
Application Note
74-0050-180915

Performing Real Time Data
Acquisition With ThinkRF
R5500 Real-Time Spectrum
Analyzer
This application note explains the different methods of real time data acquisition with ThinkRF
R5500 Real-Time Spectrum Analyzer, includes providing the SCPI commands to use with each
method. These methods are single block capture, stream capture with limited capacity, and
complex sweep setup to capture one or more blocks of data.

Contents
Overview ... 3

Data Acquisition System and Process ... 3

Definition and Process ... 4

Capture Setup Requirement .. 5

Block Capture .. 5

Example 1 – A single block capture ... 5

Example 2 – A large block capture with frequency level trigger ... 6

Stream Capture .. 7

Example – A stream capture .. 7

Sweep Capture ... 8

Example – A sweep capture with multiple entries and a trigger setup ... 9

Document Revision History .. 11

Contact us for more information ... 11

APPNOTE 74-0050-180915 www.thinkrf.com 2 of 11

Overview
The R5500 real time data acquisition can be done in three ways:

a) a single block of data capture per user's request,
b) stream capture but with limited memory, or
c) through a complex sweep setup of one or many captures.

The capture is handled by a controller engine, which provides to users a mean of defining and
performing the capture methods using commands created basing on Standard Commands for
Programmable Instruments (SCPI) protocol. The methods could be conditioned with
decimation, and/or triggering.

This paper explain in details the capture methods and the SCPI commands to use for each
method and focuses on the data acquisition aspect only. It assumes that the users already
have the knowledge of connecting and communicating to a R5500. It is important to refer to the
R5500 Programmer's Guide for details on VRT protocol, SCPI commands, and usage.

Note: More examples, beside those provided in this document, are available in each API
folder provided in a R5500 Release Package (see http://www.thinkrf.com/firmware-updates/).

Data Acquisition System and Process
1 illustrates the overall R5500 functional hierarchy including data acquisition and control,
starting from the user's application end to the functional layers within the R5500.

Figure 1: R5500 functional hierarchy
and users' application end interface methods to the device

APPNOTE 74-0050-180915 www.thinkrf.com 3 of 11

http://www.thinkrf.com/firmware-updates/

The R5500 is a network ready device, communicating control interface and data through a
network using ThinkRF provided APIs (some are listed in the figure) or through users' own or a
third-party application. All applications, regardless of the programming language, would be
using the SCPI commands to interface with the device and following VRT1 protocol to decode
the data, including its related context information.

R5500 has an on-board, fast data storage memory of 128 MBytes. Each capture method will be
constrained by that memory size, as explained in the following sections. To minimize
unnecessary storage, a data acquisition could further be

• conditioned using a trigger event, whether through a complex synchronized sweep setup
using external pulse or synchronized word input or through a simple yet powerful internal
frequency level detection trigger engine (see AppNote 74-0046 Triggering Features of
the R5500); and/or

• down-sampled using decimation, with supported rates of 4 to 1024 (in power of 2).

When a trigger method is used, the capture starts after the trigger event has occurred.

Definition and Process
The “block” of data to be captured is continuous and contiguous in nature, and it is termed as a
“trace capture”. The data from one block to another, however, would not be continuous as it is a
“different” block. The block size is ranging from 256 samples to a maximum determined by the
device's memory size (mentioned above) and the RFE data format.

A typical capture setup includes

• determining the capture method that best fit the application;
• sending the appropriate device and data configuration SCPI commands (or using API

functions), directly in standalone mode or through a network; then
• at the end, issuing the appropriate capture start command depending on the method

used.

The R5500 capture controller initiates the data capture and data storage to an on-board
memory, with proper VRT headers and trailer inserted. In other words, data captured is
sectioned into VRT packet(s), with the packet size specified through samples-per-packet (SPP)
parameter. As soon as a complete data packet is available, the embedded firmware starts
processing and sends VRT data packets to the end user. The firmware also creates and sends
any associated VRT context packets back to the user. A notable note, included in the VRT
headers are the timestamp of when the data packet is captured, basing on the system clock, in
nanoseconds.

See the R5500 Programmer's Guide for more information.

1 VRT stands for the VITA-49 Radio Transport protocol, used for digitied data and its associated context

informatonn See R5500 “Programmer's Guide” for further informatonn

APPNOTE 74-0050-180915 www.thinkrf.com 4 of 11

Capture Setup Requirement
The following setup is required after successfully connected to an RTSA and before starting the
capture:

• Reset the system by issuing *RST command

• Request a system lock for data acquisition using

:SYSTem:LOCK:REQuest? ACQuisition command

• Flush the RTSA's internal buffer through :SYSTem:FLUSh command. Issue this

command only after having the acquisition lock request.

 See the R5500 Programmer's Guide for more information on the commands.

Block Capture
To do a single block capture of continuous data, the total number of samples captured (a single
block) is determined by SPP (:TRACe:SPPacket) and number of packets-per-block or PPB

(:TRACe:BLOCk:PACKets). The SPP size is limited by the VRT protocol, and the (SPP * PPB)

block is limited by the device's memory. When the block data capture command
(:TRACe:BLOCk:DATA?) is issued, the R5500 will start the capture and store the total number

of samples into a buffer. The data, as mentioned earlier, are sectioned into VRT packets, each
of size SPP with 5 headers word and a trailer word inserted. The :TRACe:BLOCk:DATA?

command must be issued again, with or without changing any configuration, to start another
capture block. Hence, the samples within a single block capture is continuous from one packet
to the other, but not necessary between successive block capture commands issued.

The following examples illustrate how to do a single block capture and another with triggering.
Note, the examples are written in python language. SCPI commands are used in the example
and thinkRF's pyRF API functions are commented right beside some scpiset() to indicate the
equivalent functions availability.

Example 1 – A single block capture
#####
Capture a block of 131072 ZIF samples (I14Q14) with the VRT packet
size set to 4096 and 32 packets requested
#####

import required libraries
import sys
from pyrf.devices.thinkrf import WSA
from pyrf.util import collect_data_and_context

Parameters for configuring the RTSA for a block capture
SPP = 4096
PPB = 32
CENTER_FREQ = 2450 * 1e6
RFE_MODE = 'ZIF'
DEC_RATE = 0 # for no decimation

APPNOTE 74-0050-180915 www.thinkrf.com 5 of 11

Define the RTSA device
dut = WSA()

connect to RTSA device with a given IP address
dut.connect(sys.argv[1])

reset device to default settings
dut.scpiset(":SYSTEM:LOCK:REQ? ACQUISITION") # dut.request_read_perm()
dut.scpiset(":*RST") # dut.reset()
dut.scpiset(":SYSTEM:FLUSH") # dut.flush()

set RFE mode to ZIF, which yields I14Q14 data
dut.scpiset(":INPUT:MODE " + RFE_MODE) # dut.rfe_mode(RFE_MODE)

does some device configuration, such as set frequency
dut.scpiset(":FREQ:CENTER " + CENTER_FREQ) # dut.freq(CENTER_FREQ)

uncomment to set the desired decimation rate, default is off
#dut.scpiset(":SENSE:DEC " + str(DEC_RATE)) # dut.decimation(DEC_RATE)

configure and capture the required block of data
dut.scpiset(":TRACE:SPP " + str(SPP)) # dut.capture(SPP, PPB)
dut.scpiset(":TRACE:BLOCK:PACKETS " + str(PPB)
dut.scpiset(":TRACE:BLOCK:DATA?")

read the block of data and any context packets from the R5500
for i in range(PPB):
 data, context = collect_data_and_context(dut)

Example 2 – A large block capture with frequency level trigger
#####
Perform a large capture of 32,768,000 SH samples (16384 * 2000),
conditional to a level trigger setting of range 2400 MHz – 2500 MHz
with an amplitude of -70 dBm
#####

import required libraries
import sys
from pyrf.devices.thinkrf import WSA
from pyrf.util import collect_data_and_context

set a large block size 16384 * 2000 or 32 Msamples
SPP = 16384
PPB = 2000
RFE_MODE = 'SH'
CENTER_FREQ = 2450 * 1e6
#TRIGGER_SET = {'type': 'LEVEL','fstart': 2400 * 1e6,'fstop': 2500 *
1e6, 'amplitude': -70}

define the RTSA device
dut = WSA()

connect to RTSA device with a given IP address
dut.connect(sys.argv[1])

reset device to default settings

APPNOTE 74-0050-180915 www.thinkrf.com 6 of 11

dut.scpiset(":SYSTEM:LOCK:REQ? ACQ") # dut.request_read_perm()
dut.scpiset(":*RST") # dut.reset()
dut.scpiset(":SYSTEM:FLUSH") # dut.flush()

set RFE mode to SH, which yields I14 data
dut.scpiset(":INPUT:MODE " + RFE_MODE) #dut.rfe_mode(RFE_MODE)

does some device configuration, such as set frequency
dut.scpiset(":FREQ:CENTER " + CENTER_FREQ) # dut.freq(CENTER_FREQ)

configure the trigger setting and enable it
dut.scpiset(":TRIGGER:LEVEL 2400 MHz, 2500 MHz, -70 dBm")
dut.scpiset(":TRIGGER:TYPE LEVEL") # dut.trigger(TRIGGER_SET)

configure and capture the required data
dut.scpiset(":TRACE:SPP %s" % SPP) # dut.capture(SPP, PPB)
dut.scpiset(":TRACE:BLOCK:PACKETS %s" % PPB)
dut.scpiset(":TRACE:BLOCK:DATA?")

read the data and any context packets from the R5500
for i in range(PPB):
 data, context = collect_data_and_context(dut)

Stream Capture
With stream capture, data packets will be 'pushed' from the R5500 whenever data is available
(as opposed to the block capture mode, which data is being “pulled” per user's request). Since
it is streaming, only SPP needs to be specified, not PPB. Once all the device and data capture
configuration commands are sent, issue :TRACE:STREAM:START (not

:TRACE:BLOCK:DATA?) command to start the streaming, and :TRACE:STREAM:STOP to stop.

The data samples are continuous and contiguous until memory overflow occurs, which would
happens very fast. Since the R5500 has a fast system clock rate of 125 MHz for data capture
with a limited memory storage and the network interface transfer rate is much slower than that
of the system clock, data overflow would bound to happen. After which, the capture system will
sustain the capture at a best effort as the transfer rate to the host could not match up to the
capture rate. With this limitation, it is recommended that stream capture should only be used
with a high decimation rate (such as 16 or higher) to slow down the sample rate.

Example – A stream capture
#####
Perform a stream capture of ZIF data with a decimation rate of 16
#####

import required libraries
import sys
import msvcrt
from pyrf.devices.thinkrf import WSA
from pyrf.util import collect_data_and_context

set the VRT packet size
SPP = 4096

APPNOTE 74-0050-180915 www.thinkrf.com 7 of 11

CENTER_FREQ = 2450 * 1e6
RFE_MODE = 'ZIF'
DEC_RATE = 16

define the RTSA device
dut = WSA()

connect to RTSA device with a given IP address
dut.connect(sys.argv[1])

reset device to default settings
dut.scpiset(":SYSTEM:LOCK:REQ? ACQ") # dut.request_read_perm()
dut.scpiset(":*RST") # dut.reset()
dut.scpiset(":SYSTEM:FLUSH") # dut.flush()

set RFE mode to ZIF, which yields I14Q14 data
dut.scpiset(":INPUT:MODE %s" % RFE_MODE)) # dut.rfe_mode(RFE_MODE)

does some device configuration, such as set frequency
dut.scpiset(":FREQ:CENTER " + CENTER_FREQ) # dut.freq(CENTER_FREQ)

configure the VRT packet size
dut.scpiset(":TRACE:SPP %s" % SPP) # dut.spp(SPP)

set the decimation rate to slow down the capture rate
dut.scpiset(":SENSE:DEC %d" % DEC_RATE)) # dut.decimation(DEC_RATE)

Start the stream capture
dut.scpiset(":TRACE:STREAM:START")

read the stream data and any context packets from the R5500
total_pkts = 0
while True:

data, context = collect_data_and_context(dut)

optional, just to indicate the stream capture is still running
total_pkts = total_pkts + 1
if total_pkts % 100 == 0:

print('.')

Add your conditional code here so to stop the stream
capture or just Ctrl+C to exit the program. For example:
when detect a key stroke, exit
if msvcrt.kbhit():

dut.scpiset(":TRACE:STREAM:STOP") # dut.stream_stop()
print
break

print "Total packets captured: %d" % total_pkts

Sweep Capture
The sweep capture control provides the ability to define and execute simple or complex sweeps,
in which each sweep entry defined a capture and device configuration as with the block capture.
To capture a block of data in an entry, use :SWEEP:ENTRY:SPP and :SWEEP:ENTRY:PPB as

APPNOTE 74-0050-180915 www.thinkrf.com 8 of 11

with the block method. Once all sweep entries are created, issue :SWEEP:LIST:START to

start the sweep as well as the capture. The engine will stop when the iterations
(:SWEEP:LIST:ITERATION) have been reached or either a :SYSTEM:ABORT or

:SWEEP:LIST:STOP command has been issued. The iteration is defaulted to 0, which means

infinite looping.

If a trigger is defined for an entry, captured data is returned only when the trigger event
occurred. Otherwise, when the trigger :DWELL time is reached, the trigger is aborted and the

next sweep entry will be executed. During sweeping, the R5500 internal buffer might be
overflown, at which point the sweep engine will pause. The engine will resume sweeping once
there are enough space for the next “block” of data or more.

Example – A sweep capture with multiple entries and a trigger setup
#####
Create multiple sweep entries with different configuration per
entries as an example of the sweep capabilities.
#
This example makes use of pyRF functions as well as direct SCPI
commands
#####

import required libraries
import sys
import time
from pyrf.devices.thinkrf import WSA
from pyrf.numpy_util import compute_fft
from pyrf.util import collect_data_and_context

setup RTSA and connect
dut = WSA()
dut.connect(sys.argv[1])

use thinkRF's pyRF functions to initialize the unit, instead of
direct SCPI here
dut.abort()
dut.flush()
dut.reset()
dut.request_read_perm()

clear any potential existing list
dut.scpiset("SWEEP:ENTRY:DELETE ALL") # dut.sweep_clear()

create first entry
dut.scpiset("SWEEP:ENTRY:MODE DD")
dut.scpiset("SWEEP:ENTRY:FREQ:SPP 2048")
dut.scpiset("SWEEP:ENTRY:SAVE 0")

create second entry
dut.scpiset("SWEEP:ENTRY:MODE ZIF")
dut.scpiset("SWEEP:ENTRY:FREQ:CENTER 62.5 MHZ, 8000 MHZ")
dut.scpiset("SWEEP:ENTRY:FREQ:STEP 100 MHZ")
dut.scpiset("SWEEP:ENTRY:FREQ:SPP 2048")

APPNOTE 74-0050-180915 www.thinkrf.com 9 of 11

dut.scpiset("SWEEP:ENTRY:FREQ:PPB 10")
dut.scpiset("SWEEP:ENTRY:DEC 8")
dut.scpiset("SWEEP:ENTRY:SAVE 0")

create third entry, but using the pyRF function
s = SweepEntry(
 fstart=62.5 * M,
 fstop=8000 * M,
 fstep=25 * M,
 fshift=0,
 decimation=1,
 spp=4096,
 ppb=100,

rfe_mode='SH')
dut.sweep_add(s)

set iteration to infinite
dut.sweep_iterations(0)

start sweeping
dut.scpiset("SWEEP:LIST:START") #dut.sweep_start()

while True:
data, context = collect_data_and_context(dut)
print hex(data.stream_id), context['rffreq']

add some conditional code here to stop the sweep & exit the
loop or set iteration to a non-zero value
dut.scpiset("SWEEP:LIST:STOP")

APPNOTE 74-0050-180915 www.thinkrf.com 10 of 11

Document Revision History
This section summarizes document revision history.

Document
Version

Release
Date

Revisions and Notes

v1.0 Sept 01, 2017 First release

v1.1 Feb 15, 2018 Added Capture Setup Requirement section

Contact us for more information
ThinkRF Support website provides online technical documents for ThinkRF products at
http://www.thinkrf.com/resources.

For all customers who hold a valid end-user license, ThinkRF provides technical assistance
9 AM to 5 PM Eastern Time, Monday to Friday. Contact us at https://www.thinkrf.com/support/ or
by calling +1.613.369.5104.

© 2017-2018 ThinkRF Corporation, Ottawa, Canada, www.thinkrf.com
Trade names are trademarks of the owners.
These specifications are preliminary, non-warranted, and subject to change without notice.

APPNOTE 74-0050-180915 www.thinkrf.com 11 of 11

http://www.thinkrf.com/
http://www.thinkrf.com/resources

	Overview
	Data Acquisition System and Process
	Definition and Process
	Capture Setup Requirement

	Block Capture
	Example 1 – A single block capture
	Example 2 – A large block capture with frequency level trigger

	Stream Capture
	Example – A stream capture

	Sweep Capture
	Example – A sweep capture with multiple entries and a trigger setup

	Document Revision History
	Contact us for more information

