four corner holes provided for mounting bolts, as shown schematically in Fig. 3. A heat sink was found necessary for these small coupons to avoid overheating and subsequent melt-through.

Weld Parameter Development

Circular patch test welds were made using an autogenous, gas tungsten arc, bead-on-plate process. In order to obtain a narrow weld bead with high penetration, the welds were made using direct current and straight polarity (electrode negative) with welding-grade helium shielding gas. A set of CPT weld tests were conducted in an earlier study (Ref. 3) to develop an appropriate test procedure and determine the effect of welding process variables on solidification cracking. The variables examined included welding current and welding speed, with the diameter of the circle kept constant at 40 mm. Results indicated that the most effective (i.e., the most crack producing) range of parameter combinations was in accordance with the best visibility of cracks and varied from 10 to 16X. Crater cracks and HAZ cracks were not included in crack length measurements.

Figure 3 is a schematic illustration of the way a typical specimen appeared under the stereoscope. A crack pattern has been traced onto this schematic from an actual test specimen (Al-5\%Zn-1Mg-0.2Fe). Cracking is most severe in weld segments located near the corners of the coupon where high restraint is exerted due to fixturing (i.e., corner bolts), indicating that the imposed restraint on the specimen is nonuniform. Also, it should be noted that the crack pattern observed in this test is not the same as the pattern normally found in a CPT test (i.e., one long centerline crack at the end of the circular patch). However, because the restraining condition was the same for all specimens, the resulting crack length measurements still serve as a valuable solidification cracking index for comparative purposes.

CPT Validation

In order to validate the ability of the CPT test to correctly compare relative

Table 2 — Comparison of Grain Refining Parameters for Impurity Additions (for C₆=1) (Ref. 9)

<table>
<thead>
<tr>
<th>Solute</th>
<th>mₗ(1-k)/k (°C/wt-%)</th>
<th>Intermetallic</th>
<th>Lattice Spacing (×10⁻⁸/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sc</td>
<td>7</td>
<td>ScAl₅, cubic</td>
<td>a = 4.11</td>
</tr>
<tr>
<td>Mn</td>
<td>0.1</td>
<td>MnAl₅, orthorhombic</td>
<td>a = 6.49, b = 7.54, c = 8.86</td>
</tr>
<tr>
<td>Fe</td>
<td>123</td>
<td>FeAl₅, orthorhombic</td>
<td>a = 6.49, b = 7.44, c = 8.79</td>
</tr>
<tr>
<td>Co</td>
<td>147</td>
<td>Co₅Al₅, monoclinic</td>
<td>a = 6.23, b = 6.29, c = 8.56</td>
</tr>
<tr>
<td>Ni</td>
<td>494</td>
<td>NiAl₅, orthorhombic</td>
<td>a = 6.61, b = 7.37, c = 4.81</td>
</tr>
</tbody>
</table>

Fig. 2 — Graphical representation of Scheil Equation predictions for quantity of interdendritic eutectic in aluminum binary alloys based upon Equation 2 and Table 1.

Fig. 3 — Schematic diagram showing coupon design used for CPT weldability test with crack pattern traced from Al-5\%Zn-1Mg-0.2Fe specimen.
Circular patch test weldability analysis comparison of commercial aluminum alloys.

Fig. 4 — Circular patch test weldability analysis comparison of commercial aluminum alloys.

Fig. 5 — Circular patch test weldability data showing variations in total crack length (TCL) with Co, Fe, and Mn impurity additions to Al-5Zn-1Mg alloy.

For a high-purity Al-5Zn-1Mg alloy. The Al-5Zn-1Mg alloy was made to simulate Alloy 7108, prepared by adding Mg and Zn to 99.99 wt- % pure aluminum under a protective sulfur hexafluoride gas cover. The range of impurity additions made, compared in Table 4, shows values that extend beyond normal impurity limits.

Once an impurity master alloy was added to the molten Al-Zn-Mg alloy, the mixture was sparged with argon and then cast into a graphite book mold, precoated with boron nitride. Coupons were prepared for welding by rough grinding both sides of the coupon (800 mesh grit) followed by alcohol degreasing. Corner holes were dry machined with the aid of a template.

Metallography

In order to prepare CPT coupons for grain size evaluation, they were first ground and polished to 3-μm grit, followed by electro-etching and anodizing. The areas of interest were viewed using polarized light under a light microscope at an appropriate magnification. Grain size measurements in the castings were made using a line intercept method, calculating an average grain diameter over approximately 150 grain intercepts. Measurements in the weld were made from a top view, using a line intercept method across the full width of the fusion zone. Mean grain size values were used to represent the overall effect of a particular impurity element.

Results and Discussion

Weldability Measurements

Figure 5 gives the results of the CPT test, showing the variation of total crack length for different additions of Fe, Mn, and Co. What is readily apparent from this data is that Fe additions result in the highest amount of cracking. The crack length data for Fe is also unique in that it passes through a maximum, with cracking dropping to zero at around 0.3 wt-% Fe. This corroborates a reference made in the literature, where a high Fe content (0.3-0.4

<table>
<thead>
<tr>
<th>Alloy</th>
<th>wt-%</th>
<th>Si</th>
<th>Fe</th>
<th>Cu</th>
<th>Mn</th>
<th>Mg</th>
<th>Cr</th>
<th>Zn</th>
<th>Zr</th>
<th>Other Total</th>
<th>Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>7030.60</td>
<td>min</td>
<td>—</td>
<td>0.15</td>
<td>0.26</td>
<td>—</td>
<td>1.10</td>
<td>—</td>
<td>5.10</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>max</td>
<td>0.10</td>
<td>0.25</td>
<td>0.34</td>
<td>0.04</td>
<td>1.30</td>
<td>0.03</td>
<td>5.40</td>
<td>0.03</td>
<td>0.10</td>
<td>bal</td>
</tr>
<tr>
<td>7108.70</td>
<td>min</td>
<td>0.10</td>
<td>0.20</td>
<td>0.05</td>
<td>0.04</td>
<td>1.10</td>
<td>—</td>
<td>5.30</td>
<td>0.15</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>max</td>
<td>0.12</td>
<td>0.20</td>
<td>0.05</td>
<td>0.04</td>
<td>1.30</td>
<td>0.03</td>
<td>5.60</td>
<td>0.18</td>
<td>0.10</td>
<td>bal</td>
</tr>
<tr>
<td>6060.35</td>
<td>min</td>
<td>0.40</td>
<td>0.18</td>
<td>—</td>
<td>0.01</td>
<td>0.45</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>max</td>
<td>0.45</td>
<td>0.22</td>
<td>0.02</td>
<td>0.03</td>
<td>0.50</td>
<td>0.02</td>
<td>0.02</td>
<td>—</td>
<td>0.10</td>
<td>bal</td>
</tr>
<tr>
<td>6061</td>
<td>min</td>
<td>0.40</td>
<td>—</td>
<td>0.15</td>
<td>—</td>
<td>0.80</td>
<td>0.04</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>max</td>
<td>0.80</td>
<td>0.70</td>
<td>0.40</td>
<td>0.15</td>
<td>1.20</td>
<td>0.35</td>
<td>0.25</td>
<td>—</td>
<td>0.10</td>
<td>bal</td>
</tr>
<tr>
<td>6082.26</td>
<td>min</td>
<td>0.85</td>
<td>0.17</td>
<td>—</td>
<td>0.50</td>
<td>0.60</td>
<td>0.13</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>max</td>
<td>0.95</td>
<td>0.23</td>
<td>0.01</td>
<td>0.60</td>
<td>0.65</td>
<td>0.18</td>
<td>0.02</td>
<td>—</td>
<td>0.10</td>
<td>bal</td>
</tr>
</tbody>
</table>
wt-% Fe) was reportedly found to be beneficial to the weldability of Alloy 7039 (Ref. 26). This improvement in weldability corresponds directly with a reduction in grain size, discussed below.

It should also be noted that cracking begins to occur for Fe and Co additions at a much lower solute content than for Mn additions. This follows from the fact that much larger quantities of Mn are required to generate the same amount of eutectic (Fig. 2). If a certain volume fraction of eutectic is required to impede interdendritic flow, it makes sense that more Mn must be added before hot cracking will initiate. Additions of Mn above 0.8 wt-%, although not shown in Fig. 5, resulted in a plateau of about 95 mm total crack length (up to 1.4 wt-% Mn). Mn behaved uniquely in a second regard, in that it was the only impurity addition that resulted in severe HAZ cracking. However, these HAZ cracks were not included in the total crack length count.

Grain Size Comparison

Grain size measurements were taken for all welds, and their corresponding castings, for each CPT coupon. The results of these evaluations are presented in Fig. 6, where it is noted that two modes of behavior are observed. Both Fe and Mn additions result in a peak in grain size, whereas Co results in a continuous rise in grain size for welds and castings. For all additions, however, the weld metal grain size rests below or is approximately the same as the casting grain size. This is to be expected due to the higher growth rates, and hence higher undercooling, associated with welding. Actual cooling rate measurements, made using implanted thermocouples, showed the weld to cool at 280°C/s and the casting to cool at 19°C/s during solidification. Also, the weld metal grain size is to some extent influenced by the casting grain size due to the tendency for epitaxial grain nucleation.

The average grain diameter for welds and castings with no impurity addition is between 0.2 and 0.4 mm. By making small amounts of impurity additions (Fe, Mn, or Co), the casting grain diameter is found to increase up to around 1.2 mm. One explanation for this dramatic increase in grain size may be related to the eutectic heat of fusion, evolved near the solidification interface where grain nucleation is expected to occur.

If the impurity eutectic latent heat of fusion is to blame for inhibiting grain refinement for Fe, Mn, and Co, some other mechanism must account for the drop in grain size observed at high levels of Fe and Mn. From Equation 3 it is clear that undercooling increases with solute content and, hence, this may explain the observed refinement. Even so, Fe and Co are both capable of producing higher undercooling than Mn, for a given impurity content, and yet Mn showed grain refinement and Co not. It is also possible that particles of these eutectic compounds may serve as substrates to nucleate new grains, although none of these compounds (from Table 2) appear to be suitable substrates. Only ScAl₃ has a crystal structure and lattice spacing close to that of aluminum (Al: a = 4.05 x 10⁻¹⁰ m, FCC).

Table 4 — Range of Impurity Additions Made to Al-5%Zn-1%Mg Alloy (in wt-%)

<table>
<thead>
<tr>
<th></th>
<th>Fe</th>
<th>Mn</th>
<th>Co</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.05</td>
<td>0.20</td>
<td>0.05</td>
</tr>
<tr>
<td>0.10</td>
<td>0.40</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>0.15</td>
<td>0.60</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td>0.80</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>1.00</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>0.30</td>
<td>1.20</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>0.40</td>
<td>1.40</td>
<td>1.60</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 6 — Effect of the following impurity additions on Al-5%Zn-1%Mg weld metal and casting grain size: A — Fe, B — Mn, and C — Co.

Fig. 7 — Schematic diagram showing phase-temperature sequence for Fe impurity in Al-5%Zn-1%Mg alloy.

108-8 MAY 2009, VOL. 88

WELDING RESEARCH
the Fe eutectic has the tendency to disrupt more spherical particles for the specimen phase is seen to be divided into smaller, the rapidly cooled zone, the interdendritic quenching was achieved by extinguishing the arc with a blast of pressurized air. In this regard. Both Mn and Fe additions resulted in grain refinement, but only at elevated impurity levels related to constitutional undercooling. Considerably more Mn is needed to achieve the same grain refinement, as reflected in its lower undercooling parameter. Fe additions showed improved weldability with grain refinement, whereas Mn did not. This difference in behavior may reflect upon the ability of the corresponding eutectic to block feeding, although Mn should generate less eutectic at the same impurity level. A more plausible explanation may be linked to HAZ cracking, observed only with Mn additions, where HAZ cracks could serve to initiate weld metal cracks.

Co did not produce any grain refinement even though its undercooling parameter is similar to that of Fe. Co additions resulted only in grain coarsening and a corresponding decrease in weldability. Ni additions, although not examined in the experiment, give the highest undercooling parameter and hence show potential for promoting grain refinement.

The role of Fe on weldability is of particular practical importance because of its natural occurrence as an impurity element. A peak in solidification cracking susceptibility has been observed to occur at approximately 0.2 wt-% Fe, which coincides with the typical Fe impurity level for commercial alloys. Controlling Fe is problematic, because restricting Fe to lower levels becomes cost prohibitive, whereas adding Fe to higher levels leads to poor toughness and reduced corrosion resistance. A more favorable approach may be to control the impurity Si, and hence its interaction with Fe, to avoid formation of the high-temperature FeAl 4L2 eutectic. This is a topic for future research.

Acknowledgments

The authors are grateful to the Norwegian Aluminium-in-Ships program for sponsoring this work. Special thanks are given to Hydro Aluminium for the generous donation of materials and SINTEF for providing technical support.

References

Mathematical Modeling of Electrode Cooling in Resistance Spot Welding

Mathematical models have been developed to simulate the electrode cooling in resistance spot welding and to evaluate a new cone-fin weld cap design capable of reducing the cap temperature

BY Z. H. RAO, S. M. LIAO, H. L. TSAI, P. C. WANG, AND R. STEVENSON

ABSTRACT

Due to the high heat flux from the weld nugget to the electrode, the electrode experiences thermal excursion and deformation, which lead to the requirement for frequent redressing or replacement of the weld cap. To extend the life of the weld cap, a better understanding of the thermal excursion experienced by the weld cap, and thus its cooling, is required. In this study, mathematical models that include the cooling water flow impinging onto the underside of the cap, resistance (or Joule) heating, as well as the heat transfer between the weld cap and the cooling water were developed. It was found that the conventional weld cap configuration results in a severe stagnation fluid flow near the underside of the weld cap and thus may lead to poor film boiling heat transfer there. Based on this understanding, a new cone-fin design on the underside of the weld cap was proposed to enhance the heat transfer. Our modeling results show that the fin not only lessens the stagnation flow near the cap but also increases the cooling area, leading to large reductions in temperatures at the underside of the weld cap. A roughened fin surface is also suggested to provide nucleation sites that can enhance the heat transfer between the cap and the cooling water due to nucleate boiling. Our implementation studies further confirm that the new cone-fin cap design can significantly extend the life of the weld cap.

Introduction

Resistance spot welding (RSW), as shown in Fig. 1, is the most widely used joining technique for the assembly of sheet metal components, especially in the automotive industry. It is characterized by high operating speeds and suitability for automation or robotization. During the process, sheet metal components are welded together as a result of the heat generated by electric resistance to current flow. The RSW process consists of first applying a force through the electrodes to clamp the workpieces and reduce the interface resistance and then passing a current through all the components shown in Fig. 1. As a result of the current flow, heat will be generated due to Joule heating. Since the welding current remains constant along the components, the location at which the greatest electrical resistance exists will generate the greatest heat. As the resistance of the interface between the two workpieces is dominant, a great deal of heat generated at the interface leads to an incremental rise in temperature of the weld cap. Therefore, owing to the effects of the mechanical force and electrical current, the weld cap is subjected to significant thermal and mechanical excursions. After a few welding cycles, the weld caps tend to be mushroomed resulting in the increase of the electrode tip area and thus the decreases of the holding pressure and current density (Ref. 1). Consequently, the current density will become smaller, which may not be high enough for effective welding. For this reason, the weld cap should be replaced or redressed, especially when welding thin workpieces.

Hence, good cooling of the weld cap is essential in order to prevent it from becoming too hot and too soft. A number of experimental and modeling studies have attempted to address and better understand the aforementioned issue (Refs. 2–4). And much experimental research on electrode cooling water has been carried out to study the effects of water flow rate and water temperature (Refs. 5, 6). However, few detailed descriptions of modeling cooling water flow in the weld electrode and improving cooling efficiency during RSW have been reported.

In this study, we first focus our attention on developing a model for the fluid flow of cooling water in a “conventional” weld cap and, then, a time-dependent thermal model is developed to simulate the transient weld cap cooling process. Based on the fundamental understanding of the fluid flow and heat transfer characteristics for the conventional weld cap, a new cone-fin weld cap design is proposed and the corresponding mathematical model is developed aiming at the enhancement of the weld cap cooling. The new cap design is also implemented. Our modeling results show that in the new cap design the weld cap temperature is reduced, which is indirectly confirmed by our implementation studies in which the cap lifetime has been significantly extended.

Mathematical Modeling

Figure 2A illustrates the geometry of the electrode including a conventional weld cap mounted on a supporting member (shank) with a cooling tube that pro-

KEYWORDS

Resistance Spot Welding
Electrode Cooling
Weld Cap
Transient Thermal Analysis

Z. H. RAO is a PhD student and S. M. LIAO is a professor with the Central South University, Changsha, China. H. L. TSAI is a professor with the Missouri University of Science and Technology, Rolla, Mo. P. C. WANG and R. STEVENSON are technical fellows with GM R&D Center, Warren, Mich.
vides cooling water. In this study, the shank-weld cap joint has been ignored, and the water supply tube is coaxially located relative to the shank wall. This simplification for modeling has negligible effects on the fluid flow in the cavity of the cap and the heat transfer between the cap and the cooling water compared to the actual setup (Ref. 7). The cooling water enters the cap cavity through the inner tube and leaves via the annular channel between the inner and the outer tubes.

Modeling of Cooling Water Flow

The computational domain for modeling the cooling water flow is the cap cavity in the electrode that is idealized compared to real electrode caps, as shown in Fig. 2B. Due to symmetry arising from the presumed central location of the inlet flow tube, only one-half of the domain is considered. The inlet cooling water volume flow rate is assumed to be 2.46 L/min (0.65 gal/min) at 300 K, leading to about 5.8 m/s of average inlet velocity. The Reynolds number (Re) based on the tube diameter is about 17000 and, hence, the internal flow falls in the turbulent regime (Ref. 8).

In the calculation, the relative pressure is used in the fluid flow field and a zero pressure is assumed at the outlet of the tube. The fluid flow governing differential equations based on the standard K-e turbulence model are solved using Fluent software (Ref. 9).

Figures 3A and B show, respectively, the calculated velocity vectors and pressure contours of the cooling water. As shown, the flow velocity decreases significantly near the center of the underside of the weld cap (at which the maximum temperature occurs), leading to a local high pressure region and a stagnation flow there. Hence, the cooling water may not be able to “sweep” the heat away from the weld cap. Previous experiments (Ref. 7) have demonstrated that the temperature

Table 1 — Thermophysical Properties and Other Parameters

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Symbol</th>
<th>Value (unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density of cap</td>
<td>ρ_c</td>
<td>8978 (kg/m3)</td>
</tr>
<tr>
<td>Specific heat of cap</td>
<td>c_{pc}</td>
<td>381 (J/kg-K)</td>
</tr>
<tr>
<td>Thermal conductivity of cap</td>
<td>k_c</td>
<td>387.6 (W/m-K)</td>
</tr>
<tr>
<td>Electric conductivity of cap</td>
<td>σ</td>
<td>5.88 x 104 (Ω·m$^{-1}$)</td>
</tr>
<tr>
<td>Density of cooling water</td>
<td>ρ_1</td>
<td>997.9 (kg/m3)</td>
</tr>
<tr>
<td>Density of saturated water</td>
<td>ρ'_1</td>
<td>958.6 (kg/m3)</td>
</tr>
<tr>
<td>Density of saturated steam</td>
<td>ρ'_2</td>
<td>0.596 (kg/m3)</td>
</tr>
<tr>
<td>Density of superheated steam</td>
<td>ρ'_3</td>
<td>0.565 (kg/m3)</td>
</tr>
<tr>
<td>Specific heat of cooling water</td>
<td>c_{pd}</td>
<td>4176 (J/kg-K)</td>
</tr>
<tr>
<td>Specific heat of saturated water</td>
<td>c'_p</td>
<td>4214 (J/kg-K)</td>
</tr>
<tr>
<td>Specific heat of saturated steam</td>
<td>c'_p</td>
<td>2075 (J/kg-K)</td>
</tr>
<tr>
<td>Specific heat of superheated steam</td>
<td>c'_p</td>
<td>2021 (J/kg-K)</td>
</tr>
<tr>
<td>Thermal conductivity of cooling water</td>
<td>k_1</td>
<td>0.608 (W/m-K)</td>
</tr>
<tr>
<td>Thermal conductivity of saturated water</td>
<td>k</td>
<td>0.679 (W/m-K)</td>
</tr>
<tr>
<td>Thermal conductivity of superheated steam</td>
<td>k'</td>
<td>0.025 (W/m-K)</td>
</tr>
<tr>
<td>Thermal conductivity of superheated steam</td>
<td>k''</td>
<td>0.0265 (W/m-K)</td>
</tr>
<tr>
<td>Viscosity of cooling water</td>
<td>μ_1</td>
<td>8.90 x 10$^{-4}$ (kg/m-s)</td>
</tr>
<tr>
<td>Viscosity of saturated water</td>
<td>μ'</td>
<td>2.82 x 10$^{-4}$ (kg/m-s)</td>
</tr>
<tr>
<td>Viscosity of saturated steam</td>
<td>μ''</td>
<td>1.23 x 10$^{-4}$ (kg/m-s)</td>
</tr>
<tr>
<td>Viscosity of superheated steam</td>
<td>μ_3</td>
<td>1.30 x 10$^{-5}$ (kg/m-s)</td>
</tr>
<tr>
<td>Surface tension of saturated water</td>
<td>σ</td>
<td>0.059 (N/m)</td>
</tr>
<tr>
<td>Latent heat of evaporation</td>
<td>h_f</td>
<td>2.259 x 105 (J/kg)</td>
</tr>
<tr>
<td>Cooling water temperature</td>
<td>T_f</td>
<td>300 (K)</td>
</tr>
<tr>
<td>Saturated water temperature</td>
<td>T</td>
<td>373.15 (K)</td>
</tr>
<tr>
<td>Multiplier in Equation 4</td>
<td>F</td>
<td>27.12</td>
</tr>
<tr>
<td>Multiplier in Equation 6</td>
<td>S</td>
<td>0.1</td>
</tr>
<tr>
<td>Local vapor volume fraction</td>
<td>α_v</td>
<td>0.9</td>
</tr>
</tbody>
</table>
at the underside of the weld cap can reach the boiling point of water. The very low flow velocity near the center of the weld cap will lead to an excessively high temperature of the weld cap, which may exceed the burnout point or the boiling crisis point (Ref. 10). As a result, the heat transfer mechanism between the cooling water and the weld cap may change from nucleate boiling to film boiling (Ref. 10). In the film boiling regime, the surface is blanketed by a film of vapor, and the heat transfer from the weld cap surface to the cooling water is by conduction across the vapor film, leading to a dramatic decrease of the heat transfer between the weld cap and cooling water. As a result, a further elevation of the cap temperature and thus a reduction in the strength of the cap will occur, which accelerates the softening and mushrooming of the cap.

Modeling of Weld Cap Temperature

Governing Equation

Figure 2B shows the computational domain of the weld cap in a cylindrical coordinate system that is enveloped by the heating surface, cooling surface, outer walls, and axis. For heat conduction in the axisymmetric weld cap, the governing equation is given by

\[
\rho_c c_{pc} \frac{\partial T}{\partial t} = k_c \left(\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{\partial^2 T}{\partial z^2} \right) + S
\]

where \(\rho_c \) is the density, \(c_{pc} \) is the specific heat, and \(k_c \) is the thermal conductivity of the cap. \(S \) is the source term from the bulk resistive heat generation by welding current (W/m³).

Boundary Conditions

The boundary condition at the interior cooling surface is given by

\[
- k_c \frac{\partial T}{\partial \mathbf{n}} = h(T_w - T_i)
\]

where \(\mathbf{n} \) is the unit outer normal vector from the wall, \(T_w \) is the cap wall temperature, \(T_i \) is the cooling water temperature, and \(h \) is the convective heat transfer coefficient that depends on the flow characteristics of the cooling water. As discussed previously, boiling of the cooling water may occur at the inner surface of the cavity, which will lead to a complicated two-phase flow. Depending upon the characteristics of fluid flow and heat transfer, the heat transfer coefficient \(h \) in Equation 2 can be a combination of forced convection boiling \(h_f \) and natural convection film boiling \(h_v \), which are discussed below.

For forced convection boiling, the following convective heat transfer coefficient is considered to be the combination of single-phase liquid heat transfer and nucleate boiling heat transfer (Refs. 11, 12)

\[
h_f = h_c + h_{NB} \left(\frac{T_w - T'}{T_w - T_i} \right)
\]

where \(T' \) is the saturated water temperature and \(h_c \) corresponds to the single-phase liquid heat transfer and is obtained from the following Dittus-Boelter equation modified by a multiplier \(F \)

\[
h_c = 0.023 \sum_{i}^{1} \frac{k_i}{D} \times \frac{0.8 \times Pr_i^{0.4}}{Re_i^{0.8}}
\]

where the subscript \(i \) is for liquid, \(Pr \) is the Prandtl number, and \(F \) is determined by the Martenelli factor (Ref. 11). The nucleate boiling heat transfer coefficient \(h_{NB} \), proposed by Forster and Zuber (Ref. 13), is employed in this study and given by

\[
h_{NB} = c \left(\mu' \left[\min(T_w, 647) \right] - \rho_0 \right)^{0.75}
\]

where

\[
c = 0.00125 \left(\frac{k_c \rho_p}{\sigma} \right)^{1/2}
\]

\[
Pr_0^{0.29} = \rho_0^{1/4} \left(\frac{\epsilon_p \rho_p'}{\rho_0 h_f} \right)^{0.24}
\]

where the superscript “prime” refers to the saturated water, the “double prime” superscript refers to vapor phase, \(\rho_0 \) is atmospheric pressure, \(\sigma \) is the surface tension, and \(h_f \) is the latent heat of evaporation. The multiplier \(S \), defined as the ratio of the effective superheat to the total superheat of the wall, is a function of the Reynolds number provided by Bjornard and Griffith (Ref. 14).

The heat transfer coefficient for film boiling in this study is given by

\[
h_2 = h_{FB} \left(\frac{T_w - T'}{T_w - T_i} \right)
\]

where \(h_{FB} \) is the film boiling heat transfer coefficient. For natural convection film boiling on a horizontal plane, Berenson (Ref. 15) proposed the following expression

\[
h_{Berenson} = 0.425 \left(\frac{k_c \rho_c (\rho' - \rho)^8 h_{fb}}{\mu''(T_w - T')^4 h_{RT}} \right)^{1/4}
\]

where
Fig. 4 — Weld current vs. time for a typical resistance weld.

\[\lambda_{RT} = \left[\frac{\sigma}{g(\rho' - \rho'')} \right]^{1/2} \] \hspace{1cm} (9)

where the subscript \(v \) is for vapor and \(g \) is the gravitational acceleration. For natural convection film boiling in channel with very low mass flux, Leperriere (Ref. 16) modified the Berenson’s equation to obtain a correlation as

\[h_{FB} = h_{Berenson} \left(1 + 25.5 \frac{T_e - T'}{T_f} \right) \]

\[(1 - \alpha_{1h})^{0.5} \] \hspace{1cm} (10)

where \(\alpha_{1h} \) is the local vapor volume fraction (Ref. 16).

Based on the calculated flow characteristics and above discussion, the heat transfer mechanism along the cooling surfaces may involve several different regimes, including single-phase liquid heat transfer, nucleate boiling, and film boiling. Therefore, the heat transfer coefficient \(h \) in Equation 1 is regarded to be a weighted average of heat transfer coefficients \(h_1 \) and \(h_2 \), which can be expressed as

\[h = \alpha_1 h_1 + (1 - \alpha_1) h_2 \] \hspace{1cm} (11)

where \(\alpha_1 \) corresponds to the ratio of forced convection boiling heat flux to the total heat flux. Strictly speaking, the heat transfer coefficient \(h \) can be time and location dependent, and depends on the fluid flow and heat transfer characteristics. In this study, we assume \(\alpha_1 = 0.5 \), an average of the forced convection boiling and the natural convection film boiling. Note a constant temperature \(T_f \) of 300 K is assumed for cooling water, which is reasonable because the high flow rate results in only a few degrees (K) of temperature increase for fluid core through the cavity (Ref. 1). As a result, the heat transfer in the internal fluid core is ignored. For heat conduction in the weld cap, various cooling rates due to the various heat transfer coefficients between the walls and cooling water are considered by Equations 2–11. It is also noted that the wall temperature \(T_w \) and the heat transfer coefficient \(h \) are coupled, and iterations are required in the calculation.

The boundary condition at the heating surface (see Fig. 2B) is considered as Joule heating flux due to contact resistance at the interface between the weld cap and workpiece. The contact resistance consists of the constriction resistance and the resistance from possible surface contamination. In general, contact resistance may vary both spatially and temporally. In this study, the contact resistance is assumed to be constant, and half of the power input determined by the experiment (Ref. 4), 910 W, is used, yielding a heat flux of \(q = 7.24 \times 10^7 \) W/m². For the outer walls (see Fig. 2B), the heat loss may consist of both the natural convection and thermal radiation. However, in this study the natural convection and radiation heat loss are negligible as compared to the convective heat transfer to the cooling water. Hence, the boundary condition at the outer walls is simply set as an adiabatic condition (\(q = 0 \)).

Generation of Joule Heat.

The bulk Joule heat generation due to electric resistance is determined by Ohm’s law. Hence, the source term in Equation 1 can be derived as

\[S = \frac{J^2}{\sigma_e} = \sigma_e E^2 \] \hspace{1cm} (12)

where \(\sigma_e \) is the electric conductivity of the material, \(J \) is the electric current density, and \(E \) is the magnitude of the electric field. In order to obtain the electric field, the following Poisson’s equation must be solved.

\[\frac{1}{r} \frac{\partial}{\partial r} \left(\frac{\sigma_r \partial \phi}{\partial r} \right) + \frac{\partial}{\partial z} \left(\frac{\sigma_z \partial \phi}{\partial z} \right) = 0 \] \hspace{1cm} (13)

where \(\phi \) is the electric potential, and the two components of the electrical field can be found via

\[E_r = -\frac{\sigma_r \partial \phi}{\epsilon \partial r} \] \hspace{1cm} \[E_z = -\frac{\sigma_z \partial \phi}{\epsilon \partial z} \] \hspace{1cm} (14)

Finally, the magnitude of the electric field \(E \)
is computed, which is the square root of E_i and E_i.

Numerical Procedure

Equations 1 and 13, subjected to all required boundary conditions, are solved implicitly with a time step size of 0.005 s. At each time step, Equations 3–10 are first solved based on a new wall temperature to obtain the heat transfer coefficient through Equation 11. The boundary condition at the interior cooling surface is then updated using Equation 12. Equations 13 and 14 are also solved to obtain the new electric field and update the source term S using Equation 12. And then Equation 1 is solved to obtain a new distribution of temperature in the weld cap. Next, the calculation goes back to the first step. This process is repeated for each time step until the convergence criteria for wall temperature are satisfied.

Results and Discussion

In this study, the welding system is stationary and the time-dependent welding process with the given welding current cycles is shown in Fig. 4. In each cycle (2 s), an electric current of 21 kA is applied during the first 0.165 s and then is shut off for 1.835 s (Ref. 4). Thus, the heat flux at the heating surface and the bulk resistive heat source are generated periodically. Note some real welding current features are not considered in this study. The effect of multiple weld cycles (representative of the thermal exposure experienced by the weld cap when multiple sequential welds are made robotically in an individual station) is investigated by repeating this cycle eight times corresponding to eight welds made at 2-s intervals (i.e., robot duty cycle is 8). The thermophysical properties of the weld cap (copper) and water (Ref. 17) are listed in Table 1 with other parameters used for the calculation.

Transient Temperatures

Figure 5A and B show, respectively, the transient temperature at the underside center ($z = 6$ mm, $r = 0$ mm) and the tip ($z = 14.66$ mm, $r = 0$ mm) of the weld cap. As shown in the figures, both the temperatures at the underside center and the tip of the weld cap increase rapidly after the cessation of electric current, as expected. The peak temperatures of the cap tip and the underside of the weld cap are about 985 and 470 K, respectively. The tip temperature decays rapidly after the electric current is ceased, while the temperature at the underside decreases slowly. The tip temperature remains “steady” after about four welding cycles, but it takes about six welding cycles for the underside of the cap. The predicted temperature trends for the cap underside are generally in good agreement with the experimental measurements (Ref. 7) where water boiling was observed. Figure 6 shows the temperature contour in the weld cap at $r = 14.165$ s for the last welding cycle.

As shown in Fig. 5B, under repeated weld cycles, the transient behavior associated with each individual weld cycle is superimposed on an increasing background temperature that quickly approaches an asymptotic limit (steady state) after several welding cycles, especially for the electrode with the high thermal conductivity. At the asymptotic limit, the heat loss to the cooling water balances with the heat input and generation during one cycle. Hence, the temperature varies periodically in a repeated fashion and no further increase in peak temperature takes place. Thus, the thermally driven mechanism of cap degradation will not be further enhanced even if more welds are added to a robot duty cycle. However, there is approximately 85 K difference in peak temperature between the first and the eighth weld cycle, which plays a significant role in accelerating the weld cap degradation. Thus, while an increase in the number of welds in a duty cycle will not significantly increase the rate of cap degradation provided the background temperature has achieved its asymptotic limit, a decrease in the number of welds in the duty cycle will effectively reduce the rate of weld cap degradation, and extend the weld cap life.

The above calculated results indicate that the underside wall temperature of the weld cap falls in the range of 300–500 K. As a result, the heat transfer coefficient h is in the order of 10^3 W/m2K that is about the average of film boiling and nucleate boiling. Hence, our assumption of using $\alpha_4 = 0.5$ appears to be reasonable. However, it would be worthwhile to study the effects of the heat transfer coefficient on temperature cycles of the weld tip and the underside. Figure 7A and B, respectively, shows the transient temperature profiles at the underside center and the tip of the.
weld cap between the cases with \(\alpha_1 = 0 \) and \(\alpha_1 = 0.5 \) (the case shown in Fig. 5). When \(\alpha_1 = 0 \), the heat transfer coefficient is calculated by Equation 7 and in the order of \(10^2 \text{ W/m}^2\text{-K} \), which corresponds to the formation of a vapor film around the inner surface of the cap as a result of the stagnation flow of the cooling water. With the low heat transfer coefficient, our modeling results show that the quasi-steady state would never be achieved. This suggests that for each weld cycle the heat input is always larger than the heat removal and, consequently, the peak temperature increases progressively and promotes ever-increasing weld cap degradation. Note that, as shown in Fig. 7A, B, the differences in corresponding temperatures between the two cases are not significant during the first welding cycle. This is because the response from the cooling water is slow compared to the short welding duration of 0.165 s. Note similar results were also found by Yeung and Thornton (Ref. 4) that the convective heat transfer coefficient has little effect on the peak temperature for the first welding cycle. However, after the following cooling cycles the weld cap temperature cannot be restored to its initial condition as \(\alpha_1 = 0 \), indicating both the background temperature and the peak temperature increase continuously.

New Weld Caps

The calculated velocity vectors and pressure contours are shown in Fig. 9A and B, respectively. It can be seen that near the underside of the weld cap, stagnation flow has been significantly reduced. The cooling water sweeps and carries away the heat transferred from the weld tip. Hence, the new cap design can effectively lessen the stagnation of the flow and avoid the occurrence of film boiling near the center of the cooling surface. Since boiling of cooling water near the cap underside is still inevitable, maintaining the nucleate boiling might be a good way to improve the heat transfer by taking advantage of large latent heat of vaporization. This can be achieved by roughening the surface of the cone-fin. The roughened surface would provide many nucleation sites for boiling, thereby suppressing film boiling and dramatically augmenting the heat transfer.

Figure 8B shows the calculation domain for modeling the new weld cap with a cone-fin of a height of 1 mm and a base radius of 1 mm, which is enveloped by the heating surface, cooling surface, outer walls, fin, and axis. In this model, most conditions are the same as the conventional design without a fin, but a higher convective heat transfer coefficient in the fin area is used. Based on the above discussion, as there is no stagnation flow near the cone-fin and a possible nucleate boiling, the value of \(\alpha_1 \) in Equation 11 is higher. For simplification, two constant heat transfer coefficients for the fin \(h_{\text{fin}} \) are assumed in the modeling (i.e., 30,000 and 50,000 W/m\(^2\)-K), which are in the range of the results obtained from Equation 3 for the forced convection boiling heat transfer. Note the selected values of the convective heat transfer coefficients are typical for nucleate boiling. It is also noted the heat transfer coefficient for the other cooling surface is coupled with wall temperature and, hence, iterations are required using the aforementioned method. Figure 10A, B show, respectively, the transient temperatures at the underside center \((z = 6 \text{ mm}, r = 0 \text{ mm})\) and the tip \((z = 14.66 \text{ mm}, r = 0 \text{ mm})\) of the new weld cap. It is seen that, compared to the case without a cone-fin, the temperatures at the underside of the weld cap are significantly decreased. The temperature reductions at the underside of the weld cap for a heat...
transfer coefficient h_{fin} of 30,000 W/m2-K and 50,000 W/m2-K are 30 and 50 K, respectively. However, the temperature at the tip of the weld cap is determined by the heat dissipation rate from the tip and heat flux onto the tip. The heat flux for each case is unchanged due to the same welding current profile and contact resistance. As shown in Fig. 10B, when a cone fin is added, the temperature at the tip only has a slight decrease at the end of each cycle due to the slow response from heat removal by cooling water compared to the welding cycle duration (2 s).

Effect of Fin Geometry

The above results indicate the addition of a cone-fin at the underside of the weld cap improves the heat transfer significantly. To optimize the fin geometry, in addition to the original fin geometry, two more fin geometries were studied; one fin geometry has a height (H) of 2 mm and a base radius (R) of 1 mm, and the other has a height (H) of 1 mm and a radius (R) of 2 mm. The heat transfer coefficient for the fin is assumed to be 30,000 W/m2-K in both cases. Figure 11A, B show, respectively, the effects of fin geometry on the temperatures of the underside center and the tip of the weld cap. In comparison to the original fin with 1 mm height and 1 mm base radius, the fin with higher height (2 mm) further reduces the temperature at the underside center by about 30 K, while there is no obvious decrease in temperature for the case with greater radius (2 mm). This can attribute to the fin efficiency discussed below. For all these cases, the temperature differences at the tip are insignificant due to the reason discussed in Fig. 10B. These results suggest that the variation in fin geometry has little influence on the temperature of the cap tip.

A theoretical study of a cone-fin, with a constant base temperature, yields the following equation for the fin tip temperature (Ref. 18):

$$\frac{T_0 - T_{\infty}}{T_B - T_{\infty}} = \frac{m\sqrt{H}}{I_1(2m\sqrt{H})}$$

where T_0 is the temperature of the cone-fin tip, T_B is the temperature of the cone-fin base, T_{∞} is the fluid flow temperature, I_1 is the modified first-order Bessel function of the first kind, and

$$m^2 = \frac{2h}{k} \sqrt{\frac{H}{R}} + 1.$$

The fin efficiency is defined as the ratio of the heat transfer rate for the case with a fin to the case without a fin. For an ideal cone-fin, its efficiency is given by
Fig. 12 — Effects of fin height on the fin tip temperature and the fin efficiency ($h = 30,000 \text{ W/m}^2\text{-K}$, $k = 387.6 \text{ W/m}\cdot\text{K}$, $T_B = 400 \text{ K}$, $T_w = 300 \text{ K}$, fin base radius $R = 0.001 \text{ m}$).

Fig. 13 — Effects of fin base radius on the fin tip temperature and the fin efficiency ($h = 30,000 \text{ W/m}^2\text{-K}$, $k = 387.6 \text{ W/m}\cdot\text{K}$, $T_B = 400 \text{ K}$, $T_w = 300 \text{ K}$, fin height $H = 0.001 \text{ m}$).

Fig. 14 — Weld number vs. welding current of different weld caps.

$$E = \frac{k}{hH} \left(\frac{m\sqrt{H}}{I_0 \left(2m\sqrt{H}\right)} \right)^{-1}$$ (17)

Implementation Studies

During the normal welding process, the tip area of the weld cap will grow by mushrooming and consequently the current density and pressure will decrease. To maintain the effective RSW process and weld quality, a schedule of electrode redressing should be set up. With other variables held constant, 60-Hz, single-phase AC at different levels was used to examine the aforementioned weld caps. The cap material used was Class II Cr-Cu alloy with a 4-mm tip diameter. It is assumed that the electrode should be redressed as the diameter of the electrode tip increases to 1.3 times the starting diameter (Ref. 1). Thus, the weld numbers of the electrode before its redressing were obtained. Extensive experiments have been conducted and only one representative result is presented here. As shown in Fig. 14, it can be seen that the new cone-fin design increases the weld number significantly. At the same current level, the weld number for the new cone-fin cap is much larger than that for a conventional weld cap. For both kinds of weld caps, the weld numbers increase with welding current in a nearly linear relationship. This is because the weld time and hold time can be shortened for each welding cycle at a higher current level. Although the temperatures of the underside and the tip of the weld cap were not measured for direct comparison with modeling predictions, apparently the new cone-fin design and our modeling predictions are generally correct for improving the weld cap cooling and extending the life of the weld cap.

Conclusions

In this paper, models that include cooling water flow impinging onto the underside of the cap, heat generated by resistance to the flow of electric current in the weld cap, as well as heat transfer between the weld cap and the cooling water were developed. It was found that the conventional configuration of the weld cap results in stagnation of the fluid flow, leading to poor film boiling heat transfer at the underside of the weld cap. A new cone-fin design at the underside of the weld cap was proposed to enhance the heat transfer. The fin effectively suppresses the film boiling and thus reduces the risk of reaching the burnout temperature. A roughened fin surface is also suggested to provide nucleation sites that can enhance the heat transfer between the cap and the cooling water due to nucleate boiling. As a result, the new cone-fin reduces the temperature at the underside of the weld cap, enables the tip temperature to quickly approach an asymptotic limit, and prevents the mushrooming of the weld cap. The implementation studies confirm that the new cone-fin design can extend the life of the weld cap significantly. The mathematical modeling provides an invaluable guidance in the design of the weld cap for the RSW process.
Nomenclature

- c_p: specific heat at constant pressure, J/kg·K
- d: tube diameter, m
- E: magnitude of the electric field, V/m
- F: multiplier in Equation 4
- g: gravitational acceleration, m/s²
- H: height of fin, m
- h: effective heat transfer coefficient, W/m²·K
- h_{FB}: film boiling heat transfer coefficient, W/m²·K
- h_e: convective heat transfer coefficient, W/m²·K
- h_{NB}: nucleate boiling heat transfer coefficient, W/m²·K
- h_R: latent heat of evaporation, J/kg
- I_0, I_1: Bessel functions
- J: electric current density, A/m²
- k: thermal conductivity, W/m·K
- l: liquid
- m: mass
- n: unit outer normal vector from the wall
- p: pressure, Pa
- Pr: Prandtl number
- q: heat flux, W/m²
- r, z: cylindrical coordinate system
- R: base radius of fin, m
- Re: Reynolds number
- S: source term in Equation 1, or multiplier in Equation 6
- T: temperature, K

Greek

- α: ratio of forced convection boiling heat flux to the total heat flux
- α_{th}: local vapor volume fraction
- μ: dynamic viscosity of liquid, kg/m·s
- ϕ: electric potential, V
- σ: surface tension, N/m
- σ_e: electric conductivity, Ω^{-1}·m⁻¹
- ρ: density, kg/m³

Superscript and Subscript

- s: saturated liquid
- v: vapor
- w: wall
- c: cap

References

7. Karagoulis, M., Private communication, General Motors Corp.
Guidelines for submitting electronic files

1. **Platform:**
 Macintosh or PC accepted

2. **Files accepted:**
 QuarkXpress, Adobe Photoshop, Adobe Illustrator, TIFF, EPS and PDF files only.

3. **Color:**
 Send all files in as CMYK (for color) or Grayscale (for b/w).

4. **Images:**
 Minimum resolution required for magazine printing is 300 dpi for full color artwork or grayscale at least 1000 dpi for bitmap (B&W/line art). Images and logos from Web sites are NOT usable for printing. They are low resolution images (72 dpi). Images taken with a digital camera are not acceptable unless they meet the minimum 300 dpi requirement.

5. **Proof:**
 A proof of the images should **always** be provided.

6. **Electronic File Transfer:**
 Files larger than 20 MB are not acceptable as an email attachment; please send it on a CD or Zip, you may also send files to the printer FTP site (a user name and password will be provided when requested)

Check list for submitting electronic files:

Colors:
- ☐ 4/C
- ☐ Grayscale
- ☐ B&W/line art

File Type:
- ☐ TIFF
- ☐ EPS

File sent via:
- ☐ DVD
- ☐ Zip disk
- ☐ CD
- ☐ Email

- ☐ **Proof supplied/faxed**

- ☐ CMYK images at 300 dpi or higher, B&W/line art at 1000 dpi or higher.

- ☐ All color in all images set to CMYK process (not RGB)

When submitting ads, please send them to the attention of

Frank Wilson
Advertising Production Manager
American Welding Society
550 NW LeJeune Rd.
Miami, Fla. 33126
COST SAVINGS MADE SIMPLE

ABICOR Binzel’s long-life consumables have proven they can make a difference in terms of usage and labor reduction. By using ABI-Fit long life consumables, customers are able to manage inventory and reduce costs. Customers have realized as much as a 70% reduction in consumable spending by changing to ABI-Fit. With current economic conditions, customers changing to or currently using ABI-Fit strengthen their competitive position by improving their efficiencies and simply saving costs.

For Info go to www.aws.org/ad-index

Technology for the Welder’s World
1-800-542-4867

www.abicorusa.com
I CHOOSE LINCOLN™
FOR POWER GENERATION WELDING APPLICATIONS

Lincoln Electric's new Excalibur® low alloy, low hydrogen stick electrodes (SMAW) are designed for use in elevated temperature applications commonly found in the power generation industry.

New Excalibur® stick electrodes can help your fabrication team meet and exceed the demands of power plant welding for performance and quality.

For industry leading arc performance and operability – choose Excalibur® low hydrogen stick electrodes.

www.lincolnelectric.com
© The Lincoln Electric Co. All Rights Reserved.

For Info go to www.aws.org/ad-index