Executive Summary: The Wildlife Conservation Society (WCS) was contracted by the Olympic Regional Development Authority (ORDA) to assess the use of Whiteface Mtn. by Bicknell’s thrush (*Catharus bicknelli*), determining, at a minimum, the presence or absence of the species at a number of locations on the mountain. A species of special concern in New York State, Bicknell’s thrush makes use of high elevation conifer forest such as that found on Whiteface and other Adirondack peaks for breeding and nesting habitat during the summer months. A proposed and now executed ski trail expansion on Whiteface raised concerns about the potential for impacts of new trail development on Bicknell’s thrush habitat. In the summer of 2004, we surveyed a total of 27 sample points on the mountain in 5 categories: (1) existing glade, (2) proposed glade, (3) existing trail, (4) proposed trail, and (5) control areas. During the summer of 2005, 2 additional survey locations were added to improve sample sizes within the proposed construction area for a total of 29 sample points. All points were resampled during summer 2006, 2007, and 2008, the first year of post-construction sampling. Study points were sampled using standard point count methods to monitor the presence of Bicknell’s thrush (BITH) and 4 other high elevation bird species: blackpoll warbler (BLPW), Swainson’s thrush (SWTH), winter wren (WIWR), and white-throated sparrow (WTSP). Throughout the study period, we found no significant differences in species richness, diversity, or evenness of Mt. Birdwatch species, or in the total number of Bicknell’s thrush detected among existing ski trails, existing glades, proposed ski trails, proposed glades, and control areas. As stated previously, we believe that our power to detect statistical differences was good for richness, diversity, and evenness, but was not as good for individual species differences due to higher variability at the individual species level. Analysis of our fifth year of data shows that existing ski trails and control areas do not differ statistically in terms of abundance or species richness for montane forest birds including Bicknell’s thrush. Across all years, we did not detect Bicknell’s thrush in areas of existing glades on Whiteface Mt. Glading, in particular, may be detrimental to habitat quality for Bicknell’s thrush. In the first year of post-construction sampling, we detected
a significant decline in the number of birds post-construction for Bicknell’s thrush only among the target species.

Introduction

The Bicknell’s thrush is a species of great interest in the northeastern United States, both for birders and scientists alike. The species breeds in high elevation conifer forests, primarily above 3000 ft., on mountaintops from the Catskills to northern Maine. It is among the most rare and probably most threatened species in North America, and is ranked as the nearctic Neotropical migrant of highest conservation priority in the Northeast (Rimmer *et al.* 2001).

Bicknell’s thrush habitat in the U.S. consists of montane forests dominated by balsam fir (*Abies balsamea*), with lesser amounts of red (*Picea rubens*) and black spruce (*Picea mariana*), white birch (*Betula papyrifera*), mountain ash (*Sorbus americana*), and other hardwood species. It is adapted to naturally disturbed habitats and historically probably sought out patches of regenerating forest caused by fir waves, wind throw, ice and snow damage, fire, and insect outbreaks, as well as the chronically disturbed stunted conifer forests found at high elevations in the northeast (Rimmer *et al.* 2001). Highest densities of the species are often found in continually disturbed (high winds, heavy winter ice accumulation) stands of dense, stunted fir on exposed ridgelines or along edges of human-created openings, or in regenerating fir waves (Rimmer *et al.* 2001). More than 90% of birds are believed to breed in the U.S. (versus Canada), with the Adirondacks containing the largest area of its montane breeding habitat, followed by NH, ME, VT, and the Catskills.

Bicknell’s thrush wintering habitat is even more restricted than its breeding habitat, with the species occurring regularly on only 5 islands in the Greater Antilles. It prefers mesic to wet broadleaf montane forests in the Dominican Republic, Haiti, Cuba, Jamaica, and Puerto Rico. Large-scale loss and degradation of wintering habitat pose the greatest threat to the long-term viability of this species (Rimmer *et al.* 2001).

Bicknell’s thrush is not well-sampled by traditional bird monitoring methods due to its preference for high elevation habitat and its uncommon mating system. Both males and females mate with multiple partners, multiple paternity is common, and more than one male often feeds nestlings at a given nest. These characteristics make it poorly sampled by bird count methods that rely on more common territorial mating systems found in many bird species. Estimates of breeding densities for the species are unreliable at best (Rimmer *et al.* 2001). Though estimation of breeding densities are difficult to obtain, Bicknell’s thrush is believed to be vulnerable to extinction and has been added to the Red List of Threatened Species by the World Conservation Union. As a habitat specialist of high elevation conifer forests, it is susceptible to a number of threats on the breeding grounds including pollution (acid rain, mercury), recreational development, cell tower construction, wind power development, and climate change.
This report details the fifth season of field work conducted by the Wildlife Conservation Society to examine the potential impacts of ski area development on breeding habitat for Bicknell’s thrush and other montane forest species on Whiteface Mtn. and the first year of post ski trail expansion sampling.

Study Area

Whiteface Mtn. is located in the high peaks region of the Adirondacks and contains approximately 1,020 acres of suitable Bicknell’s thrush breeding habitat, with approximately 27 acres of potential habitat within the proposed Tree Island Pod expansion area. Elevations in the high peaks region range from 1,000 – 5,300 ft. The study site is characterized by spruce-fir forest at high elevations and transitions into a mix of softwood and hardwood species including paper birch and red maple (*Acer rubrum*) at low elevations. It is important to note that delineation of habitat for Bicknell’s thrush is difficult, even when conducted by experts in the field. For that reason, any estimate of the area that may be used by Bicknell’s thrush on Whiteface Mt. is by no means meant to be absolute and represents an estimate of potential habitat only.

Methods

We used standard point count methods to assess presence/absence and relative abundance of BITH and other high elevation bird species on Whiteface Mtn. (Ralph *et al.* 1995, Rosenstock *et al.* 2002, Thompson 2002). In a previous report to ORDA by the Vermont Institute of Natural Science, distance sampling methods were suggested as a means by which to obtain density estimates of BITH on Whiteface Mtn. However, authors of that report and several others discussed the limitations of the distance sampling approach in providing reliable density estimates, both because of the unique characteristics of the Bicknell’s thrush mating system, and also due to the difficulty of meeting stringent assumptions of distance sampling methods (Farnsworth *et al.* 2002, Ralph *et al.* 1995, Rimmer *et al.* 2004, Rosenstock *et al.* 2002, Thompson 2002). Rimmer *et al.* (2004), in their report to ORDA, mention that these limitations, coupled with the single-site study design of the work on Whiteface, mean that distance sampling methods used in this study are unlikely to produce statistically defensible results. In an effort to make the best attempt possible, given these constraints, to obtain reliable information on BITH and other species, we adopted a point count method that allows for calculation of densities for individual species, if adequate detections are made. Standard distance sampling methods require that the distance to each bird detected be accurately estimated, a requirement that we felt was challenging given the conditions of the habitat we were working in and the known difficulties in meeting this and other assumptions of distance sampling. Farnsworth *et al.* (2002) describe a technique whereby densities of individual species may be calculated from standard point count data collected in a series of time intervals, given that researchers used a fixed radius for point counts (suggested radius = 50 m). We had more confidence in our ability to detect whether birds were within or outside of a 50 m radius, than in our ability to accurately estimate exact distances to all birds heard. Therefore, we used a standard 10 minute point count method that would allow for future calculations of density given adequate numbers, but required only that we determine
whether birds were within or outside of 50 m. This point count method enables us to
determine presence/absence, and relative abundance among different site on the
mountain.

We conducted all sampling on Whiteface Mtn. between June 5th and June 15th of each
year. We returned to established sampling points in 5 different treatment types: (1)
existing glades (n=1), (2) proposed glades (n=3), (3) existing trails (n=4), (4) proposed
Tree Island Pod trail area (n=9), and (5) control areas (n=14; Figure 1). Configuration of
habitat on the mountain limited us to small sample sizes within several of the treatment
types (i.e., existing glades, proposed glades, existing trails). To ensure that individual
birds are counted only once at each sample point, standard methods require that sample
points be approximately 200-250 m apart. This distance precluded us from having more
than a few points within some of our treatment types. Battles et al. (1992, 2003) have
conducted prior work on Whiteface Mtn. to examine trends in red spruce decline and tree
community dynamics. In anticipation that habitat data collected at these points may one
day be useful to this study, we conducted point counts at two locations also used by
Battles et al. (1992, 2003) in one of our control areas that overlapped with their
study sites.

We sampled all points between the hours of 4:30 and 6:30 am, during the time in
which Bicknell’s thrush is believed to be most vocal. At each
sample point, birds
were recorded by
species, time period of
detection (i.e., 0-3
minutes, 3-5 minutes,
5-10 minutes), activity
(i.e., singing, calling,
individual seen), and whether or not they were within 50 m of the observer. In the
interest of safety, two observers were present on each sampling route, but only one
observer was responsible for data collection. Trails were constructed during the winter
months of 2007-2008 and therefore, 2008 represented the first year of post-construction
sampling.

1 In order to maintain consistency with the 2004 - 2007 methods, we have kept the proposed glade area as
part of the analysis. However, during the course of the study the area proposed for new glades was moved
from our sampling location to another location on the mountain. Therefore, our proposed glade area will
not actually be gladed. We do not have any sample points in the newly proposed glade area.
Results

Numbers of detections of all species were far below minimal standards required for calculating densities by distance sampling. In lieu of densities, we calculated relative abundances for Bicknell’s thrush and the 4 other montane bird species. We used analysis of variance (ANOVA; Zar 1999) to test whether there were differences in the number, diversity, and evenness of Mtn. Birdwatch species, and the abundance of individual species (BITH, BLPW, SWTH, WIWR, and WTSP) among the treatment types. Because this was the first year of post-construction data, our past treatment type of proposed trail has now become existing trail. Therefore, our anovas were run on only two treatment types: controls and existing trails. We found no statistical differences in the abundance, richness, diversity, or evenness of Mtn. Birdwatch species observed between control sites and existing trails, both old and newly constructed.

To do so, we averaged the data from 2004-2007 because no significant year-to-year differences had been detected in any target species previously. We compared the averaged data from 2004-2007 (pre-construction) to the single year of post-construction data from 2008. We found a significant decline in the number of BITH (F = 6.140, P < 0.029), but no differences for any other species or community level metric (Figure 2).

Discussion

We have completed a fifth year of field work as part of a multiple-year study to determine the potential impacts of ski area development on habitat for Bicknell’s thrush and other montane forest birds. This year, we again sampled a total of 29 points on Whiteface Mtn., though the configuration of Bicknell’s thrush habitat on the study site, combined with the requirements of point count sampling, constrained us to small sample sizes for some treatment types. In particular, the amount of existing gladed area on the mountain at elevations high enough to provide potential Bicknell’s thrush habitat was small and allowed for only one point within this type. Similarly, we were able to sample only 3 points in the proposed glade and 4 points in the existing trail due to constraints of the habitat, geographical constraints related to our need to space the points more than 200 meters apart from one another, and the time required to reach these points, even when camping overnight on the mountain. Our primary concern, however, was to address the
potential impacts of ski development within the proposed expansion area, or Tree Island Pod, and to establish a series of sample points within this area that can be compared to control areas on the mountain not open to development.

One of the potential results of low sample sizes in any statistical analysis and an issue we raised subsequent to our first two field seasons is a low power to detect differences. Statistical power is defined as the ability to detect a statistical difference, if one is present. Our power was generally good for detecting differences in the total number, diversity, and evenness of Mtn. Birdwatch species observed. Our power was lower, however, for detecting individual species differences because the variability at the individual species level is much higher. Therefore, the conclusions drawn from these data must again be taken with some caution. Because we have sampled for 5 years, however, and because our primary interest is in the differences among the different types of trail and non-trail areas on the mountain, we were able to average data across the study period and therefore likely yield more reliable estimates of abundance for each species.

Given the caveats mentioned, there are interesting patterns in the data obtained from this study. We found no statistical differences in the total number, diversity, and evenness of Mtn. Birdwatch species among existing glades, proposed glades, existing trails, proposed trails, and control areas between 2004 and 2007. In 2008, post-construction, we similarly found no differences in community characteristics of birds between control areas and existing trails. Likewise, we found few differences in the abundances of Bicknell’s thrush, blackpoll warbler, Swainson’s thrush, winter wren, and white-throated sparrow among these treatment types. As we have discussed previously, the Vermont Center for Ecostudies (VCE; formerly the Vermont Institute of Natural Science) has been studying the impacts of ski area development on Bicknell’s thrush on Stratton and Mansfield mountains for a number of years (Rimmer et al. 2004). Results from their analyses indicate that there are few differences in population and reproductive parameters for Bicknell’s thrush between existing ski areas and control areas on those 2 mountains. This study, much more extensive than our own, has examined differences in reproductive success, survivorship, and nest predation for Bicknell’s nesting near or along existing ski trails versus those nesting in uncut controls and found very few differences among observed parameters between ski areas and controls. It appears that ski areas are not negatively impacting Bicknell’s thrush survival or nest success on these 2 mountains. Whether these same results would be obtained for other montane forest species is unknown. Our data, however, appear to show that relative abundances of the montane species we studied are similar in existing trail and control areas on Whiteface Mtn.

It is important to note that most of the human-related activity occurring on Whiteface and other ski areas occurs during the winter months when most bird species are absent. It may be that direct effects of humans are minimal during the summer months when breeding activity is occurring, and that loss of habitat and other human impacts on the wintering grounds may be much more critical to the long-term survival of Bicknell’s thrush. One of the most common results of habitat fragmentation, such as that created by ski trails, is increased predation created by better access for predators along habitat edges. Rimmer et al. (2004) have not detected this pattern on Stratton and Mansfield mountains,
however. Nest success and predation rates appear similar in ski trail areas and in controls (Rimmer et al. 2004). This may be due to the fact that the generalist predators such as raccoons or coyotes that are more common in fragmented habitats at low elevations are less prevalent at high elevations where Bicknell’s thrush commonly nests. Red squirrels are the most significant nest predator for Bicknell’s thrush, and squirrels appear to be more evenly disbursed throughout the landscape than are more generalist predators which concentrate along and use edges as travel corridors.

Though extensive work has been conducted by VCE and others on Bicknell’s thrush on areas with existing ski trails, our study represented the first opportunity to examine changes in abundance of Bicknell’s thrush and other species before and after ski trail construction occurred. We found significantly fewer BITH in those areas that were cut as new trails in 2008, though no other species demonstrated a difference between pre- and post-construction relative abundance. It is difficult to assess the significance of these findings because we have only one year of post-construction data to date. While Bicknell’s thrush is a species of concern and any impacts resulting in a decline in abundance of the species should be monitored, it is impossible to know at this point whether this pattern of decreased abundance in the new trails will continue. Much of our other data from this study suggest that BITH and the other montane forest species are not negatively impacted by existing trails, and so it is possible that abundances will return to pre-construction levels after a couple of years. Additional sampling will be needed to determine what the long-term impacts of the new trails may be on this population. In the meantime, it will be important to manage trail cutting and maintenance activities so that they occur outside of the breeding season when impacts to BITH would be minimized.

Acknowledgements

The Wildlife Conservation Society acknowledges the generous financial support of the Olympic Regional Development Authority in allowing us to conduct this important work. We also acknowledge the in kind support provided by the Adirondack Park Agency, the New York State Department of Environmental Conservation, and the Vermont Institute of Natural Science.

Literature Cited

